From Only Recently Malesia, Eg Diploglottis, Synima. They Arytera
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Accepted Manuscript
Accepted Manuscript Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae) Sven Buerki, Félix Forest, Pedro Acevedo-Rodríguez, Martin W. Callmander, Johan A.A. Nylander, Mark Harrington, Isabel Sanmartín, Philippe Küpfer, Nadir Alvarez PII: S1055-7903(09)00017-7 DOI: 10.1016/j.ympev.2009.01.012 Reference: YMPEV 3130 To appear in: Molecular Phylogenetics and Evolution Received Date: 21 May 2008 Revised Date: 27 November 2008 Accepted Date: 23 January 2009 Please cite this article as: Buerki, S., Forest, F., Acevedo-Rodríguez, P., Callmander, M.W., Nylander, J.A.A., Harrington, M., Sanmartín, I., Küpfer, P., Alvarez, N., Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae), Molecular Phylogenetics and Evolution (2009), doi: 10.1016/j.ympev.2009.01.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Buerki et al. 1 1 Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal 2 levels in the soapberry family (Sapindaceae) 3 4 Sven Buerki a,*, Félix Forest b, Pedro Acevedo-Rodríguez c, Martin W. Callmander d,e, 5 Johan A. -
I Is the Sunda-Sahul Floristic Exchange Ongoing?
Is the Sunda-Sahul floristic exchange ongoing? A study of distributions, functional traits, climate and landscape genomics to investigate the invasion in Australian rainforests By Jia-Yee Samantha Yap Bachelor of Biotechnology Hons. A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 Queensland Alliance for Agriculture and Food Innovation i Abstract Australian rainforests are of mixed biogeographical histories, resulting from the collision between Sahul (Australia) and Sunda shelves that led to extensive immigration of rainforest lineages with Sunda ancestry to Australia. Although comprehensive fossil records and molecular phylogenies distinguish between the Sunda and Sahul floristic elements, species distributions, functional traits or landscape dynamics have not been used to distinguish between the two elements in the Australian rainforest flora. The overall aim of this study was to investigate both Sunda and Sahul components in the Australian rainforest flora by (1) exploring their continental-wide distributional patterns and observing how functional characteristics and environmental preferences determine these patterns, (2) investigating continental-wide genomic diversities and distances of multiple species and measuring local species accumulation rates across multiple sites to observe whether past biotic exchange left detectable and consistent patterns in the rainforest flora, (3) coupling genomic data and species distribution models of lineages of known Sunda and Sahul ancestry to examine landscape-level dynamics and habitat preferences to relate to the impact of historical processes. First, the continental distributions of rainforest woody representatives that could be ascribed to Sahul (795 species) and Sunda origins (604 species) and their dispersal and persistence characteristics and key functional characteristics (leaf size, fruit size, wood density and maximum height at maturity) of were compared. -
Plastid and Nuclear DNA Markers.Pdf
Molecular Phylogenetics and Evolution 51 (2009) 238–258 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae) Sven Buerki a,*, Félix Forest b, Pedro Acevedo-Rodríguez c, Martin W. Callmander d,e, Johan A.A. Nylander f, Mark Harrington g, Isabel Sanmartín h, Philippe Küpfer a, Nadir Alvarez a a Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland b Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom c Department of Botany, Smithsonian Institution, National Museum of Natural History, NHB-166, Washington, DC 20560, USA d Missouri Botanical Garden, PO Box 299, 63166-0299, St. Louis, MO, USA e Conservatoire et Jardin botaniques de la ville de Genève, ch. de l’Impératrice 1, CH-1292 Chambésy, Switzerland f Department of Botany, Stockholm University, SE-10691, Stockholm, Sweden g School of Marine and Tropical Biology, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia h Department of Biodiversity and Conservation, Real Jardin Botanico – CSIC, Plaza