Diospyros Lotus • Date Plum Or Persimmon

Total Page:16

File Type:pdf, Size:1020Kb

Diospyros Lotus • Date Plum Or Persimmon NATIO NAL SPECIES PROFILE PH ENOLOGY PROJECT Diospyros lotus • Date Plum or Persimmon Leaves Flower buds One or more unfolded leaves are visible on buds are visible on the the plant. A leaf is plant. lnclude buds considered “unfolded” which are swelling or expanding, but do not has emerged from a include those that are breaking bus, stem node so that the leaf stalk not include wilted or dried buds. visible at its point Fruits Flowers are considered One or more fruits are open when the repro- visible on the plant. between or within berry that changes from green to parts. Do not include purple-black as they ripen. They Flowers appear in spring typically ripen in around May - June and October-November. are white to pinkish. For abundance count For abundance, what the individual number of fruit. Ripe fruits Colored leaves The fruits are round and One or more leaves change color from green show some of their to yellow to purple-black typical late-season as they ripen. The fruit color, or yellow or is considered ripe when brown due to drought it has turned blue-black or other stresses. or purple-black. For Do not include small abundance count the spots of color due to individual number minor leaf damage, or of fruit. dieback on branches that have broken. Do not include dried or dead leaves that remain on Phenophases not shown: breaking leaf buds, the plant. falling leaves or falling fruit. usanpn.org sonomabg.org.
Recommended publications
  • Caterpillars Moths Butterflies Woodies
    NATIVE Caterpillars Moths and utter flies Band host NATIVE Hackberry Emperor oodies PHOTO : Megan McCarty W Double-toothed Prominent Honey locust Moth caterpillar Hackberry Emperor larva PHOTO : Douglas Tallamy Big Poplar Sphinx Number of species of Caterpillars n a study published in 2009, Dr. Oaks (Quercus) 557 Beeches (Fagus) 127 Honey-locusts (Gleditsia) 46 Magnolias (Magnolia) 21 Double-toothed Prominent ( Nerice IDouglas W. Tallamy, Ph.D, chair of the Cherries (Prunus) 456 Serviceberry (Amelanchier) 124 New Jersey Tea (Ceanothus) 45 Buttonbush (Cephalanthus) 19 bidentata ) larvae feed exclusively on elms Department of Entomology and Wildlife Willows (Salix) 455 Larches or Tamaracks (Larix) 121 Sycamores (Platanus) 45 Redbuds (Cercis) 19 (Ulmus), and can be found June through Ecology at the University of Delaware Birches (Betula) 411 Dogwoods (Cornus) 118 Huckleberry (Gaylussacia) 44 Green-briar (Smilax) 19 October. Their body shape mimics the specifically addressed the usefulness of Poplars (Populus) 367 Firs (Abies) 117 Hackberry (Celtis) 43 Wisterias (Wisteria) 19 toothed shape of American elm, making native woodies as host plants for our Crabapples (Malus) 308 Bayberries (Myrica) 108 Junipers (Juniperus) 42 Redbay (native) (Persea) 18 them hard to spot. The adult moth is native caterpillars (and obviously Maples (Acer) 297 Viburnums (Viburnum) 104 Elders (Sambucus) 42 Bearberry (Arctostaphylos) 17 small with a wingspan of 3-4 cm. therefore moths and butterflies). Blueberries (Vaccinium) 294 Currants (Ribes) 99 Ninebark (Physocarpus) 41 Bald cypresses (Taxodium) 16 We present here a partial list, and the Alders (Alnus) 255 Hop Hornbeam (Ostrya) 94 Lilacs (Syringa) 40 Leatherleaf (Chamaedaphne) 15 Honey locust caterpillar feeds on honey number of Lepidopteran species that rely Hickories (Carya) 235 Hemlocks (Tsuga) 92 Hollies (Ilex) 39 Poison Ivy (Toxicodendron) 15 locust, and Kentucky coffee trees.
