LA,TE ORDOVICIÆ{ SOLITARY RUGOSE CORATS oF TIIE BEAVERFOOT FORMATTON, SOUTIIERN ROCKY UOI'NTATNS,

BRITISH COLI]MBIÀ AND .

Caroline J. Knapp

A thesis presented to the Unlversfty of ManÍtoba in partíal fulfill¡tent of the requírements for the degree of

I'iaster of Scíence ln Departmeût of Earth Sclences

Ilinnipeg, Manítoba 1985 LATE ORDOVICIAN SOLITARY RUCOSE CORALS OF THE BEAVERFOOT FORMATION,

SoUTHERN ROCKY MOUNTAINS, BRTTTSH COLUI'ÍBrA AND ALBERTA

BY

CAROLINE J. KNAPP

A thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

,-/@ '1985

Permissio¡r has been granted to the LIBRARY OF THE UNIVER- SITY OF MANITOBA to lend or sell copies of this thesis. to the NATIONAL LIBRARY OF to microfilnr this thesis a¡rd to lend or sell copies of the film, and UNMRSITY MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, a¡rd neither the thesis nor extensive extracts from it may be printed or other- wise reproduced without the author's writte¡r permission. a

Contents

Abstract 1

Introduction . 3 Abbrevlations 3 Explanatíon of figures 4 General geologY 7 History of stratígraphlc nomenclature 7 Llthos tratigraPhY 9 BiostratigraPhY 11

DeposiEíonal- envíronments . 13 Solitary rugose corals l4

Previous work . T4 Present material 15

Preservation . 15 Identification and rel-ative abundance of taxa ' 22 Geographic and stïatigraphíc distributíon 24

Taphonoury and Paleoecologr 26 Abrasion 26

Attachment structures . 28

OrientaËiot¡ . . 30

Pal-eo ecolo gi c assocíatÍons 34

Paleoenvironments and pal-eobathymeÈry 36

Close bíotic associates . .. 38 Objeets within corall-a 38 Epizoans and boríngs .. 40 Distributl-on and evolutlon 42 t_1

Sal 42 Blghornla 44 Grewingkía .. ... 46

Deíracorat-1ir¡m 48

Pal-eobiogeography 49 Bíostratigraphy 5l

Sys temaÈic pal-eontol-ogy s4

Genus Salvadorea Nelson ,1981 54 S. disÈineta dlstlgcta (!ütlson, L926) 55

Salvadorea sp. 2 of. Nelson, 1981 68

Genus Bíghornia Duncan, L957 . 70

B. patel-l-a (ltíLson, 1926) 75 'and B. wilsgnae Knapp Elias' n. sp. 89

B. sp. cf. B. botteÍ Nelson,'1963 . 92

Genus Grer¡ingkia Dybowski, 1873 . 95 g. haysit haysii (Meek, 1865) 95

Genus -_-----Deiracoralliun Nelson, 1963 . 109 D. prolongatum (trIilson, 1926') 109

Acknowledgments 119 References cíted L20 Appendix 1. Distribution and frequency of coral-s r29 Appendix 2. Identifícation of speclmens 136

Appendix 3. Bíometríc data . r52 Appendix 4. Additional- data on S. distínq.lEq ¡listlncga t67 Appendix 5. Length of cardinal septum 169 iti

Table

1. Features of sol-itary corals 27

Figures

1. Geologic map of southern Rocky Ìtountaíns 5

2. Topographic nap showing Localities Nl2, &!!\, K12B . 16

3. Photograph of l-ocal-itíes K124, ElgE 18 4. Stratlgraphíc section, localiÈíes Elä' K12B . 20 5. G. haysii haysii- and S. distlncta distincta 32

6. S. digtincta distincta and Salvadorea sp. 2 64

7. Number of maJor septa ln S. distincta disÈincta and

Salvadorea sp. 2 66

8. Coral hefght and cross-sectional dimension ln BLghornia 73 9. B. patel-la, B. wílsonae, and B. sp. cf . B. botteí 83

10. Cross-sectional dÍmensions in Bighornfa 85

11. Nunber of major septa in B1 87

L2. G, haysti havsíi 103

13. Cross-sectional dimensions in Grenringkia and

Deiracoral-I-iun 10s

14. Nr¡mber of major septa ín G. haysil haysii 107

15. D. prolongatum 115 16. Number of major septa l-n D. prolongatum ..... LL7 1

Late Ordovician sol-ltary rugose corals of the Beaverfoot Fotmation' southern Rocky Mountainst Britlsh Col-unbfa and Alberta

Caroline J. Knapp

Department of Earth Sciences . University of Manítoba'

llÍnnf Man Canada 2N2

The following Late ordovician solitary Rugosa are Present wíthin the Beaverfoot Fornation (Upper Ordovicl-an-Lower Silurian) in the southern Rocky Mountains of Brftlsh Col-unbia and Alberta: Salvadorea dístÍncta distincta (I,Iilson, L926) , Bighornía patel"l-a (I{íLson , 1926) , B. sp. cf. B. bortei Nelson, L963, Grewingkia haysii haysii (Meek'

1865), Deiracoralliun prolongatum (ÏIlLson, 1926), and Salvadorea sp.2 of Nelson, 1981. Corals of this Salvadorea-dominated assemblage are most comtron and widespread ín the l-ower parÈ of the Beaverfoot above

the basal WhískeY Trail Member. Analyses of coral abrasion, curvature, and life orientatíon suggest that G. havsii havsii inhabited hígher energy environments than S. distincta disÈíncta and B. patel-la. All taxa probably lived fn close proxin:ity, and the coralla were transPorted during severe storms. The presence of so1ítary corals fn particular intervals within the Beaverfoot Formation coul-d indicate shallow hrater maxima and/or relatível-y oPen' nor:mal marine condítions. The area of Beaverfoot sedimentation r¡as situated wiÈhín the Red River-Stony Mountain SoLitary Coral Province, which oecupíed'most of North America during Late Ordovician tfme. The six species in thís 2

formation comprise an ttepicontlnentaltt assemblage, and all occur

in the Hudson Bay Basin. The absence of "continental marginrr Èaxa could reflect envíronmental faetors or geographic barríersr or could indicate that the Beaverfoot Formation r{tas deposlted some distance from the edge of the conÈínenL. The base of the Bigh ornia-Thaerodonta zone in the Beaverfoot Formation is hereín placed at Èhe lowest occurrence of solitary corals withín the lühiskey Traíl Member. El-ser¿here' this Salvadorea-domlnated assemblage fírst appears in Maysvillian to

niddle Richmondían strata. The Bíehornia-Thaerodonta zone is exÈended upward to ínclude coral-bearing beds thought to be near the Ordovician-Silurian boundary. The uppermost portion may be Ganachian'

No evolutÍonary changes are recognízed ín solitary rugosan specíes I^ríthín the Beaverfoot Form¿tÍon. B. wilsonae Knapp and Elias' n. sp.r the ancestor of B. patell-a, ís known from the second value Dolomite of the Montoya Group in New Mexico and Texas, and Èhe

Selkirk Member of the Red River Formation in southern Manltoba' 3

Introduction

The Beaverfoot Formatíon of Late OrdovicÍan to Early Silurían age is exposed in the southern Rocky Mountains of British col-umbia and Al-berta (Fie. 1). trIiÈhín this area, the original depositional stríke as well as trends of thrust sheets, mountain ranges, and outcrops are all approximately paral1e1 in a northwesf-southeasÈ direction. The formation represents predominantly carbonate deposítion on a broad platform along the early Paleozoic continental margin of western NorÈh America. Varfous faunal- zones have been recognízed r¿ithin the Beaverfoot, but the only descríptive paleontologícal r¡rork l^7as by I'lilson (1926) .

The purposes of this study are to describe, using modern techni-ques, the LaÈe Ordovician solítary Rugosa of the Beaverfoot Formation, to document their straËÍgraphíc and geographíc distríbutions, and provide paleoecologic inÈerpretations. The evolutíonary, paleobiogeographic, and biostratigraphíc sÍgnificance of these fossíls is consídered using comparÍsons l¡íth corals descrÍbed from elsewhere in North America (Nelson,1963, 1981; Elias,1981, 1982a, 1983a, 1983b' 1985; Elias and Potter,1984), and a chronostratígraphic framework based prinaríly on conodont data (Sweet, 1979i McCracken and Barnes,

1981; Elias, 1985).

Canada, Ottawa, Ontario) Abbreviations--€SC (Geologícal Survey of ',MMH (l"luseurn mineralogicum hafniensis, Geologisk Museum, Copenhagen'

Denmark), PMO (Paleontologisk Museum, os1o, Norway)' usNM (NaÈional

Museum of NaÈural History, Smithsonlan Institutíon, l'lashington, D'C')' 4

Explanatíon of figures-For photographs of coral exteriors' specimens TÍere coated wlth amonium chloride. Al-L transverse and l-ongitudinal secÈions nrere prepared using thin sections as negatives !n a photographic enlarger. Transverse sectlons are oriented as they appear l-ookíng down from the caLice toward the tLp of the eoral,

¡¡ith the cardinal- síde faeing th.e botÈon of the page. A.l-1 1-ongftudinal sections are orfented with the cal-ice faclng the top of the page. 5

Flgure l. Geologlc map of part of the southern Roeky l.(ountains from Norford, 1969, f'LE. 6). Late Ordovician solitary rugose corals fron the Beaverfoot Fornatlon were coll-ected at the local-itles

named below.

IÞshed line geologic boundary Short dash-dot l-lne feather edge of stratigr¿phlc lnterval- beneath sub-Devonlan unconfornity

Long dash-dot llne structural- dLscontfnuity along Rocky l'fountaín Trench Solid l1ne truncation due to recent eroslon sr Tegart Formatlon (Sllurl.ao)

osb Beaverfoot Formåtlon (Upper Ordovicl'an to Lo!úer Silurian)

0rûr{ Mount l{ilson Quartzite (l{lddle to Uppel Ordovfcian) lnO upper Lower to MlddLe ordovlcfan (owen creek Formatlon, skokl Iornatfon' TLpperary quartzlte, Glenogl-e shales, upper pårt of outra¡r Fornatlon)

llP Palllser Pass

I{sl Irllndermere Creek

t'6P between Spray Rlver and Palliser Pass r Faírmont Spríngs & llhite Knight }iountaln

-NÀ Mount Wll-son

-NC Tipperar5¡ Pass

ND Pedley Pass

NE. ìbunt SincLair

NE Carbonate Creek

¡¡4 IndLanhead lfountain

N7 Pinnacle Creek

N9 Itatch Creek

N10 Pagliaro Creek

Nr1 Ilorse Creek

N12 Bl-ackfoot Creek

N14 Shatch Mountain uu lbunt Onslo¡'r

N31 Pípestone River

N40 Clrrus Mountain Kt2 Akutlak Creek Lq

51.