de Murillo 2, 28014 Madrid, Spain article info abstract Article history: The economically important soapberry family (Sapindaceae) comprises about 1900 species mainly found Received 21 May 2008 in the tropical regions of the world, with only a few genera being restricted to temperate areas. The inf- Revised 27 November 2008 rafamilial classification of the Sapindaceae and its relationships to the closely related Aceraceae and Hip- Accepted 23 January 2009 pocastanaceae – which have now been included in an expanded definition of Sapindaceae (i.e., subfamily Available online 30 January 2009 Hippocastanoideae) – have been debated for decades. -
Lower Fitzroy River Infrastructure Project Draft Environmental Impact Statement
Not government policy Commercial in confidence Appendix 1. Vascular plant species recorded from the Lower Dawson River study area. Nomenclature according to Henderson (2002). ACANTHACEAE ARECACEAE Brunoniella australis Livistona decipiens Cabbage palm Dipteracanthus australasicus subsp. australasicus Pseuderanthemum variabile Love Flower ASCLEPIADACEAE *Asclepias curassavica Redhead cottonbush ADIANTACEAE *Cryptostegia grandiflora Rubbervine Cheilanthes sieberi Rock Fern *Gomphocarpus physocarpus Balloonbush Marsdenia viridiflora AIZOACEAE Sarcostemma viminale subsp brunonianum Caustic vine Tetragonia tetragonioides box burr Zaleya galericulata subsp. galericulata ASTERACEAE *Ageratum houstonianum Blue billygoat weed AMARANTHACEAE Bracteantha bracteata Achyranthes aspera Chaff flower *Bidens pilosa Coblers peg Alternanthera denticulata Lesser joyweed Calotis cuneata Blue burr daisy Alternanthera nana Hairy joyweed Cassinia laevis Coughbush Alternanthera nodiflora Centipeda minima var. minima Amaranthus interruptus Chrysocephalum apiculatum Yellow buttons Amaranthus viridus Green amaranth *Cirsium vulgare Spear thistle *Gomphrena celosioides Gomphrena *Conyza canadiensis Fleabane Nyssanthes diffusa Barb wire weed Cyanthillium cinereum Veronia *Emilia sonchifolia Emilia AMARYLLIDACEAE *Lactuca serriola Prickly lettuce Crinum flaccidum Murray lily Olearia sp *Parthenium hysterophorus Parthenium ANACARDIACEAE Pluchea dioscoridis Pleiogynium timorense Burdekin plum Pterocaulon redolens Toothed ragwort Pterocaulon serrulatum *Senecio lautus -
Lose the Plot: Cost-Effective Survey of the Peak Range, Central Queensland
Lose the plot: cost-effective survey of the Peak Range, central Queensland. Don W. Butlera and Rod J. Fensham Queensland Herbarium, Environmental Protection Agency, Mt Coot-tha Botanic Gardens, Mt Coot-tha Road, Toowong, QLD, 4066 AUSTRALIA. aCorresponding author, email: [email protected] Abstract: The Peak Range (22˚ 28’ S; 147˚ 53’ E) is an archipelago of rocky peaks set in grassy basalt rolling-plains, east of Clermont in central Queensland. This report describes the flora and vegetation based on surveys of 26 peaks. The survey recorded all plant species encountered on traverses of distinct habitat zones, which included the ‘matrix’ adjacent to each peak. The method involved effort comparable to a general flora survey but provided sufficient information to also describe floristic association among peaks, broad habitat types, and contrast vegetation on the peaks with the surrounding landscape matrix. The flora of the Peak Range includes at least 507 native vascular plant species, representing 84 plant families. Exotic species are relatively few, with 36 species recorded, but can be quite prominent in some situations. The most abundant exotic plants are the grass Melinis repens and the forb Bidens bipinnata. Plant distribution patterns among peaks suggest three primary groups related to position within the range and geology. The Peak Range makes a substantial contribution to the botanical diversity of its region and harbours several endemic plants among a flora clearly distinct from that of the surrounding terrain. The distinctiveness of the range’s flora is due to two habitat components: dry rainforest patches reliant upon fire protection afforded by cliffs and scree, and; rocky summits and hillsides supporting xeric shrublands. -
Kevin F. Kenneally