    [Show full text]
  • Differences in the Phenolic Profile by UPLC Coupled to High Resolution
    antioxidants Article Differences in the Phenolic Profile by UPLC Coupled to High Resolution Mass Spectrometry and Antioxidant Capacity of Two Diospyros kaki Varieties Adelaida Esteban-Muñoz 1,2,*, Silvia Sánchez-Hernández 1,2, Cristina Samaniego-Sánchez 1,3 , Rafael Giménez-Martínez 1,3 and Manuel Olalla-Herrera 1,3 1 Departamento de Nutrición y Bromatología, Universidad de Granada, 18071 Granada, Spain; [email protected] (S.S.-H.); [email protected] (C.S.-S.); [email protected] (R.G.-M.); [email protected] (M.O.-H.) 2 Programme in Nutrition and Food Science, University of Granada, 18071 Granada, Spain 3 Biosanitary Research Institute, IBS, 18071 Granada, Spain * Correspondence: [email protected]; Tel.: +34-958-243-863 Abstract: Background: phenolic compounds are bioactive chemical species derived from fruits and vegetables, with a plethora of healthy properties. In recent years, there has been a growing inter- est in persimmon (Diospyros kaki L.f.) due to the presence of many different classes of phenolic compounds. However, the analysis of individual phenolic compounds is difficult due to matrix interferences. Methods: the aim of this research was the evaluation of individual phenolic compounds and antioxidant capacity of the pulp of two varieties of persimmon (Rojo Brillante and Triumph) by an improved extraction procedure together with a UPLC-Q-TOF-MS platform. Results: the phenolic compounds composition of persimmon was characterized by the presence of hydroxybenzoic and hy- droxycinnamic acids, hydroxybenzaldehydes, dihydrochalcones, tyrosols, flavanols, flavanones, and Citation: Esteban-Muñoz, A.; flavonols. A total of 31 compounds were identified and 17 compounds were quantified. Gallic acid was Sánchez-Hernández, S.; Rojo Brillante Samaniego-Sánchez, C.; the predominant phenolic compounds found in the variety (0.953 mg/100 g) whereas the Giménez-Martínez, R.; concentration of p-hydroxybenzoic acid was higher in the Triumph option (0.119 mg/100 g).
    [Show full text]
  • 1 of 2 Loquat and Tropical Fruit Trees
    Loquat and Tropical Fruit Trees Loquat, Japanese Plum Eriobotrya japonica Family: Rosaceae Origin: China Season: Small to medium sized, well-shaped rounded tree. Large 10-12 long, stiff leaves, dark green above, whitish underneath. Yellow to orange color fruit, somewhat pear-shaped, 2 long and 1 1/2 across with 1 to 3 seeds. Moderately fast growth, salt tolerant for coastal plantings. Location: Loquats are wind tolerant and grow best in full sun, but also do well in partial shade. The round headed trees can be used to shade a patio. Loquats also make attractive espaliers. Fruit may be thinned to increase size. Many varieties. The loquat should really be used more, the fruit is especially good just eaten out of hand or in poultry casseroles. Harvest: Loquat fruits should be allowed to ripen fully before harvesting. They reach maturity in about 90 days from full flower opening. When ripe the fruit develops a distinctive color, depending on the cultivar, and begins to soften. Unripe fruits do not ripen properly off the tree and are excessively acid. Harvest time in Texas is from March to May. The fruit is difficult to separate from the cluster stems without tearing and must be carefully clipped individually or the whole cluster removed and the fruit then snipped off. Ripe fruit may be stored in the refrigerator for 1 to 2 weeks. The orange fruit resembles an apricot when it is ready for picking because of its orange color. The loquat is comparable to the apple in many aspects, with a high sugar, acid and pectin content.
    [Show full text]
  • The Diversity of Plant Sex Chromosomes Highlighted Through Advances in Genome Sequencing
    G C A T T A C G G C A T genes Review The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing Sarah Carey 1,2 , Qingyi Yu 3,* and Alex Harkess 1,2,* 1 Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA; [email protected] 2 HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA 3 Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX 75252, USA * Correspondence: [email protected] (Q.Y.); [email protected] (A.H.) Abstract: For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. Through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there are also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics Citation: Carey, S.; Yu, Q.; to unravel the patterns that can be found across the hundreds of independent origins.