Radum osb+J

BRITISH tr. r s. st

COLUMBIA osb

Cfanbrook¡

o 21 {km t--l-g

c^xA u 7

General geoLogy Hístory of stratigr aphie nomenclature-strata in the Beaverfoot Range of southwestern BriLish CoLumbia were first studied by McConnell (1887). He identified a sequence of quartzÍtes succeeded by dolomites

as the t'Ilalysítes beds ," and assigned it to Ëhe Silurian. Burling (1922, p. 452) proposed the name BeaverfooÈ FormatÍon for Èhe "I1alysÍtes beds," and consídered Ít to be Late OrdovicÍan (Richmondian) in age. The type section ís at Carbonate Creek. The

quartzite interval tras separated from Èhe BeaverfooË and named tr{onah Quartzite by tlalcott (1924¡ P. 48-50). He also proposed the term Brisco Formatlon for a Silurian dolomítíc and argil-laceous unit above the Beaverfoot (Italcott, 1924, P. 47, 48). fne type sections of his units are at Mount Sinclair in the Brisco Range. Lat.er workers could not differentiate the Beaverfoot

and Brisco on lithologic grounds, and used Èhe term Beaverfoot-Brísco Formation (references cÍted in Norfordr1969, p. 5).

Based on work ln the southern Rocky Mountaíns of Alberta, I^lalcott (L923, p. 464, 465i 1928, p. 208-2IO) proposed the Êerm Mount trIílson Quartzite for a unit that he tentatively assígned to the Devonian. The Ëype sectíon is at Mount trIílson. Severson (1950r 'P. 1838, 1839) recognized the "Il"fy.qi-t." beds" above Èhe Mount tr'Iilson Quartzlte. These units qrere considered Silurian and Ordovícian' respectively. The ttHalysítes bedstt were de¡ronstrated to be Late Ordovicían by Harker, Hutchinson, and Mclaren (1954, p. 52) and, specifícal1y, Ríehmondian by Bolton (ín Leech, 1954, p.24). They were assígned to Ëhe Beaverfoot-Brísco Formation by Norford (1961). I

Norford (1969, p. 28) confirmed the suggestion of North and llenderson (1954, p. 68) that the tern tJonah Quartzite is a Junlor synonym of Mount l{ilson Quartzite, and the former name is now obsolete. Norford (L962a, p. 446) subdivided the Beaverfoot-Brfsco Fomation of Britísh Columbia into 1o¡rer and upper members. The

I-ower member conrprised the mafn mass of resistant dol-ostone and límestone, incl-uding the Beaverfoot and Brisco of l,Ialcott p1-us younger strata Èhat are absent at llount Sincl-alr. the recessÍve upper

member lncluded argilLaceous l-fmestones and shal-es. In a l-ater overall synthesís, Norford (1969, p. 28) considered strata of the type Brisco to be part of the Beaverfoot Formation, and proposed Pedley Pass as a standard sectíon for the formatfon. Norford (1969' p. 32) erected the Tegart FormatÍon for a Sílurlan unit prevfously distl-nguished as

the upper member of the Beaverfoot-Brísco Formatíon. The latter term

was abandoned. The name trlhiskey Trail- Member was proposed by Norford (tgOg, p. 29) for a recessive, arenaceous and dol-omític interval at

Èhe base of the BeaverfooÈ Formation. The type sectlon of this member is at Carbonate Creek. 9

Lithostratigraplv--{he thíckness of the Beaverfoot Formatíon at Pedley Pass, where it is overLain by the Tegart Formation, ís 506.3 ¡n (1661 ft.). The thickness is 17.1 m (56 ft.) at Típperary Lake, where it is overlaín by Devonian rocks. The Beaverfoot thíns from west to east in the southern Rocky Mountains (Norfordr1969, fígs. 13, 14).

At Ëhe type section (Carbonate Creek), the contact of the Beaverfoot Formation with the underlyíng Míddle to Upper Ordovicían

MounÈ trIilson Quartzite ís not visible, but ís apparently concordant

(Norford, 1969 , p. 28> . The contact at Pedley Pass is irregular but concordant, as ít ís throughout most of the southern Rockies. AÈ Pínnacle Creek, shallow erosional surfaces are present between the

Beaverfoot and Mount l,Iilson. In the south and southeast' the Beaverfoot overlaps the Mount tr{ilson to rest on ol-der Ordovícian and

Cambrian rocks.

The i'Ihískey Trail Member aÈ the base of the Beaverfoot Formation is of variable thickness. It 1s 28.3 n (93 ft.) thick at Carbonate Creek, but only 2.1 n (7 f.t.) ttrict< at Tipperary Lake. The trühiskey Trail is not present where the main part of Èhe Beaverfoot overlaps the Mount l,lilson QuarËzíte. Its distributíon pattern more closely resembles that of the Mount tr{ilson than that of the main Beaverfoot (Norford, 1969, p. 32). The l^Ihiskey Trail Member ís composed of dolonitíc quartz sandstones wÍth minor and typíeally thín bedded quartzíte layers, arenaceous and argil-laceous dolomíËes, dolomítes ' with echinoderm debris, and olive-grey mudstones (Norfordr 1969, p. 30). The contact with the maín part of the Beaverfoot Formation ls regÍonally disconformable . 10

The rnain part of the Beaverfoot fs composed of medir¡m and thiekl-y bedded, resistant dol-omites that weather in colours ranging from pale yel]-owish bro1¡n to light grey and olíve (Norforô 1969, p. 29). The dolomi.tes are composed of sil-È-sized graíns to ffnely crystal-line mosalcs. Some beds contain siliceous material- and rarely quartz sil-t.

At PedLey Pass and near BLackfoot Creek, limestones and dolonitic Limestones are preserved. The linestones are aphanitlc and weaÈher f-ight grey. The Silurian Tegart Fornation confornabl-y overlles the Beaverfoot Fornation in the southwestern part of the southern Rocky Mountains (Norford, ]¡969, p. 32, 33). El-sewhere 1t ís absent, and

Devonfan rocks rest disconformabLy oï paraconformabl-y on the ¡eaverfoot. 11

Bíos trati orford (1969, p. 38) identífied a "conodont zone" comprising the uppermost bed of the Mount llílson Quartzlte and the

overlyí4g lthískey Trail Member of the Beaverfoot Formatíon. He staÈed that the megafauna in this zone seemed to be distinct from Èhat in strata innediatel-y above (Norford, 1969, p. 30, 31). In the main part of the Beaverfoot Formation, Norford (I962a, p. 449, fíg. 2) recognízed the fol1-owing four shelly

assemblage zones, l-isted in aseending sÈratigraphic order:

Bigho rnía-Thaerodonta zone , Eostropheodonta zone, Pentamerus zone , and t'poorly Eophacops-Cheírurus zorLe. The first t\Àro are separated by a fossiliferous interval.tt The Bigho_rnía-Thaerodonta zone at Mount Sinclair comprises 55 m (180 ft. ) of the Beaverfoot Formatíon irnmedÍately above the lfhiskey Trail Member (Norford, 1969, p. 38). The characteristie taxa are Bighornia patell-a and Thaerodonta aff . T. saxea. The assoeiated fauna was listed by Norford (1969, P. 38' 39)' who considered the age to be Late Ordovícían. Barnes, Jackson, and Norford (L976, fig. 5) have integrated the Bighornia-Thaerodonta zone wíth others based on graptolites and conodonts.

Norford (1969, p. 39) recognized a thick, "poor1-y fossiliferous

inÈervalrr of the Beaverfoot Fonnation that separates Èhe

Bighornj.a-Thaerodonta zone from the Eostropheodonta zone. It is 304.8 ur (1000 ft.) thíck at Pedley Pass and 243.8 n (800 ft.) thlck aË

Mount Sinclair. Uyeno (!g Norford, 1969, p.39) identífied tr¿o conodont faunul-es from this interval at Mount Sinclair. Faunul-e A ís from a horizon 38.7 m (127 f.t. ) above the upper 1imít of the Blghornía-Thaerodonta zone. Uyeno considered it to be of Ordovícían t2

age. Faunule B, from an interval 136.2-L63.6 n (447-537 ft.) above the BighornÍa-Thaerodonta zorte, couLd be OrdovLcian or SilurÍan, with two genera more typical of the l-atter.

Macrofossils ln the Eostropheodonta zorle suggest an early to niddle Llandovery age (Norford,L969, p. 39). Thls assemblage occurs 335.3-419.1 n (1100-1375 ft.) above the base of the formation at

Pedley Pass, and from 304.8 m (1000 ft.) above the base at Mount SfncLair to the faulted top at 395.6 n (1298 ft.) (Norford,I962a, p.

450) .

The Pentamerus zone is found Ín sectíons of the Beaverfoot located

32 kur (20 ni.) southeast and 19 km (12 mí.) northwest of Al-ces Lake (NorfordrI962a, p. 451). A late Llandovery age ís índicated by the

P resence of Pentamerus and CystihalysiÈes (Norford,1969, p. 40).

The Eophacops-Cheirurus zone incl-udes Èhe uppermost beds of the

Beaverfoot Formatíon and most íf noÈ aLl- of the Tegart Formation. An incursion of graptolites representing the MonograpËus spÍral1s zone indic¿tes a late Llandovery age (Norford,1969, p. 40). 13

ositional environmenËs-Ear ly Paleozoíc sediments preserved in the southern Rocky Mountains of and Al-berta accumulated al-ong a passive contínental margin. The llhiskey Trail Menber of the Beaverfoot Formation hras probably deposited duríng a marine

Èransgression across a surface ÈhaÈ was mantled by detríÈus of the Mount hli.lson Quartzlte (Norford, pers. co¡mlun.' f984). The variable Èhickness coul-d reflect the presence of local pockets of debrisr or topographíc írregularíties. An alternative hypothesis is Ëhat the i{hiskey TraiL represenËs a continuaÈion of the Mount l,{ilson transgressive phase, with depositíon in deeper htater condÍtlons. LíËtle ís known about environmenÈs in ¡ítrich the ¡nain part of the Beaverfoot FormaËíon lras deposiËed. During Late Ordovícian and most of

Early Sílurian tfune¡ a broad belt of shelf-type carbonate sedíments extended beyond the linits of the Mount l,lílson Quartzite and probably covered

the entire area no!ìr preserved in the southern Rocky Mountains (Norford,

L969, p. 42).

The earl-y Paleozoíc continental margin of western North Ameríca underwent extensíve tectonic compressíon during the formation of the

Rocky Mountains. NorËh and Henderson (1954, p. 78) estirnated crustal shorteníng of about 161 krn (100 mi.), includíng the Rocky Mountain Trench and foothílls, at the approxímate }aÈitude of Banff, Alberta. L4

SolÍtary rugose coraLs Previous ¡vorlc-Kirk (fa l{alcott,1924, p. 13) identifted the sol1Èary rugose coral StrepteLasma rusticnm in a faunal- collectlon from the Beaverfoot Fonnatfon, obtained 1.6 kn (1 nÍ.) west of Mount SÍnclaír.