KIMBERLEY TROPICAL MONSOON RAINFORESTS OF WESTERN AUSTRALIA: PERSPECTIVES ON BIOLOGICAL DIVERSITY Kevin F. Kenneally School of Agriculture & Environment, Faculty of Science The University of Western Australia, MOO4, 35 Stirling Highway Crawley, Western Australia 6009, AUSTRALIA Nulungu Research Institute, Notre Dame University Australia, Broome, Western Australia, AUSTRALIA Western Australian Herbarium, Department of Biodiversity Conservation and Attractions (DBCA), Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, AUSTRALIA Western Australian Museum, Department of Terrestrial Zoology 49 Kew St, Welshpool, Western Australia 6106, AUSTRALIA [email protected] ABSTRACT There are more than 1,500 patches of monsoon rainforest, totaling 7,000 hectares, scattered across 170,000 square km of the tropical Kimberley region of Western Australia. They are small, isolated and embedded within a mosaic of mostly flammable eucalypt savanna woodlands. The status and condition of Kimberley monsoon rainforest biodiversity are assessed based on geographically comprehensive survey data from a total of 100 sites and opportunistic collecting in many others. Monsoon rainforests are rich in species not found in the region’s other vegetation communities. Most rainforests and their associated faunal assemblages are not currently reserved and many of the survey sites were found to be severely disturbed by fire and introduced feral cattle. The disturbance impact of fires, introduced animals and weeds is shown to apply generally across the three major forms of land tenure operating in the Kimberley; namely, Aboriginal land (includ- ing Indigenous Protected Areas), Crown land (including pastoral leasehold), and national parks and reserves. The implications of these disturbance factors on the conservation and management practices of monsoon rainforest patches in the region are considered. -
Plant Biodiversity Science, Discovery, and Conservation: Case Studies from Australasia and the Pacific
Plant Biodiversity Science, Discovery, and Conservation: Case Studies from Australasia and the Pacific Craig Costion School of Earth and Environmental Sciences Department of Ecology and Evolutionary Biology University of Adelaide Adelaide, SA 5005 Thesis by publication submitted for the degree of Doctor of Philosophy in Ecology and Evolutionary Biology July 2011 ABSTRACT This thesis advances plant biodiversity knowledge in three separate bioregions, Micronesia, the Queensland Wet Tropics, and South Australia. A systematic treatment of the endemic flora of Micronesia is presented for the first time thus advancing alpha taxonomy for the Micronesia-Polynesia biodiversity hotspot region. The recognized species boundaries are used in combination with all known botanical collections as a basis for assessing the degree of threat for the endemic plants of the Palau archipelago located at the western most edge of Micronesia’s Caroline Islands. A preliminary assessment is conducted utilizing the IUCN red list Criteria followed by a new proposed alternative methodology that enables a degree of threat to be established utilizing existing data. Historical records and archaeological evidence are reviewed to establish the minimum extent of deforestation on the islands of Palau since the arrival of humans. This enabled a quantification of population declines of the majority of plants endemic to the archipelago. In the state of South Australia, the importance of establishing concepts of endemism is emphasized even further. A thorough scientific assessment is presented on the state’s proposed biological corridor reserve network. The report highlights the exclusion from the reserve system of one of the state’s most important hotspots of plant endemism that is highly threatened from habitat fragmentation and promotes the use of biodiversity indices to guide conservation priorities in setting up reserve networks. -
Flora of Australia, Volume 25, Melianthaceae to Simaroubaceae