    [Show full text]
  • Pp. 72-75, 2020 Download
    T REPRO N DU The International Journal of Plant Reproductive Biology 12(1) Jan., 2020, pp.72-75 LA C P T I F V O E B Y T I DOI 10.14787/ijprb.2020 12.1. O E I L O C G O S I S T E S H Floral anatomy and flower visitors of three persimmon (Diospyros kaki L.) T varieties cultivated in Central Europe Virág Andor and Ágnes Farkas* Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Rókus str. 2., Hungary *e-mail : [email protected] Received : 20.12.2019; Accepted and Published online: 31.12.2019 ABSTRACT We report flower and pollination biological traits of three persimmon (Diospyros kaki L.) varieties cultivated under suboptimal conditions in the temperate climate of Central Europe. In order to observe flower visiting insects and floral morphology, and to determine the nectar producing capacity of persimmon flowers, field studies were conducted in 2018 and 2019. The anatomical studies were performed with light microscopy. Quantitative floral traits were analysed with two-sample t-test. The main flower visitors were honeybees (Apis mellifera L.) and bumblebees (Bombus sp.), which can act as pollinators, while searching for nectar. The studied persimmon varieties belong to the gynoecious type, the solitary pistillate flowers consisting of four- membered calyx and corolla, reduced androecium and a pistil with superior ovary and 3 to 5 stigmata. The size of the calyx was significantly different in different varieties, but corolla diameter did not differ within the same year of study. The diameter of both the calyx and corolla of the same variety was bigger in 2019 compared to 2018, due to favourable climatic conditions.
    [Show full text]
  • (Ebenaceae) by Evaluating Short Sequence Region of Plastid Rbcl Gene
    POJ 7(2):102-107 (2014) ISSN:1836-3644 Nucleotide based validation of the endangered plant Diospyros mespiliformis (Ebenaceae) by evaluating short sequence region of plastid rbcL gene Abdullah Alaklabi1, Ibrahim A. Arif 2,3, Sameera O. Bafeel4, Ahmad H. Alfarhan2,3, Anis Ahamed2,3, Jacob Thomas2 and Mohammad A. Bakir2,3* 1Department of Biology, College of Arts and Science, Al-Baha University (BU), Baljurashi, Saudi Arabia 2Department of Botany and Microbiology, College of Science, King Saud University (KSU), Riyadh, Saudi Arabia 3Saudi Biological Society and Prince Sultan Research Chair for Environment and Wildlife, King Saud University 4Department of Biology, King Abdulaziz University (KAU), Jeddah, Saudi Arabia *Corresponding author. Email: [email protected] Abstract Diospyros mespiliformis (Hochst. ex A.DC.; Ebenaceae) is a large deciduous medicinal plant. This plant species is currently listed as endangered in Saudi Arabia. Molecular identification of this plant species based on short sequence regions (571 and 664 bp) of plastid rbcL (ribulose-1, 5-biphosphate carboxylase) gene was investigated in this study. The endangered plant specimens were collected from Al-Baha, Saudi Arabia (GPS coordinate: 19.8543987, 41.3059349). Phylogenetic tree inferred from the rbcL gene sequences showed that this species is very closely related with D. brandisiana. Close relationship was also observed among D. bejaudii, D. Philippinensis and D. releyi (≥99.7% sequence homology). The partial rbcL gene sequence region (571 bp) that was amplified by rbcL primer-pair rbcLaF-rbcLaR failed to discriminate D. mespiliformis from the closely related plant species, D. brandisiana. In contrast, primer-pair rbcL1F-rbcL724R yielded longer amplicon, discriminated the species from D.
    [Show full text]
  • Diospyros Virginiana: Common Persimmon1 Edward F
    ENH390 Diospyros virginiana: Common Persimmon1 Edward F. Gilman, Dennis G. Watson, Ryan W. Klein, Andrew K. Koeser, Deborah R. Hilbert, and Drew C. McLean2 Introduction Uses: fruit; reclamation; specimen; urban tolerant; highway median; bonsai An excellent small to medium tree, common persimmon is an interesting, somewhat irregularly-shaped native tree, for possible naturalizing in yards or parks. Bark is grey or black and distinctly blocky with orange in the valleys between the blocks. Fall color can be a spectacular red in USDA hardiness zones 4 through 8a. It is well adapted to cities, but presents a problem with fruit litter, attracting flies and scavengers, such as opossums and other mammals. Its mature height can be 60 feet, with branches spreading from 20 to 35 feet and a trunk two feet thick, but it is commonly much shorter in landscapes. The trunk typically ascends up through the crown in a curved but very dominant fashion, rarely producing double or multiple leaders. Lateral branches are typically much smaller in diameter than the trunk. General Information Scientific name: Diospyros virginiana Pronunciation: dye-OSS-pih-ross ver-jin-nee-AY-nuh Common name(s): common persimmon Family: Ebenaceae USDA hardiness zones: 4B through 9B (Figure 2) Origin: native to the southern two-thirds of the eastern United States UF/IFAS Invasive Assessment Status: native Figure 1. Full Form—Diospyros virginiana: common persimmon 1. This document is ENH390, one of a series of the Environmental Horticulture Department, UF/IFAS Extension. Original publication date November 1993. Revised December 2018. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication.