StrepÈelasma Èrílobatum was also lísted, apparently fron the Beaverfoot. I{alcott (1924, p. 26) recorded a similar fauna at Mount Sabine. Solitary coral-s of the Beaverfoot Fotmation nere described in detail- by l{ilson (L926r p. 1f-13) on the basis of collectlons made by J.R. Marsha1l, E.M. Kindle, J.F. tr{al-ker, and L.D. Burling for the Geological Survey of Canada. tlil-son assigned these corals to four new species, as fol-lows: Streptelasma fraSíl-e' S. prolongatr:m' S. distínctum , and S. pate1lun. They were considered to be of Richmondian age (tlilson, 1926, p. 2). Kirk (1927, P. 287), fn a revíew of I'Iil-sonrs paper, stated that S. fragÍle was from Silurian strata. Bolron (þ Leech, !954, P. 20-23) identi'fíed streptelasma sp., g.Prolgnce.tum,S.dÍstinctum,and!.trilobat'umfrombedsínthelower part of the Beaverfoot Formation at lJhite Knight Peak (refer to Fig' l) and other local-ities in that viciníty' Norford (1969r p. 30, 31) reported solitary coral-s from the l{hiskey TraÍL Member of the BeaverfooË Fornation. These occur in the upper part of hLs tfconodont zone.r' Corals are not known from the underlyíngMount Wilson Quartzlte (Norford,1969, p' 26)' Norford (I962a, p. 449) noted that most of llilson's specimens ltere from the

Biehornia-Thaerodonta zone. He recognized #Bighornia cf . B. pêE'

Grer¡in ekia sP.r Lobocorallfum prolongatum, and Streptelasma sP. (Norford,1969, p. 38). Norford (L962a, p. 449; 1969, p. 39) found ftpoorly soLitary coralsridentffied as Streptelasma sp., in the fossfl-iferous" interval above Èhis zone. S. fragil-e and 15

Streptelasma sp. rùere l-lsted from the EostroPheodonta zone, and solltary corals referred to as StrePtelasma sP. were reported in the Pentamerr:s zone (Norfor\ I962a, P. 450, 451; 1969' p. 39).

Present material-A total of 417 solftary rugose corals frorn 21 Local-ities in. the southern Rocky Mountains of Brltish Colunbia and Alberta nere examined during this study (Appendix l, Fig. 1). A1l- are from the Late Ordovícian portion of the Beaverfoot Fornation. Materíal was obtained from the following sources: (1) 14 specirnens fron Èhe (L926) (2) specfmens from the earJ-y colLections descrlbed by I'lilson ' 5 collection of Root (1955), (3) 230 specÍmens collected by Norford, and (4) the present colLectÍon. The Latter consisÈs of 168 specímens recovered from the basal 128 rn (420 fx.) of the Beaverfoot Formation above AkutLak Creek, BriÈish Columbia, ln August of L984 (Fig. 2). This l-ocality was selected for detailed study because the Beaverfoot is not dolouritízed, fs relatívely fossil-lferous, and the fossils are comparatíve1y well preserved. The strata are near]y verrical (Fíg. 3). The Lower 35 n (114.8 ft.) of section were measured al-ong the ridge crest, and an additional- 93 n (305.1 ft.)

¡ùere measured along Èhe base of the ridge. The contínuous exposure was carefully examÍned for sol1tary corals, and all specimens seen Iùere col-lected. Therefore, the data in Fig. 4 provide an lndicatíon of relative abundanee.

Preservation-{ pecimens from most local-lties are sil-iciffed and in poor conditlon. The besÈ material is from sectlons in the vicÍnlty of Akutlak Creek, where some of the original calcite and fibrous microstructure are preserved Ln many coralJ-a. T6

Figure 2. Topographic map (fron National- Topographfc System, l:501000 seriesr nêp 82J13, edition 2, Mount Peck, Brítish Coh¡mbia), showing LocaLities N12, Kl2Arand KL2B. Contour interval 1000 ft. (305 n). Location of Ìfount !Íílson QuartzÍte (Oms) from Norford (pers. coÍmun., 1984). L7

23' 115020'

t t a t K 124

a K I28

7OOO 11'

t ¡ Nt2 I a ¡a I a Ia a Ia \\\\

at a 4 ooo White t I a 50009' a ¡ I Omw I a ¡ t a 5000 I ' ¡

o 2km 18

Figure 3. Akutlak Creek local-ity vlewed from south showlng llnes of sectlon &L?4 and @p (dotted). Omw = Mount lJilson Quartzite, OSb = Beaverfoot Fomation, .rt = tr'Ihiskey Trall Member of Beaverfoot. Refer

to Figs; 1 and 2' f.or locatíon.

20

Fígure 4. Stratigraphíc section at Akutlak Creek 1oca1íty (K124, B), showing intervals bearing solitary rugose corals plus disÈrÍbution and frequency of taxa. Lithologies are indicated by standard symbols, py = pyrite. Refer to Figs. 1-3 for location. BEAVERFOOT FORMATION

Whiskey Trail Member I NO oo oË o {3

Ât to 413 *,Li liìlìlìlli=i *l*l r leialsi:l,i,i:l;l : il:islqninì tl fr ! trÈ {ÈÈ È È ù{ aÀ ruo \ o

Salvadorcadlsttnctadrslrncta(n:3O) F---=- # + fN ÑNNÀN probably S. dtsttncta drstrrcls (n:11) F=-*---N.+ t---;------< o =-=- Blghonla patølls (î:22) ã- F----;- '------.=. oo crcwlngkla haystl haysll h:29, *o -ONJ {N probably G. hsysil haysil (î:1O) *j-=.- + DotrccorclllumNolongâtum(ni6)'-:r - c. hayslt haysll ot D. prolongatum (n:3) - (n:50) H + un¡dent¡fiâble T {o o¡ total (N:16'l) l.- H + o o J @ o J- NO o oo -

ts ts 22

IdentificaËion and relatíve abundance of Ëaxa-Late OrdovÍcian solitary rugose corals of the Beaverfoot Formation can be divided into the following three groups on the basís of external form: (1) typically

trochoid, (2) subcalceoloid, and (3) triangulaËe Ëo trilobaÈe. On

Ëhe basis of ontogeny an

typícally trochoid specimens having approximately círcular cross

sections are assigned to Salvadorea distincta distincta (Inlilson, 1926)

(Fig. 6A-Q). One corallum with unusually thin septa is ídentified as

Salvadorea sp.2 of Nelsor¡1981 (Fig. 6R-U). The subcalceoloid,

depressed corals have a concave cardinal síde. Sma1l to medium-sized

índíviduals are Bighornía patella (I^lilson, 1926) (Fíe. 9A-R). Two large coralla are identífied as B. sp. cf. B. bottei Nelson, 1963 (Fig.

9I^I-BB) . Two subgroups of specimens having triangulate to trilobate cross sections can be recognized. The markedly trílobaterusually depressed individuals are Grewingkia haysii haysií (Meek, 1865) (Fig.

124-M). Sma11, tríangulate to very slightly trilobate, greatly compressed coralla are Deiracorallium prolongatum (I^lilson, 1926) (Fig.

154-N). However, because of the external variability within these

species, an examination of internal structures is sometimes necessary to identify then. The axial structure of G. haysíí haysii is 1arge, whereas Ëhat of D. prolongatum is smal1 or undeveloped. It is often inpossible to disËinguish S. dístincta distincta, G. haysíí haysii,

and D. prolongatun v¡hen dealing wiËh ver¡r smal1 coralla representing

Èhe earliest ontogenetíc stages, particularly because preservation is usually poor. 0f the 417 solitary corals studied, 181 (437.) could be identÍfied 23

conclusively to the species 1evel , 75 (1,8"/") were assigned with less certainËy, and 161 (39i() are unidentifiable (Appendix 2). RelaËive abundances of t.axa are indicated by the totals in Appendix I and Fíg.

4. S. disËíncta distíncta is most cortrnon, B. patella and G. haysii haysii are cortrnon, D. prolongatum is rare, B. sp. cf. B. bottei is represented by Ëwo specímens, and Salvadorea sp. 2 is known from one individual. 24

Geographic and stratígraphic distribution-Solitary rugose corals occur throughout the ouËcrop belt of the Beaverfoot Formation (Fig. 1). Specimens ídentified with various degrees of certainËy as Salvadorea dÍstincta distincta are knov¡n frorn 19 of the 21 localities for v¡hich data are avaílable (Appendix 1). Corresponding figures for the other taxa are: Bighornia patella and Grewíngkia haysii haysii frorn 14 localities, DeÍracorallium prolongatum from síx, B. sp. cf. B. botteí from tr¿o, and Salvadorea sp. 2 from one. These differences are to be expected, given the differing relatíve abundances of taxa and Ehe comparatively sma1I sample sizes from all localities except Akutlak

Creek. It seems 1íkely that all species were distributed Ëhroughout the area of Beaverfoot deposiEion. In the Akutlak Creek section, S. distíncta disÈincta, B. patella, G. haysii haysiirand D. prolongatum first appear 25.1 ú (82.3 ft.) above Ëhe base of the Beaverfoot, within the 30.1 m (98.8 ft.) thick

WhÍskey Trail Member (Fig. 4). At Carbonate Creek, where this member

Ls 28.3 m (93 ft.) thick, specimens occur at 25-25.2 n (82-83 ft.)

(Appendix 1). In general, solitary corals are most conmon within the lower 50 m (164 ft.) of the Beaverfoot Formation, but above the

Whiskey Trail Member where it is present. Beyond 70 m (230 ft.) in the

Akutlak Creek secËíon, Ëhey are uncommon, and barren intervals are

Èhicker and more frequent. S. distincta distincta, B. patella, and G. haysii haysií are knovm from the uppermost inËerval of this 128 m

(420 ft.) thick section. The stratigraphícally highest solitary Rugosa known from the Ordovician porËion of the Beaverfoot occur aË heights of

155.8-i56.1 m (51L-5I2 ft.) above the base of the formation at Pinnacle 25

Creek, 173.4-I74 .7 n (569-573 ft.) at Pedley Pass, and 181-189.3 n (594-621 ft.) at Ilorse Creek. Specimens ín Ëhese collections are relatively sma11 , and S. distincta dfgÉnçl4 is Èhe only species recognized. Solitary corals that could be identífied with various degrees of certainty number 20 or more ín only two stratigraphic íntervals, both aË Akutlak Creek (Fig. 4, intervaLs AI4/L5, B5). In each case, S. distincta distincta, B. pate11a, G. haysii haysii, and D. prolongatum are present. The only other intervals from r¿hich all four taxa are knor,¡n are 82 at Akutlak Creek and the lorrer 9.4 ur (31 ft.) of the

BeaverfooË at Shatch Mountaín (Appendix 1). The absence of one or more specíes in oËher collections may reflecÈ the small sample sízes and the low relatíve abundances of some taxa. 26

Taphonorny and paleoecology Abrasion-For a totaL of. 44 solitary corals from the Beaverfoot

Formation, it was possíble to determine wheÈher the epítheca and stereozone are present or absent (Appendix 3). The ínforrnation presented in Table 1 was based on an examination of 68 transverse thin sections. The absence of part or all of the coral wa11 ís considered to result from abrasion. In Bíghornia patella and Salvadorea distincÈa distincEa, the epitheca is present on most coralla. It ís noË preserved on any speeimens of Grewingkia haysii haysii, v¡hích commonly lack part or all'of the stereozone. There are Ëoo few data from Deiracorallium prolongatum for comparison.