FLORA OF AUSTRALIA Volume 25 Melianthaceae to Simaroubaceae This volume was published before the Commonwealth Government moved to Creative Commons Licensing. © Commonwealth of Australia 1985. This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced or distributed by any process or stored in any retrieval system or data base without prior written permission from the copyright holder. Requests and inquiries concerning reproduction and rights should be addressed to: [email protected] FLORA OF AUSTRALIA Volume 25 of Flora of Australia contains 7 families of plants. The largest is Sapindaceae, with 30 genera and 193 species. Many of these are rainforest plants of Queensland and New South Wales, but a number occur elsewhere in Australia. The family contains the large genus Dodonaea (native hops), which occurs widely in drier regions. Also in Volume 25 is Anacardiaceae, with 9 genera and 13 species in Australia. These arc mostly tropical plants but include several trees naturalised in southern regions. The other families are Simaroubaceae (4 genera, with 5 native species and 1 naturalised species), Burseraceae (2 genera, 5 native species), Melianthaceae (1 genus, 2 naturalised species), Akaniaceae (1 native species) and Aceraceae (1 naturalised species). In all, the volume contains 48 genera and 221 species. The volume includes descriptions, keys for identification, notes and maps on distribution, and bibliographic information. A number of species are illustrated by line drawings or colour photographs. -
Plants of Magnetic Island
PLANTS OF MAGNETIC ISLAND 3rd EDITION BETSY R. JACKES SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND 1 © James Cook University 2010 Jackes Betsy R (Betsy Rivers) Plants of Magnetic Island ISBN: 978-0-9808183-8-3 ACKNOWLEDGMENTS This publication is based on "Plants of Magnetic Island', Editions 1 (1987) and 2 (2003). To all those who have collected plants for the 1987 edition and subsequently my sincere thanks. Art work is by Ashley Field, Geoff Kelly and Norm Duke, with small sketches by myself. Other illustrations are based on photocopies and recently coloured scans of actual plants. Photographs of flowers chiefly by Andi Cairns, John Elliott, Chris Gardiner, Don Kinsey and Andrea Lim. The map was prepared by Adella Edwards, Cartography, James Cook University, modified from Sandercoe (1990) with permission of the Director, Queensland Herbarium. Andi Cairns provided valuable assistance with the layout and with suggestions on the manuscript. To all those who have suggested changes, who have provided lists of plants, particularly the staff of the Queensland Herbarium, my grateful thanks. Names updated 2021. 2 GUIDE TO THE PLANTS OF MAGNETIC ISLAND MANGROVES, DUNES AND WOODLANDS Betsy R. Jackes Magnetic Island (190 08 S, 1480 50 E), offshore from the north Queensland city of Townsville, was first named by Captain James Cook in 1770. He called it “Magnetical Point, land which has the appearance of an island”, because his compass moved erratically as he passed it. This large island, about 5,000 ha in area, rises to 493 m at Mt Cook, the highest point. -
Phylogeny and Circumscription of Sapindaceae Revisited: Molecular Sequence Data, Morphology and Biogeography Support Recognition of a New Family, Xanthoceraceae
Plant Ecology and Evolution 143 (2): 148–159, 2010 doi:10.5091/plecevo.2010.437 REGULAR PAPER Phylogeny and circumscription of Sapindaceae revisited: molecular sequence data, morphology and biogeography support recognition of a new family, Xanthoceraceae Sven Buerki1, Porter P. Lowry II2,3,*, Nadir Alvarez4, Sylvain G. Razafimandimbison5, Philippe Küpfer6 & Martin W. Callmander2,7 1Department of Biodiversity and Conservation, Real Jardin Botanico, CSIC, Plaza de Murillo 2, ES-28014 Madrid, Spain 2Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299, U.S.A. 3Muséum National d’Histoire Naturelle, Case Postale 39, 57 rue Cuvier, FR-75231 05 CEDEX, Paris, France 4Department of Ecology and Evolution, Biophore, University of Lausanne, CH-1015 Lausanne, Switzerland 5Department of Botany, Bergius Foundation, SE-10691, Stockholm University, Stockholm, Sweden 6Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland 7Conservatoire et Jardin botaniques de la ville de Genève, ch. de l’Impératrice 1, CH-1292 Chambésy, Switzerland *Author for correspondence: [email