    [Show full text]
  • Persimmon (Diospyros Kaki Thunb.) Seed: a Potential Nutritional Source with Antioxidant and Pharmaceutical Activity
    International Food Research Journal 27(6): 1057- 1066 (December 2020) Journal homepage: http://www.ifrj.upm.edu.my Persimmon (Diospyros kaki Thunb.) seed: a potential nutritional source with antioxidant and pharmaceutical activity 1Han, C. H., 2Kim, I. D., 3Kwon, S. I., 4Dhungana, S. K., 1Jang, S. Y., 1Kim, M. J. and 1*Shin, D. H. 1School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea 2International Institute of Agricultural Research and Development, Kyungpook National University, Daegu 41566, Korea 3Department of Clinical Pathology, Daegu Health College, Daegu 41453, Korea 4National Institute of Crop Science, Rural Development Administration, Miryang 50424, Korea Article history Abstract Received: 13 July 2019 Pulp is a major part of persimmon fruit, for which it is widely cultivated in different parts of Received in revised form: the world. Persimmon seeds are generally discarded as waste. The objective of the present 4 March 2020 work was to investigate the nutritional, antioxidative, and pharmacological properties of the Accepted: 18 August 2020 seeds of three persimmon cultivars namely Jinyeong (JYS), Yangyangdongchulsi (YYS), and Hamanmulgam (HAS). JYS (9417.87 mg.kg-1) contained the highest concentration of total minerals, followed by HAS and YYS. The concentration of total organic acids was also the Keywords highest in JYS (5362.43 mg.kg-1), while the lowest in HAS (4411.1 mg.kg-1). Similarly, JYS antioxidant, and YYS contained the highest and lowest concentrations of free sugars, respectively. On the free radical scavenger, other hand, the total free amino acid contents were the highest in YYS (336.34 mg.100 g-1) nutrition, among the cultivars.
    [Show full text]
  • Notes on Persimmons, Kakis, Date Plums, and Chapotes by STEPHEN A
    Notes on Persimmons, Kakis, Date Plums, and Chapotes by STEPHEN A. SPONGBERG The genus Diospyros is not at present an important genus of orna- mental woody plants in North America, and while native persimmons once were valuable fruits in the eastern United States, the fruits pro- duced by Diospyros species no longer are important food items in the American home. In the countries of eastern Asia at least two species of Diospyros are among the most common trees encountered in door- yard gardens and orchards, where they are cultivated for their edible fruits as well as for other uses and for their ornamental beauty. J. J. Rein, a German traveler and author, wrote in 1889 that Diospyros kaki Linnaeus f. was "undeniably the most widely distributed, most important, and most beautiful fruit-tree in Japan, Corea, and North- ern China." And in Japan, where D. kaki is second in importance as an orchard crop only to citrus fruit, the kaki often is referred to as the national fruit (Childers, 1972). The rarity with which species of Diospyros are found in cultivation in cool-temperate North America is partially due to the fact that most are native to regions of tropical and subtropical climate and are not hardy in areas of temperate climate. A member of the Ebenaceae or Ebony Family, the genus contains upwards of 400 species that occur Stephen A. Spongberg is a horticultural taxonomist at the Arnold Arbore- tum. He participated in the Arboretum’s collecting trip to Japan and Korea in the fall of 1977, an experience which intensifted his interest in persim- mons.