The degree of abrasion of coral exteriors could reflect the duration and/or intensity of the process. E1ías (1982b' p. 1590) found that large corals tend to be more highly abraded than smal1

índividuals in the Stony Mountaín Formation of southern ManíËoba.

This r¿as related to the duration of exposure before burial, and therefore to sedimentation rate. In the Beaverfoot FormaÈíon, corals of the smallest species, B. paÈe1la, are least abraded, whereas those belonging Èo q. haysii haysii, Ëhe largesË, are most abraded. However, these dífferences could be related, at least in part, to energy of the environment. If G. haysii haysií was subjected to hígher energy condiÈions Ëhan B. patella and S. dist.incta distincÈa, a greater degree of abrasion would be expected. TABLE t. FeaÈures of aollt6ry rugose corale fn the Beaverfoot Formtlon, Brltlsh Colunbia and Alberta

Nature of excerlor Epi zoans Bori

Hf thout Bryozoaß Colonfal corale Trvpanl Èes ¡l o part ot 6t d Hf rh Wlthout all of o5 NL e d5 Taxa Øo epitheca epithecu s tereozone Locatlon Lo catlon Locatlon

Sslvadorea dlstfncta dlstlncta UA 10 (62.5U) 4 (2s7") 2 (12.57,) 4L (9r7,) 4 (97.) lc (332) 4s (1002) 0 - 44 (982) 1 (22) 2^ (677.) lA (332) lK (332)

lc-À ( 332)

Blghornla patella r0 (91r) t (er) - 30 (977.) I (32) rc-A ( l00z) 3r ( 1002) 0 _ 2't (87t) 4 ( 132) 3c (soz ) 3À (5oX)

Grewln8,kla havsll haysll - 6 (432) 8 (s77,' 30 (977") I (32) lK ( r00z) 2s (812) 6 (r9'Á) lc (r77,) ls (482) L6 (527.) r3c (222) rc-A (l7u) 22^ (397") 1A ( r7Z) 22K (39r) lK-A (l72) 2K (327.) Delracoralliun prolonRatuo 2 (617") - | (337") 9 (9o"Á) 1 (102) lK (1002) l0 (1002) 0 - 6 (602) 4 (407., 3c (207") 5A (332) 7K (472'

ê S = sosll, M = nedlu, L - large

Þ A - u"ry Bllghtly curved, B = sllghtly curved, c = noderately to g¡eatly curved N 9 Nu*b"a of epecfnens vlthout eplzoans or borlngs

I Nu.b". of speclmens wlth epfzoans or borlngs 9 Locatlon of all cplzoans ardborlngs on coral (C = cardinal elde, A = alår slde, K = counter sidc) 28

AttachmenË structures-AËtachment structures vrere not observed on Salvadorea dístincËa distincta, Grewíngkia haysii haysii,or Deiracorallium prolongaËum. Five (L47() of 36 coralla representing Bighornía paËella, and the two índivíduals of B. sp. cf. B. bottei, have a spoon-shaped depression rísing from Ëhe aPex on Ehe concave cardinal side (Fig. 9K-Q, I^I-BB). sinilar structures in B. Patella have been observed on six (8.57i) of. 7O specimens from the Stony

MounËain FormaÈion in southern Manitoba (Elias, 1982b' p. 1588;

1983a, fig. 16a, b, h), two of three from the Fort Atkinson Formation in Iowa, and all three known from the Vauréal Formatíon on Anticosti

Island, Québec (Elias, I982a, p.80, pl. 14, fígs. 19, 23, pL. 15, fig. 7). Nelson (1963, p. 42, pi-.9, figs. 5,6, pl. 11, figs. 5, 6, p1. 12, figs. 2-4) reported this type of structure on most representatives of B. botteí from the Chasm Creek Formation in northern Manitoba. In B. wilsonae, a speeies closely relaËed to B. Patella, this feature has been noËed on Ëhree of nine corals from the Red River Formation in souÈhern Manitoba (E1ias, 1981, p. 5, Pl. 10' figs. 1, 2; Fig. 9U,V) but does not occur on speeímens from Ëhe Second Value Dolomite of the Montoya Group in Nel¡ Mexico and Texas (Elías, 1985, p.14, 43).

On nonabraded indíviduals from the Red River Forroat.ion, and on one from the Cape Calhoun Formation of Greenland that was exarained ín this study (MMH 2995), growth lines do not exËend into Ëhe spoon-shaped depression. Elias (1981, p. 5) interPreted these structures as sites where the corals vrere fixed to smooth, curved surfaces such as cephalopod shells. However, atÈached specimens have not been found. SelecËive dissoluËion of aragonitíc subsËrates is a possible reasono 29

and is suggested by the preservatíonal stat,e of molluscs in the BeaverfooË, Stony Mountain, and Red River formations (e.g., Kenda11, 1977, p. 493, 494). The variable proportions of Bighornia corals having aÈtachment sites in dífferent s tratígraphic units may reflect the availability of suitable objects. The overall rarity of attachment sítes on soliEary rugose corals of the Beaverfoot Formation indicaËes that the vasË majority behaved as unatÈached objects on soft subsËrates. hrhere present, the location of aËtachment structures is consistenÈ with the hypothesis that larvae became fixed to substraËes with Èheir cardinal sides (Elias,1984b, p. 534). Larvae of corals with convex cardinal sídes, such as S. dist.incta distincta, G. haysii haysii, and D. prolongatum, would have settled on upper sides of graíns of sediment. Larvae of B. patella and B. sp. cf. B. botteí, in which the cardinal side is concave, apparently fixed themselves to undersides of grains of sedirnent or' less con¡oonly, large shells (Elias, I984b, fí9. 2). 30

Orientatíorr-Prior to the removal of 16 t solitary corals found at the Akutlak Creek section (Fig. 4), their orientaËions with respect to

bedding were noted. Vírtua11y all were lying sídeways ín ¡¿hat rvould

have been stable depositional posítíons following transport. The absence of high angle bends in these corals suggests that the polyps

could not redirect their growth axes after being overturned, and such

events may have kí1led them. This ís typícal of Late Ordovicían

soliËary Rugosa in the Red Ríver-Stony Mountaín and Richmond Provinces of North America (E1ias, i984b, p. 534). There have been no previous reports of Late Ordovician nonattached solitary corals incontrovertibly preserved in growth position. Elias (1982b, p. 1592) provided evidence suggesÈing that smal1 proportions

of t.ransported coralla could be deposited vrith calices facing upward, as they must have during life. The growth orienËatíons of various types of solitary corals have been reconstructed using the distribuÈion andabundanceofborings,epÍzoans,andbioc1asËícmateria1thatv¡as

incorporated ínÈo theír outer walls (Elias,19B4b, p. 534, and

references therein). Two specimens collect,ed from ínterval 85 at Akutlak Creek (Fig. 4) were oriented in the hypothesízed life posiEions.

.The unÍque \¡iay in which these índividuals were preserved índicates

almost certainly that they are in situ. l

One of the specimens represents Grewíngkia haysii haysíi. ït.was

orienËed with Ëhe plane of bilateral symmetry vertical, Èhe convex

cardinal side down, concave counËer síde up, and ca1íce opening upward with respect to bedding (Fig. 5A-D). The entÍre upper half is covered by Calapoecía, a tabulaËe coral. Corallites comprísing this 31

epizoan rise from the host at various angles, but then curve upward and terrninate along a nearly horizontal surface. This large colony r,ras undoubtedly preserved ín growth position. UnfortunaEely, it cannot be determíned from thin seetions if the surface of G. haysii haysíí is nonabraded or abraded, beeause preservatíon of the exterior surface is poor. However, the delicate calice rím is unbroken' suggesting that

Èhe corallum was not transported before beíng covered. I{hen the colony overgrerÁr the solitary coral, it spread laËerally frour the apex and sides, thereby recording the position of the substrate. It covered over the hostts ca1íce, undoubtedly after death of the rugosan and likely after the empty corallum was filled r¡ith sediment. The orientaÈion of this solitary coral and the inferred location of the sediment-r'rater inËerface is exactly as hypothesized for the life position of a greatly eurved, slightly Ërílobate individual (Elias, 1980, fig. 5; 1981, fig. 4d).

The second specimen is identífied as Salvadorea distincta distincta. It I^Ias orienËed wíÈh Ëhe calice openíng upward and apex pointing dov¡n (Fíg. 5E). Situated directly above this indivídual ¡¿as a large colonial coral in growËh position. The observed upright orientation of S. distincÈa dístincta ís the same as that hypothesized for slíghtly curved solitary corals (Elías, I9B2b, fig. 5d).

Both specimens thaË r¡ere almost certainly preserved in situ occur beneath large colonial corals. It seems likely that they were thereby shielded fron high energy events such as storms, which could have overturned and transporËed other solitary corals. 32

Figure 5. Grewíngkia haysii havsíi (Meek, 1865) (4-!) and Salvadorea distincta distincta (I^ii1son, 1926) (E), as oriented with respect to bedding in the Beaverfoot Forrnation. A-!, GSC K12B-5-30! A, longitudinal polished sectíon (cardinal side down), XI; B, Eransverse polished section, Xl; C, longitudinal thin section' Xl; D, transverse

thin section, xl. E, GSC K12B-5-2: longiËudinal thin section (cardinal side right), Xl. JJ 34

Paleoecologic,assocíations-Based on the degree of abrasion, it is possible that corals of Grewíngkia haysii haysii were subjected to higher energy condítions than Salvadorea distincta dístincta and Bighornia pate11a. Individuals of G. haysíí haysii are Eoderately to greatly curved, vrhereas S. distincta disÈincËa and B. Patella are very slightly to slightly curved (Table 1). Curvature of D. Prolongatum could not be determined from available specimens. Paleoecologic sËudies suggest thaË there ís a posítíve correlation between an (Elias, increase in the degree of curvature and current energy 19Bl ' p. 5, 6;1984b, p. 534:1985, P.14). The in situ specimen of G. haysii haysií ís lying on its convex side, whereas that of S. distÍncta disÈincta is upright. These oríentations are thoughË to result from exposure of polyps t.o relatively sËrong and ¡¿eak currents, respectively (Elias,1984b, fig. 2b, d). The above lines of evidence suggest that Grewingkia inhabited relatively high energy envíronments, while

Salvadorea and Bighornia favoured 1ow energy niches. The latter group was dominanË. The ecologíc position of Deiracorallium is uncertain. Corals representing all taxa are found together in the Beaverfoot.