protected] Background and aims – Recent studies have adopted a broad definition of Sapindaceae that includes taxa traditionally placed in Aceraceae and Hippocastanaceae, achieving monophyly but yielding a family difficult to characterize and for which no obvious morphological synapomorphy exists. This expanded circumscription was necessitated by the finding that the monotypic, temperate Asian genus Xanthoceras, historically placed in Sapindaceae tribe Harpullieae, is basal within the group. Here we seek to clarify the relationships of Xanthoceras based on phylogenetic analyses using a dataset encompassing nearly ¾ of sapindaceous genera, comparing the results with information from morphology and biogeography, in particular with respect to the other taxa placed in Harpullieae. -
Plastid and Nuclear DNA Markers Reveal Intricate Relationships at Subfamilial and Tribal Levels in the Soapberry Family (Sapindaceae)
Molecular Phylogenetics and Evolution 51 (2009) 238–258 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae) Sven Buerki a,*, Félix Forest b, Pedro Acevedo-Rodríguez c, Martin W. Callmander d,e, Johan A.A. Nylander f, Mark Harrington g, Isabel Sanmartín h, Philippe Küpfer a, Nadir Alvarez a a Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland b Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom c Department of Botany, Smithsonian Institution, National Museum of Natural History, NHB-166, Washington, DC 20560, USA d Missouri Botanical Garden, PO Box 299, 63166-0299, St. Louis, MO, USA e Conservatoire et Jardin botaniques de la ville de Genève, ch. de l’Impératrice 1, CH-1292 Chambésy, Switzerland f Department of Botany, Stockholm University, SE-10691, Stockholm, Sweden g School of Marine and Tropical Biology, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia h Department of Biodiversity and Conservation, Real Jardin Botanico – CSIC, Plaza de Murillo 2, 28014 Madrid, Spain article info abstract Article history: The economically important soapberry family (Sapindaceae) comprises about 1900 species mainly found Received 21 May 2008 in the tropical regions of the world, with only a few genera being restricted to temperate areas. The inf- Revised 27 November 2008 rafamilial classification of the Sapindaceae and its relationships to the closely related Aceraceae and Hip- Accepted 23 January 2009 pocastanaceae – which have now been included in an expanded definition of Sapindaceae (i.e., subfamily Available online 30 January 2009 Hippocastanoideae) – have been debated for decades. -
Species Common Name Family Growth Form Abutilon Oxycarpum Var
MCCG Native Plants December 2013 Species Common Name Family Growth form Abutilon oxycarpum var. oxycarpum small-leaved abutilon Malvaceae Shrub Acacia disparrima subsp. disparrima hickory wattle Mimosaceae Tree Acacia falcata sickle-leaved wattle Mimosaceae Shrub Acacia fimbriata Brisbane wattle Mimosaceae Shrub Acacia implexa lightwood Mimosaceae Tree Acacia irrorata subsp. irrorata green wattle Mimosaceae Shrub Acacia leiocalyx subsp. leiocalyx early black wattle Mimosaceae Tree Acacia maidenii Maiden's wattle Mimosaceae Tree Acacia melanoxylon blackwood Mimosaceae Tree Acacia penninervis var. longiracemosa mountain hickory wattle Mimosaceae Shrub Acacia ulicifolia prickly Moses Mimosaceae Shrub Acalypha nemorum ---- Euphorbiaceae Shrub Acronychia laevis glossy acronychia Rutaceae Tree Acronychia oblongifolia white acronychia Rutaceae Tree Acronychia pauciflora soft acronychia Rutaceae Tree Acrotriche aggregata red ground berry Ericaceae Shrub Actephila lindleyi actephila Phyllanthaceae Shrub/Tree Adiantum atroviride maidenhair fern Adiantaceae Fern Adiantum formosum giant maidenhair fern Adiantaceae Fern Adiantum hispidulum. var. hispidulum rough maidenhair fern Adiantaceae Fern Adiantum hispidulum var. hypoglaucum ---- Adiantaceae Fern Adiantum hispidulum var. whitei ---- Adiantaceae Fern Aeschynomene brevifolia ---- Fabaceae Herb Ailanthus triphysa white bean Simaroubaceae Tree Ajuga australis Australian bugle Lamiaceae Herb Alangium villosum subsp. tomentosum hairy muskwood Cornaceae Tree Alchornea ilicifolia native holly Euphorbiaceae