    [Show full text]
  • Date Palm Tamar Matzu’I תמר מצוי :Hebrew Name Scientific Name: Phoenix Dactylifera نخيل :Arabic Name Family: Arecaceae (Palmae)
    Signs 10-18 Common name: Date Palm tamar matzu’i תמר מצוי :Hebrew name Scientific name: Phoenix dactylifera نخيل :Arabic name Family: Arecaceae (Palmae) “The righteous shall flourish like the palm-tree; he DatE PaLM shall grow like a cedar in Lebanon” (Psalms 92:12/13) A tall palm tree, one of the symbols of the des- dates; the color of the fruit ranges from yellow to ert. Its trunk is tall and straight, and it bears “scars” dark red. that are remnants of old leaves that have been shed The date palm grows wild throughout the Near or removed. Additional trunks may grow from the East and North Africa and, as a fruit tree, has spread base of the main trunk. At the top of the trunks are around the world. All parts of the tree are used by crowns of large, stiff pinnate leaves. The bluish-gray humans: the trunks for construction, the leaves for leaves (palm fronds) are divided into leaflets with roofing, the fruit-bearing branches for brooms, and pointed tips. the seeds for medicinal purposes. The date palm The date palm is dioecious: large inflorescences is often mentioned in the Bible as an example of a (clusters) of male and female flowers develop on multi-use plant. It is one of the seven species with separate trees. In its natural habitat, the wind which the Land of Israel is blessed, and the lulav – a pollinates female trees, but this is done manually for closed date palm frond – is one of the four species cultivated trees.
    [Show full text]
  • Medical and Cosmetic Applications of Persimmon (Diospyros Kaki L.) and Their Toxicity Assessment-A Review
    Volume: 1 Issue: 3 International Journal of Traditional and Complementary Publisher Year: 2020 Medicine Research Duzce University REVIEW Medical and Cosmetic Applications of Persimmon (Diospyros kaki L.) and Their Toxicity Assessment-A review Ayse Kurt1* Ertugrul Kaya2 1 Traditional and Complementary Medicine Application and Research Center, Duzce University, Duzce, Turkey 2 Department of Pharmacology, Medicine Faculty, Duzce University, Duzce, Turkey *Corresponding Author: Ayse Kurt, e-mail: [email protected] Received: 27.07.2020 Accepted: 10.11.2020 Abstract In this review study, it is aimed to summarize the information cited about medical and cosmetic applications of the date persimmon (Diospyros kaki L.f.) and accordingly the toxicity assessment. For this purpose, the information cited about medical and cosmetic applications of the date persimmon (Diospyros kaki) and accordingly the toxicity assessment were summarized. Persimmon (Diospyros kaki), which is cultivated in tropical/subtropic regions such as China, Korea, Japan and Brazil, especially in the Far Eastern countries with more hot climate conditions, has been named as Trabzon Persimmon because it entered Turkey through the Black Sea region. This fruit type has a very important role on the immune system thanks to vitamins and some active ingredients. Although it is mostly consumed as fresh fruit and dried in our country, there are also formulations developed as medical support products (dematological and cosmetic applications etc.) in different countries worldwide. However, toxicity assessment studies on natural plants/herbal products are also very few. Since there is scientific evidence on the phytotherapeutic effects of Diospyros kaki, and the product scale on the market is very narrow, this is highly promising for future healthcare products.
    [Show full text]
  • Rootstocks for the Oriental Persimmon
    California Avocado association 1940 Yearbook 25: 43-44 Rootstocks for the Oriental Persimmon Robert W. Hodgson University of California, Los Angeles, Calif, From Proc. Amer. Soc. Hort. Sci. Vol. 37, 1939. Prior to 1919, when the federal plant quarantine went into effect, most of the Oriental persimmon (Diospyros kaki) trees planted in California were imported from Japan and were on the kaki rootstock. While extensive planting of this fruit did not occur until after that period, many of the old trees still remain in a condition of good vigor and a few are known which are now between 50 and 60 years old. Though at least a dozen varieties were introduced in these importations, no evidence of a rootstock problem seems to have been reported. For the past two decades, however, the only rootstock employed commercially has been the lotus persimmon (Diospyros lotus). It is not altogether clear why California nurserymen chose this rootstock, though the difficulty of obtaining seed of the Oriental persimmon was probably an important reason. For the Hachiya variety, which has comprised probably 98 per cent of the trees propagated, the results appear to be satisfactory thus far, though the characteristic vigor of the young trees seems to be associated with excessive shedding of the immature fruits. However, it early became evident that Fuyu, a non-astringent variety of Japanese origin, did not behave like Hachiya on this rootstock. The graft-union was usually poor, and most of the trees grew slowly, came into bearing early, and declined within a few years. Although some thousands of trees have been propagated, it is difficult to find good trees more than 10 years old, and the general experience has been that most of the trees have declined before attaining that age.
    [Show full text]