They probably lived in close proxímity, and were mixed during unusually high energy events such as storms. Relationships similar to those noted above have been observed elser¡here. In Ëhe Stony Mountaín Formation of southern Manítoba' Elías (1g82b, p. 1586, 1587) recognized close ecologic ties between Helicelasma (the species was assigned to Salvadorea in Elias,1985, p.45¡ and Bíghornia, and between Lobocorallium (a species similar to G. haysii haysii) and Deiracorallium. This was based on an analysis of 35

the relaËive frequencies of taxa (Elias, I982b, fí9. 3) . The Salvadorea-Bighornia group is domínant. On the basis of growth forms and abrasion of corals rvithin the Alernan Formation of Ëhe Montoya Group in New Mexico and Texas, Elias (1985, p' 14) inferred that S' dístincta distincta, the dominant taxon, lived ín lo¡,¡er energy environmenÈs than specíes of Grer¿íngkia Ëhat are símilar to g. haysií haysii. 36

Paleoenvironments and PaleobaÈhymeËry-Solitary Rugosa are not known to occur ín sandstones or sandy carbonate beds wiËhin the l,trhiskey Trail Meuber of the Beaverfoot FormaÈion. All specimens from that member are in silty or argillaceous carbonates (Fig. 4). These fossils become cotIìmon and widespread in clean carbonates of the main Beaverfoot above the l^Ihískey Trail. Similarly, solitary corals are unconmon wiËhin the Cable Canyon Sandstone Member at the base of the

Second Value Dolomite, MonÈoya Group, in New Mexico and Texas, but are courrnon in overlyinq beds of the Upharn Dolomite Member (Elías' 1985, fig. 2). These organisms did not care for environments in which coarse clasËic sediments were deposited.

Above the lower part of the main portion of the Beaverfoot

FormaÈion, solitary corals become uncommon, and barren intervals are thicker and more frequent. Elías (1982b' p. 1586, fig. 2) noted a general upward decrease in abundance of these fossils within the

Stony Mountaín FormaÈíon of southern Manítoba. Corresponding changes ín líthologies and sedimentary structures suggest a transition from open, normal marine envíronmenLs Èo restricted, hypersaline conditions.

In the Aleman Formation and Cutter Dolomite of the Montoya Group r occurrêûcês of solitary corals coíncide wíth relative abundance peaks of conodonts inf erred to be "shallow \.ratertr f orms (g1 ias, 1985, p.14-16, f ig. ?). ttDeeper T,ratertt conodonts are more common ín intervals lacking corals. However, sedimentologic evidence suggests that the principal lirniting variable r.ras not Tilater depth, but the degree of environmental resËriction (factors such as límited circulation, greaËer salinity' and possibly less oxygen and higher temperature). Occurrences of 37

solitary Rugosa ín the Beaverfoot Formation could indicate shallow r.rater maxima andf or open, normal maríne conditions. 38

Close biotic assocíates Objects within coralla-A total oÍ. I75 transverse thín sections of. lI7 solítary Rugosa from the Beaverfoot Formation, plus 14 longitudinal thin sections from 11 of these specimens vrere examíned for Ëhe presence of foreign objects of the type described by Elias (I984a, p. 105, IO7, fig. 3). Four corals and possibly a fifth r¡ere found to contain ostracodes.

In one sectíon of Salvadorea distincta dístincta (GSC N4-1-2), an ostracode is located in the cardinal fossula, another is in the first inEerseptal chamber on one side of the c¿rdinal fossula, and a third is in an ínterseptal chamber on one alar síde of the coral. The exact position of the alar fossula cannot be established in thís coral. A dífferent specimen of S. disÈíncta distincta has an ostr4code situated in the cardinal fossula (Fig. 6P). One indivídual of Deiracorallium prolongatum contains an ostracode near the axis ín the elongate cardinal fossula (Fig. 15F). A secÈion through one specimen of Grewíngkia haysii haysii (GSc K12A-18-22) has an ostracode si-tuared about mídway beÈween the cardinal septum and one alar septum, and possíbly a second at the axial end of the cardinal fossula. Another coral of G. haysii haysii has an indistínct oval outline in one alar fossula that may represent a recrystallized ostracode (Fig. i2F).

SepËa and/or tabulae are diverËed around the objects in all these corals.

Two hypotheses have been proposed to account for the inclusíon of arÌ ostracode wíthín a coral (Elias, I984a: p. 105, IO7, fíg. 4). In the first, it entered the calice when a portion of the polyp temporarily detached from the corallum and contracËed radia11y. The 39

object became trapped when the polyp expanded and reaËtached, and was

:covered over when skeletal secretion resumed. The second, less líke1y hypothesis is that an ostracode entered the polypts central cavity through the mouth and came to rest on its floor. I^Ihen the Polyp moved upward in the corallum by atrophy of its aboral surface and formaËion of a nevr base at a higher level, the object became incorporated v¿ithín the cora11um. IË was suggesËed ËhaË ostracodes may have been captured for food (Elias' 1984a, p. 107). AnoËher possibility is that these crustaceans lived ín the gastric cavities of polyps. Stasek (1958, p. 119, I24, I25) reported on modern amphipod crustaceans that dr¿ell withín anemones. In eíther of the above hypotheses, a close associatíon betvreen soliËary Rugosa and Ostracoda ís irnplied. Elias (1984a, p. 105, table 4) found that ostracodes and other less common foreign objects are generally situated withín or near Ëhe cardinal and alar fossulae, as observed ín corals from the Beaverfoot Formation. This and several other lines of paleobiologic evidence indícate that portions of a polyp ín Ëhe fossula could contract and expand, and probably functioned for vrater circulatj-on in the central cavíty, and for the íntake of food andfor ejection of undigested material through the mouth (Elias, 1984a) .

It has been noted that foreígn objects are more con¡non in species of Edenian-Maysvíl1ian age than in Ëheír Ríchmondian descendants

ç¿íthín the Red River-Stony Mountain Province (Elías, L984a, p. 110' i11). The rariËy of ostracodes in Beaverfoot specimens is consistent with that observation. 40

Epizoans and boríngs-A total of 117 solitary corals $rere examíned for

Ëhe presence of epizoans and borings. The observations recorded in Table I are based on I75 transverse Èhin sections (Appendix 3). Epizoans are rare. Bryozoans occur on Salvadorea distincta dj.stincta

(Fig. 6Q), Bighornia pate11a, Gre¡,ringkia haysii haysii' and Deiracorallium prolongatum. Colonial corals have been found only on

G. haysii haysii, Ëhe largest species (Figs. 5A-D, I2L) . Trypanites borings, produced as dwelling strucÈures by polychaete annelids (see Elias,1980, p. 275), occur ín S. distíncta distincta, B. patella, G. haysii haysíi, and Deíracorallium prolongatum (Table 1).

They are predominanÈly in the counter plus alar sides of Salvadorea,

Grewingkia (Fig. I2L), and Deíracorallium (Fig. 15J,6, ìi,), and only in the cardinal plus alar sides of Bighornia. Those surfaces were exposed above the substraÈe while the corals !/ere ín growth positions (see Elias,1980, p. 275, 276, fíg. 5; 1982b, p. 1587, 1588, fig. 5a-d). The observed distributions of Trypanítes would be expected if the anneli-ds usually become associated with live hosts. These borings are most connon in G. haysii haysií, Ehe largest specíes. Using data from the Stony Mountain Formation in southern Manitoba, Elias (1982b' p. 1594) found that the frequency of borings increased with coral size, whích determined the surface area exposed for settlement as well as the duration of exposure before burial. The distribuÈion of Trypanites in solitary Rugosa of the Beaverfoot Formation could also reflect environmental preferences of the annelids. These borings are least comnon in Salvadorea and Bighornia, the tsr^ro taxa that lived in relatively quíet !üater, and more conmon in Grewi¡gþþ (and perhaps 4T

Deiracoralliuur), which inhabíted higher energy environmenLs (see

Paleoecologic associations under ttTaphonomy and paleoecology"). l, .)

DisËribution and evolution Salvadorea-Salvadorea dístincta distincËa occurs withín the lower portion of the Beaverfoot Forrnation in southern Britísh Colunbia and

Alberta. It is possibly present in early to uriddle Maysvillian and definiËely in late Maysvillían to early Richnondian strata w'iËhin the

Aleman FormaËion of the Montoya Group in New Mexico and Texas. Thís specíes is also knovrn from the niddle to late Richrnondian Caution

Creek and Chasm Creek formations of the Churchill River Group in northern Manítoba.

S. di-stincta distincta does noË undergo recognizable evolutíonary changes in the Beaverfoot Formation. Cross-sectional shape, degree of septal dilatÍon, number of septa, length of minor septa, and complexiËy of the axial structure remain unchanged within the Akutlak

Creek section (Appendix 4). Nelson (1981r p. 17, 46) found no evolutíonary trends in the Churchill Ríver Group. Within the Montoya

Group, S. distincta distincta extends to the Èop of the Aleman

FormaËion. It is succeeded by S. distincta cutl-erensis at the base of the Cutter Dolomite. The transition LTas apparently rapid, and involved a decrease in number of septa, íncrease in length of minor septa, disappearance of complex axial structures, and developmenÈ of slightly triangulate external form in some individuals (Elias' i985, p. 19)

The appearance of S. dístincta cutterensís in New Mexj-co and Texas coincided with the beginning of widespread early Richmondian clastic deposition in the basal Cutter Dolomite (Elias' 1985,p.19), In southern ManiËoba, Èhe change from S. randi of the Red River Formatíon to S. selecta of the Stony Mountaín FormaËion involved an increase in 43

Ëhe degree of septal dilation (Eliasr 19B3a, p. 932). The latter specíes appeared during the mídd1e Richmondian, when fíne clastic sediment was beíng deposíted. Clastic uníts are noË Pres ent within the Churchill River Group in northern Manitoba, where S. distincta distincta remained unchanged. Sirnilarly, there are no signifieant, widespread clastic inËervals in the Beaverfoot Formatíon above the basal Whiskey Trail Member.

A single individual ídentified as Salvadorea sp. 2 vras found near the base of the Beaverfoot Formation. This Èaxon is knor¿n from two specimens in uríddle to late Richmondian strata r+ithín the Chasm Creek

Formation of the Churchill River Group in northern Manitoba. The relatíonship of these corals to S. distincta dist.incta ís not unders tood. 44

Bighornia-Bíghornia patella is the most widely distribured North

American Late Ordovician solitary rugose coral presenÈly knoron. Definite occurrences are in the fol1owíng units: lor^rer portion of the BeaverfooË Fonnatíon in southern British Colunbia and Alberta, Cutter

DolomiÈe (míddle R:ichnondian strata) of the Montoya Group in Texas, Fort Atkinson Formation (Richmondian) of Towa, shaly beds at the top of the Bighorn Dolorníte (niddle to late Richrnondian) in Wyouring, Gunn and PenÍtentiary members (niddle to late Richrnondian) of the Stony

Mountain Formation in southern ManiËoba, Caution Creek and Chasm Creek formations (middle Richnondian strata) of the Churchill River Group in northern Manitoba, lower member of the Vauréal Formation (Richrnondían) on Antícosti Island in Qu6bee, and unknovm units on Norman f,ockyer and Ellesmere Islands in the District of Franklin.

