Semantics of Asynchronous JavaScript Matthew C. Loring Mark Marron Daan Leijen Google Inc, USA Microsoft Research, USA Microsoft Research, USA
[email protected] [email protected] [email protected] Abstract asynchronous API’s exposed by Node.js and for tools that The Node.js runtime has become a major platform for de- can help develop [15], debug [4], or monitor [10, 24] the velopers building cloud, mobile, or IoT applications using asynchronous behavior of their applications. JavaScript. Since the JavaScript language is single threaded, 1.1 Semantics of Node Event Queues Node.js programs must make use of asynchronous callbacks and event loops managed by the runtime to ensure appli- A major challenge for research and tooling development for cations remain responsive. While conceptually simple, this Node.js is the lack of a formal specification of the Node.js programming model contains numerous subtleties and be- asynchronous execution model. This execution model in- haviors that are defined implicitly by the current Node.js volves multiple event queues, some implemented in the na- implementation. This paper presents the first comprehensive tive C++ runtime, others in the Node.js standard library formalization of the Node.js asynchronous execution model API bindings, and still others defined by the JavaScript ES6 and defines a high-level notion of async-contexts to formalize promise language feature. These queues have different rules fundamental relationships between asynchronous events in regarding when they are processed, how processing is inter- an application. These formalizations provide a foundation leaved, and how/where new events are added to each queue. for the construction of static or dynamic program analysis These subtleties are often the difference between a respon- tools, support the exploration of alternative Node.js event sive and scalable application and one that exhibits a critical loop implementations, and provide a high-level conceptual failure.