B. wílsonae, a ner,z species described herein, r¡¡as ancestral to B. patella. The transition involved shortening of the cardinal septum in earlier ontogenetic stages, and a change in orientation of septal fibres (as viewed in transverse sections) from those thaË curve ouËward in the dírection of the coral axis Ëo those that are perpendicular to the sides of septa. Definite occurrences of B. wilsonae are in the Upham Dolomit,e Member of the Second Value DolourÍte (middle Edenian to earliest Maysvillían), Montoya Group, in

New Mexico and Texas, and in the Selkirk Member (niddle Maysvillian strata) of the Red River Formatíon in southern Manitoba. There are presently ínsufficient data to determine whether specirnens from the following LaÈe Ordovícian units are B. r^¡ilsonae or B. patella: basal and n:iddle members of the Mount Kíndle Formation ín the Dístrict of 4s

Mackenzíe, Cape Calhoun Formation in north¡¡estern Greenland, and an unnamed unít in east-cenËral Alaska.

There is another group of North American Late Ordovícian soliËary

Rugosa Ëhat belongs to Bighornia. These corals expand more rapidly above the apex and attain greater heights than B. wilsonae and B. patella. Itrithin this large sj-ze category, only B. bottei from the

Chasm Creek Formatíon (middle to late Richurondian) of the Churchill

River Group in northern Manitoba is well knov¡n. Other occurrences of specimens apparently similar to B. bottei are as follows:

SËonewall Formation (latest Richrnondian to Gamachian) in southern

ManÍÈoba, unknown units on Me1vi1le Peninsula and Ellesmere and Baffin

Islands ín the District of FranklÍn, and Cape Calhoun FormaËion in northwestern Greenland. Two poorly preserved corals from the ì Beaverfoot Formatíon are identified as B. sp. cf. B. bottei. In Manitoba, and perhaps elser,rhere as we1l, these corals range into younger strata Ëhan B. patella. Their relationship to the B. r¿Ílsonae-Þ. patella group Ís unkno¡.rn. 46

Grewingki¿r---Crewingkia haysii havsii is knov¡n from the following locations: lower portion of the Beaverfoot Forrnation in southern

Brítísh Columbia and AlberËa, Caution Creek and Chasm Creek fornations

(uríddle to 1aËe Richrnondian) of the Churchill River Group in northern Manitoba, a Richmondian ouÈlier north of Aberdeen Lake in the District of Keewatin, unknorvn units on Baffin and Ellesmere Islands in the

District of Franklín, and Cape Calhoun Formation in northwestern Greenl¿nd. This subspecies is possibly present vlithin the basal member of the Mount Kindle Formation ín the District of Mackenzie. Internal structures of G. h=yqg haysií and G. haysii selkirkensis are similar. However, Ëhe former is generally depressed to equidinensional in cross-secÈional shape, whereas the 1atËer is coupressed. G. haysii selkírkensis is knovm from the Selkirk Member

(niddle to late Maysvillian) of the Red Rj-ver Formation in southern

Manitoba. It is sirnilar in form to G. franklinensis and G; sp. cf. 9. franklinensis, which are present in Ëhe Aleman Formation (early

Maysvillian Ëo early Richmondian) and Cutter Dolornite (middle

Richmondian), respectively, of the Montoya Group in New Mexico and

Texas. These corals díffer from G. haysii in havíng a median septal lame1la withín the axial strucËure.

All the above Ëaxa are thought to have arisen from G. robusta (Elias, 1985, p.17, 18). This species has been posltívely identified in the

Second Value Dolomite (niddle Edenian to earliest Maysvillian) of the

Montoya Group in New Mexico and Texas, Ëhe Selkirk Member (niddle

Maysvillian straËa) of the Red Ríver FormaËíon in southern Manitoba,

Èhe Portage Chute and Surprise Creek formations (?Edenian to early 47

Ríchuondian) of the Bad Cache Rapíds Group ín northern Manitoba, and the Bad Cache Rapids Formatíon on Me1ville Peninsula in the Dístrict of Franklin. G. haysíí selkirkensis probably gave ríse Ëo Lobocoralliun trilobatum vaurealense, whÍch is known froro middle to late Richmondian strata ín Èhe upper member of the Vauréal Formation on Anticostí Island, and in the I,Ihite Head Formation at Percé, Québec. L. trilobatum ÈrilobaËum in the Gunn and Penítentiar] msnþs¡s (níddle to late Richrnondian) of the Stony Mountain Formation in southern Manitoba and equivalent strata withín the upper part of the Bighorn

Dolomite in trlyouring probably evolved from G. haysii haysíi. The development of Lobocorallium prirnarily ínvolved an íncrease in the degree of sepËa1 dílation throughout ontogeny. 4B

Deiracoralliru-!.eirglere11iuq prolongatum is present in the lower portion of the BeaverfooÈ Fornation ín souËhern Brítish Columbia and

AlberËa, and in nídd1e to late Richmondian straËa ¡¿íthin Ëhe Chasur Creek Formation of the Churchill Rlver Group in northern Manítoba. At least one other specíes of Deiracorallium, distinguished by its sma11 size and short cardínal sepËun, occurs in the following units:

Caution Creek and Chasm Creek f ornations (rniddle Richmondian strata) of the Churchill River Group ín northern ManiËoba, Gunn and

Penítentiary members (rniddle to late Richrnondian) of the Stony Mountain

Formation in souËhern Manitoba, and upper member of the Vauréal

Formation (uriddle Ëo laÈe Richmondian) on Anticosti Island in Qudbec. Specimens from these three regions have been assigned to D. manitobense

(plus D. manítobense churchillense), D. angulatum gunni, and D. angulatum angulatum, respectively. D. manitobense may prove Ëo be a synonym of D. angulatum (Elias, 1983a, p. 941). The relationship of these corals to D. prolongatum is not known.

In Manitoba, species of Deiracorallíum comparable in size to D. prolongatum occur in older units. D. harveyi is known from the PorÈage Chute and Surpríse Creek formations (?Edenian to early

Ríchmondian) of the Bad Cache Rapíds Group in northern Manitoba, and D. delicatum ís present in the Selkírk Member (uriddle Maysvillian strata) of the Red River Formation in souËhern ManiÈoba. These earlier taxa differ frorn D. prolongatum and D. angulatum in having comparaÈive1y 1arge, complex axial structures. They nay be ancestors of the Richurondian species (Elias' 1983a, p. 932) . 49

Paleob iogeography

The paleobiogeography of North American Late Ordovician solitary rugose corals has been discussed by Elías (1981r P. 2,8, I0; L982a, p. 47-52, fig. 24, tab1e3;1983a, P. 927-g3I, fig. 1; 1983b, p. 6;I984b, fig. r; 1985, p. 16-20, fíg. 3) and E1ías and PotËer (1984, p.1205' 1206). The Red River-Stony MounËain Solitary Coral Province of

Edenian to Gamachian age occupied most of North America.

Characteristíc taxa are Grewingkía (species in which at least some coralla have triangulate to trilobaEe form), lgÞcagrgflít*, Deiracorallíum, Bighornia, and Salvadorea. The presence of G. haysii haysii, D. prolongatum, B. pate11a, B. sp. cf. B. bottei, S. disËíncta distincta, and S. sp. 2 v¡ithin the BeaverfooË Formation indicates Ëhat the area preserved in the souÈhern Rocky Mountains of Brítish

Columbia and Alberta vras situated within the Red River-Stony Mountain Province. Elias (I985, p. 16) recognized two types of solitary coral assemblages in the Red River-Stony Mountain Province. One is associated v¡ith epiconÈínental seas thought to have had slightly elevated temperatures and salinitíes, and the other with normal, open marine environments along the continental margín. t'Eplcontinental" assemblages are dominated by or composed exclusÍve1y of characteristic taxa lisEed in the preceding paragraph. These may be present or absent in ttconËínental margintt assemblages, whích include genera such as

Bodophyllun and Streptelasma, and species of Grewingkia and Streptelasma that are similar to forms in northv¡estern Europe.

Solitary Rugosa of the Beaverfoot Formation represent an exclusively 50

trepicontinental" assemblage. Al1 six species occur in northern Manitoba. This further substantiates the staËement by Elias (1983a' p. 953) that soliËary corals in r^Testern Canada and northern North America appear to be mosË closely related to those of the Hudson Bay

Basín. Two of the Beaverfoot species, Bighornia patella and Salvadorea distincta distincta, are Present ín Nevr Mexico and Texas. Only B. pate11a, known from southern Manitoba and northern l^Iyoning, has been found ín the l+Iilliston Basin. None of the Beaverfoot species occur in the eastern Klamath Mountains of northern California, where I'conËínental margin" corals that apparently líved in an island arc settíng relatíve1y near North America are found in an allochÈhonous terrane (Elias and Potter, 1984). The Beaverfoot Formatj-on was probably deposited near the margin of North America, although íts exact paleoposition is uncertain because

Upper Ordovicían rocks representing basinal facies are unknown in southeastern BriÈísh Columbia (Norford, pers. commun., 1985). The absence of I'continental margín" Ëaxa in Ëhe Beaverfoot Formatíon is somewhat suprísing. Budge (Lg77) listed BodophylfuTand Streptelasma., as well as cf. Grevingkia, Lobocorallíum, Deiracorallium, and Bighornia, from 1aËe Late ordovician strata in Nevada and Utah, whích \dere presr:mably deposited in a similar settíng. ttcontinental one margíntt Èaxon, Neotryplasma, is knov,rn from early Late ordovician strata in the Montoya Group of westernmost Texas, but all species in the late Late Ordovician portion are "epicontinentaltt (Elias, 1985, p. 16, 20). They lived several hundred kilometres from the Ouachita

Geocline. It is probable that Ëhe BeaverfooE Formation r¡as deposited at some dísÈance from the edge of the continent. Alternatively, "conËínental margin" taxa could have been excluded by envíronmental factors or geographic barriers. 51

BiostratÍgraphy Salvadorea distincËa distíncta, Bighornia patella, Deiracorallíum prolongatum, and Grer,¡íngkia haysii haysii occur in the upper part of

Ëhe ldhískey Trail Member and in overlying strata of the Beaverfoot Formation, where Salvadorea sp. 2 and B. sp. cf. B. bottei are also known. The base of the Bighornía-Thaerodonta zone, previously located at the boËËom of the main portion of the BeaverfooË (Norford,L969, p. 38), is herein placed at the first appearance of this solitary coral assemblage within Ëhe l4rhiskey Trai1. A close historical relatíonshíp between deposition of clastic sedirnents comprising the I^Ihískey Traí1

Member and carbonates of the main Beaverfoot Formation ís ínferred.

Norford (I962a, fíg. 2) traced the Bíghornia-Thaerodonta zone to a height of 61 n (200 ft.) above the base of the Beaverfoot at Pedley Pass, and 64.6 m (2I2 ft.) at Mount Sinclair. In this study, the diagnostic species B. patella is documented from the uppermost interval of rhe 128 m (420 f.t.) Èhick Akutlak Creek secrion (Fig. 4). S. distincta distíncËa, the dominant taxon in the so1ítary coral assemblage of the Bighornia-Thaerodonta zorLe, occurs at heights of

155.8-156.1 m (51l-5I2 ft.), L73.4-174.7 m (569-573 ft.), and 181-

189.3 n (594-621 ft.) above the base of the BeaverfooË at Pinnacle Creek, Pedley Pass, and Horse Creek, respectively. These collections, situated ¡^rithín the "poorly fossiliferous interval" of Norford (1969, p. 39), are herein considered to represent the Bighornía-Thaerodonta zotte. Conodonts from a slightly higher inËerval 200.9-228.3 n (659-749 ft.) above the base of the formation at Mount Sinclair are possíbly

Sj-lurían in age (Norford 1969, p.39). It seems 1ike1y that the 52

Bighornia-Thaerodonta zone spans the entire Ordovícian portion of the

BeaverfooË Formation.

I.Iithín Ëhe LaËe Ordovician Red River-SËony Mountain Province,

Elias (1985' p. 20, 21) recognized a Gre¡¡ingkia-domínated assemblage that was succeeded by a Salve4o¡ee-dominated assemblage. This change is not

synchronous throughout Èhe province, when analyzed in a framework

of correlations based prinarily on eonodont biosËratigraphy (Sweet,

Ig7g, f.ig 4; Elias, 1985, p. 71 10). Solitary corals of the Beaverfoot

Formation represent Èhe Salvadorea-dominated assemblage, which

definitely appeared by late Maysvillian time, and possibly duríng Ëhe

early to middle Maysvillian, ín New Mexíco and Texas. I^Iithin the üIilliston Basin, this assernblage is first found in early to niddle

Richmondian st,rata (Fort Garry Member of the Red Ríver Formation in

southern Manitoba; Elias, unpubl. data). Its earliest knon¡n occurrence

in the Hudson Bay Basín is rniddle Richurondian. Thus, deposítion of

the Beaverfoot probably began some time in the Maysvillian to rniddle Richmondían. If the Salvadorea-dominated assemblage orígínated earlier

along Ëhe continental roargin than in epicontinental areas ' a relatively early age for the onset of Beaverfoot sedimentation is possible. All six solitary rugosan species presenL ín the

Bighornía-Thaerodonta zone of the BeaverfooË Formation also occur in niddle to late Ríchurondian strat.a comprising the Churchill River

Group in the Hudson Bay Basín

The uppermost porÈion of the Bighornia-Thaerodonta zone could be as young as Gamachian. Bighornia is probably present in the

Stonewall Formation of souËhern Manitoba, and Salvadorea occurs r¿/iÈhin 53

the El1is Bay Formation on Anticosti Island ín Qudbec. According to conodont biostratigraphy, these strata are latest Richmondian to

Gamachian, and Gamachian in age, respectively (Sweet, 1979, p. 54, fig. 4; McCracken and Barnes,198I, p. 64, fíg. 12). 54

Sys tematic paleontologY

Subclass Rugosa Mílne-Edvrards & Haime' 1850

Order Stauriida Verrí11' 1865

Suborder Streptelasmatina l^Iedekind, 1927 Fanily Streptelasmatidae Nicholson in Nicholson & Lydekker' 1889 Subfamily Streptelasmatinae Nicholson ín Nicholson & Lydekker' 1889

Genus Salvadorea Nelson' 1981

Salvadorea Nelson, 1981, p. 45; Elias,198f p. 43, 45. Helicelasma Neuman, 1969. Elias, 1981, p. 19, 20 [partirnl; Elias, 1982a, p. 60, 6i fpartim]; Elíaq 1983a, p. 934 [partim].

kingae kingae Nelson, 1981. The oríginally designated type species ís herein considered a junior synonyrn of S. distíncta dístincta (it7ilson, 1926). 55

Salvadorea dístincta distincta (I^Iílson, 1926)

Figs. 58, 6A-Q Streptelasma distinctum l,Iílson, 1926, p. 12, 13 fpartinl , pl. 1, fig. 7, fnonl pl. 1, fí9. 6. SËreptelasma prolongatum l"Iilson , 1926, p. 11, 12 fpartiml, pl. 1, fíg. 5, l?l p7.2, fie. 2, [nonl pl. 1, figs. 3,4. [?] Streptelasura sp. cf. Þ. dlstinctum Wilson, 1926. Pestana, I960, p. 866, p1. 109, fig. 6. [?] Streptelasma disËincËum trlilson, 1926. Kaljo and Klaamann, 1965, p. 4I8, 4I9, p1. 1, figs. B, 9. fnonl Streptelasma cf. distinctum Wí1son, 1926. Ho,1978, p. 10, 11, p1.1, fig.3a-d. Salvadorea kingae Nelson, 1981, p. 45-47, fig. 12, p1. 3, figs. I-10, p1. 4, figs. 1-14, pl.5, figs. I-7. Salvadorea? sp. 1.Nelson, 1981, p. 47, 48, pl. 5, figs. 8-12.

Salvadorea kingae kingaeNelson, 1981. Elias,1985,p. 45-48, figs. L9.l-I9.24.

Lectotype--Designated herein: GSC 673Ia (Wílson, 1926, pL. 1, fig. 7),

76 n (250 ft.) belou"'gels¿lee beds," Beaverfoot For¡natíon, GSC 1oc. 756I,0.8 kur (0.5 mi.) east of trail over Palliser Pass, British Columbia, J.R. Marshall collectíon (for location, refer to Fíg. 1).

Addítional specimens descríbed herein-All from Beaverfoot Formatíon.

Early collections (for loeation, refer to Fig. 1): GSC 6729a

(I^Iilsor¡ 1926, pl-. 1, fig. 5), 1,Il-2-2, below Halysites beds, GSC loc.

7563,1.2 krn (0.75 ni.) east of trail over Pallíser Pass, Britísh

Colurnbia, J.R. Marshall col1ecËion; GSC I,J2-1-1, GSC loc. 7969, between spray and Palliser Rivers, from the !ùestern slope of a knoll between 56

Mount Sir Douglas and Mount Munro, at an elevatíon of about 2377 m (7800 fË.), Brítish Columbia, J.R. Marshall collection.

Root collection (for location, refer to Fí9. t): GSC R21liv,

R21lv, I+rhite Knight Peak, British Colurnbia. Norford collectíon (for locatíons, refer to Fí9. 1; for

stratígraphíc posítions, refer to Appendix 1): GSC NA-1-7, GSC loc.

56107, MounÈ Wílson, Alberta; GSC NC-I-I, NC-1:4, NC-1-5, GSC loc.

57209, Tipperary Lake, Brítish Columbia; GSC ND-2-9 (Fig. 6F), GSC 1oc.

47404, Pedley Pass, British Colunbia; GSC NG-2-la, NG-2-2, GSC loc.

5063, Carbonate Creek, BriÈish Colurobia; GSC N4-1-2, GSC loc. 64584, 6.4 kn (4 ni.) south-southeast of Indianhead Mountain, Britísh Colunbia;

GSC N7-3-2, N7-3-6, 17-3-9, GSC loc. 56076, cSC N7-6-Ia, GSC 1oc. 56080, Pinnacle Creek, BriÈish Colunbia; GSC N9-3-1, N9-3-2, GSC loc. 45606' GSC N9-1-1 (FiS. 68),

GSC loc. 45604, Hatch Creeþ Brítish Coluurbia; GSC Nt0-1-9 (Fig. 6E),

GSC loc. 52L83, PagliarcCreek, British Colunbía; GSC I!!:1-L, CSC

1oc. 69837, Horse Creek, Brítish Colurobia; GSC N12-8-1 (Fig. 6H), GSC loc. 45582, GSC NL2-7-2, GSC ]-oc. 52160' Blackfoot Creek, Brítísh

Colurobia; GSC N14-1-8, Nl4-1-10, GSC loc. 58188' Shatch Mountain,

BriÈish Colurnbia; GSC N31-2-5 (Fig. 6A), GSC loc. 52186, Pipestone

River, Alberta; GSC N40-2-2 (Fig. 6G), GSC 1oc. 42026, , Alberta. Present collection (a11 frour Akutlak Creek, Brítish Colurobía; for location, refer to Figs . \ 2; for sËraËigraphic posiÈions, refer to

Fie. 4) : GSC KL2A-L4/l,y2, KL2A-I4/15-3, Kr2A-14/15-4a, K12A-14/15-11 (ríg. 6J-O), Kr2A-14/r5-r4 (Fig. 6r), KI2A-I4/15-18, RLZA-L|/15-2r,

KL¿A-L4 / L5-22, Kr2A-14 I 15-23, Kr2A-14 / 15-25 (rrg. 6C, Dl Kr2A-l4l 15-27, 57

Kl2A-14/15-33, inÈerval 414 + 415; GSC ]KLZA-I'/16-I, interval 415 +

416: GSC K12A-18-4, K12A-I8-2I; interval Ai$; GSC K]2A-BR-L' K12A-BR-2'

K12A-BR-6, rubble near inËerval 418; GSC Kl28-i-13, interval B1; GSC

KI2B-5-2 (Fíg. 5E), Ki2B-5-5' K12B-5-13' K12B-5-16, interval 85; GSC

KL2B-6-2, KI2B-6-4, inËerval 86; GSC KI2B-7-2, Kl2B-7-3' interval B7;

GSC K12B-16-1, interval 816; GSC K12B-2f1, interval 820; GSC

KI2B-23-I, intervaL B23; GSC KI2B-24-4, íntervaL 824; GSC K12B-25-4'

KI2B-25-IL, interval 825; GSC Kl2B-T-I (Fig. 6P, Q), ta1us.

Occurrences-Upper Ordovician: Beaverfoot FormaËion íncludíng l^Ihiskey

Trail Member (Richrnondian, possibly MaysvillÍan and Gamachían strata), southern Rocky Mountains, British Columbia and Alberta, Canada; Caution

Creek and Chasm Creek f ormations (niddle to upper Ríchmondian) , Churchill Ríver Group, Hudson Bay Lowland, Manitoba, Canada; Aleman Formation (upper Maysví11ian to lower Richmondian strata, possibly 1or¡er to uriddle Maysvillian straÈa), Montoya Group, southern New Mexico

and wesEernmost Texasr U.S.A.

Diagnosis-Corall-um trochoid, circular or rarely triangulate ín cross section. Septa moderately to conpletely dilated in early stages, degree of dilation decreasing during onËogeny to nondilated in late

stages. Major septa converge axially in groups, generally forming a slight counterclockwise whor1. Axial structure hígh1y variable in late sÈages, fron smal1 comprising a few septal lobes to large with

numerous 1ong, contorted septal lobes and lamellae; commonly of intermediate size with septal lobes and a fer,r 1amel1ae. Cardinal fossula broad ¡^ríth enlarged axial end, cardinal sePtum typically short 58

in laËe stages. Mínor septa confined to, or extend a short distance beyond, moderaËed broad stereozone. Tabulae great.ly convex upward' greatly depressed in cardinal fossula.

DescripËion of corals-The largest specimen is 56 mm long and has a maximum diameter of. 29 mm, but the base and top are míssing (GSC Kl2B-T-1). The corals are slightly curved wiËh a convex cardinal side, and are Ërochoíd (Fig. 6¿ K) to rarely ceratoid (Fíe. 6P). The najority have circular cross sections, but 3 of 17 individuals are slightly triangulate in late ontogenetic stages (Fig. 6G). Septal grooves and ínterseptal ridges are preserved on a fer¿ specimens.

Depth of the calíce ís 4OZ of the coral length in one individual (GSC

KI2B-5-2, length = 42 urn; Fig. 5E), and 49% ín another (GSC

K12A-15/16-1, length = 45 mm)

Ontogeny and ínternal sËructures-The relationship between number of sepËa and coral díameter is shown in Fig. 7. In early ontogenetic stages (Fig. 64, C), major sepËa are moderately to completely dilated. DilaËion gradually decreases duríng intermediate stages (Fig. 68, D-F, N)' and septa are nondilated by late stages (Fig. 6G-I, o, Q). In earlv stages, major septa meet aË the axis. Duríng ínËermediaËe stages' groups of adjacent septa join a shorË disËance from the axis, and septal lobes arísing from these groups extend to the axis. In late Stages, Eajor Septa continue t,o converge into groups, and commonly form a slight counterclockwise r¿horl (fig. 6H). The radius of the axial region ranges from 237" (GSC NC-2-la) to 4I% of the coral radius

(GSC K12B-T-1). The axj-al structule varies from a few sepËal lobes 59

extending from the groups of septa in corals wíth a sma1l axj-a1 region

(Fig. 6G, H), to a complex structure of numerous 1ong, contorted septal lobes and 1amel1ae in those with a large axial structure (Fig. 6Q). There is a complete gradation betvreen these end members; axial structures of intermediate síze with septal lobes and a few lauellae are most conmon (Fig. 6I, O).

The cardinal septum is long in early Ëo internediate stages, when it beeomes thinner Èhan the other major septa (Fig. 6D, N). In cross secËions through late stages, the middle portíon of this septum is generally absent, leavíng a shorË septum and a projeetíon from the axis (Fig. 6G, H, Q).et the base of the calíce, this axial projection disappears (Fíg. 6I). The cardinal septum becomes short in 11 of 17 specimens (65"/.). The greaËest diameter at which a long cardínal septum is presenr is 21 urur (GSC K12A-18-4), and the smallesÈ diameter with a shorË cardinal sepËum ís 11 nm (GSC K12B-25-11). The cardinal fossula is broad in late stages and expands aE the axial end.

The length of minor septa in late sÈages varies from 207. (GSC

K12B-T-1) xo 307" of the coral radius (GSC K12A-14l15-14). Minor septa are confined to the stereozone during late stages in eight of 16 specimens. In the remainder, up to 50% of. the length of the minor septa extends beyond the stereozone (GSC K12B-T-1). Thickness of the stereozone ranges from 14% (GSC KI2B-T:]) to 337" of the coral radíus (csc K12B-2s-4).

The complete and incomplete tabulae are greatly convex upward and greaËly depressed in the cardinal fossula, where they decline from the axis at an angle of approxínately 600 (Fig. 6L,M,P). Spacíng of 60

tabulae varies from 0.4 ron (GSC K12A-I4/L5-LI) to 2.4 rnrn (GSC K12B-T-i)

MicrosÈructure-In Ëransverse thin sections, the major septa are

fibrous. From a medial position in the septum' fibres typically curve outward in the direcÈion of the coral axís (".g., Elias, 1981, fíg. 5a; 1983a, fíg. 7a). In one individual (GSC N12-8-i), the fibres appear to be perpendicular to the medial 1ine. In the stereozone during interurediate to late stages, U-shaped Lamellae wi¡h concave sídes facing the coral axis are present between the major and minor septa. A contorËed suture extends through the lamellae in a medial posítion between the sepË4. The epitheca consists of short, indisËincË fibres thaÈ are approximately perpendicular to the surface of the corallum. In longítudínal thín sections, septal fibres are slightly inclíned from the coral r¿all toward the axis.

DiscussioÊ-Slreplglqgrns distinctum was originally described from the Beaverfoot Formation in British Coluurbia by l^Iilson (1926). She did not identify type specímens, but illustrated Ër¿o corals. One of them is herein desígnated as the 1ecËotype of Salvadorea dístincta disËincta (lrlilson, Lg26) (GSC 6731a; Wi1son,1926, P1. 1, fig. 7) . The oËher is reassigned to Bighornia patella (hlilson, L926). Another coral illusËrated by l^Iilson (1926, Pl. 1, fig. 5; GSC 6729a) is circular to slightly triangulate in cross section. The dashed line added to the publíshed figure incorrectly inplies Ëhat the cardinal side of the

specimen is incomplete, and thaË the corallum is greatly compressed. This individual was originally identified as Streptelasma Prolongatum I^Iilson, 1926, but is herein reassigned Ëo Salvadorea disEincta dístincËa. The specimen with an oblique polished surface thaË was 6T

i1lusËrated as Streptelasma prolongatum may be Salvadorea dis tincta distíqcla (cSC 6730; I^Ií1son, 1926, pI. 2, fLg. 2).

The corals described herein cannoË be distinguished morphologically from those previously assigned to Salvadorea kingae kíngae Nelson, 198i (which includes S.? sp.1 ofNelsor¡1981; refer to

Elias, 1985, p. 48). The latter taxon has been documented from the Caution

Creek and Chasm Creek formations of the Churchill Ríver Group ín

Manitoba (Nelson, 19Bl), and the Aleman Foruration of the Montoya Group in New Mexico and Texas (Elias' 1985). Ranges of variability involving the degree of sepËal dilation, size and nature of the axial structure, size and shape of the cardinal fossula, lengËh of the minor septa, and thickness of the stereozone are similar. Variability in the number of sepËa is essentially the same for specimens from the Beaverfoot Formation and Churchill River Group, but the number of septa in corals from the Aleman FormaÈion tends to be in the higher half of the range (compare Fig. 7 with Elias, 1985, fig. 20). The proportion of coralla in which the cardinal septum becomes short below the calice does not differ significantly among specimens from the Beaverfoot Formation, the

Caut.ion Creek and Chasm Creek formations, and Èhe Aleman FormatÍon (usíng chi-square test for proportions, with q = 0.05; refer to Elias, 1985, table 3). The only distinguishing characteristic of the collection from the Beaverfoot is thaË a small proportion of specimens are slightly

': triangulate in late stages, whereas the corals known from elser¿here are circular in cross section. However, some slightly Èriangulate individuals have also been reporËed in Salvadorea distincLa 62

cuËterensis Elias, 1985 of the Cutter Dolomite in Ne¡,¡ Mexico and Texas

(Elias, 1985, p.50, figs. 2L.I3,2I.17-21.19). This feature alone is considered insufficient to recognize S. distincta distincËa and S. kíngae kingae as separate taxa, and the latter is herein regarded as a junior synonym. Most speeímens of S. distincta cutterensis 1ie ¡,u-ithin the range of variability in S. distincta distincËa. However, the axial stïucture ís always very small and comPrise a few septal lobes only, and the minor septa are generally longer. s. randi (Elias, 1981) is similar to S. distincËa dístincta, but details of septal dilation, number of sepËa' naËure of the eardinal fossula and cardinal septum, and the axía1 structure are dífferent (Elias,198t, p. 2L; 1983a, p. 938, 1985, table3). It occurs within the Selkírk Member (uriddle Maysvillian strata) of the Red River Formation in southern Manitoba, and the Scales and Brainard formations

(Richmondian) of the MaquokeÈa Group i-n lowa and l11inoís. S. selecta (Bi11ings, 1865) closely resembles S. randi, but has sepËa that are completely dílated until immediately below the calice in laËe sËages (Elias, !982a, p. 62,63; 1983a, p. 938; 1985, tab1e3). ft is known from the Gunn, PeníÈentiary, and possibly Gunton members (rniddle to upper R:ichnondian) of the Stony Mountain Fornation in souLhern ManiÈoba, the upper member (níddle to upper Richmondian) of the Vauréal Forrnatíon and the Ellis Bay Formation (Gamachian strata) on Anticosti Island in

Québec, and Ëhe White Head Formation (Richrnondian strata) at Percé'

Québec. Pestana (1960) identified a single, small specimen from the

Johnson Spring Formation (MÍddle Ordovician; Rocklandian-Kirkfieldian) 63

of California as Streptelasma sp. cf. S. dÍstinctum. He noted that "iË is probably a distinct species buË available material is not adequate for a specÍfic description,'r

Kaljo and Klaarnann 0965) ídentified Streptelasma distinctum from Èhe Portrane Limestone (Upper Ordovician; Ashgill) of Ireland. Their description and illustratíons of poorly preserved, silicÍfied material do noÈ provide enough inforuratíon to confirm Ëhe taxonomic assignment.

They considered Streptelasma bystrowi Reiman, 1958, from the Vormsí

Horizon (Upper Ordovícian; upper Caradoc) of the Estonían SSR to be a junior synonym of S. 4Þ!þCqCm. However, that species is insuffíciently known to veri-fy such a conclusion (Reiman,1958, p. 33, 34, pl. I, figs. 4-6).

Ho (1978) reported Streptelasma cf. distinctum from the

Guanyinqiao bed (Upper Ordovician; Ashgi11, HirnanËian) within the

I^Iufeng Formation in the Guizhou Province of China. Unlike Salvadorea distincta, a large, open axial region appears to develop in late stages (Ho, 1978, pl. 1, fig. 3c).

One specimen from the Beaverfoot Fornatíon resembles S. distincta distincËa, but has nondilated and more numerous major septa, and a narro\,¡ stereozone. It is identífied as Salvadorea sp. 2 of Nelson, 1981. 64

Figure 6. Salvadorea distincta distincta (I,Iilson, 1926) and

Salvadorea sp.2 of l{e1sonr 198I fron the Beaverfoot Formatíon. A-Q, S. distincta distíncta. A, GSC N31-2-5: view of calice (stereopair),

X2.5. B, GSC N9-1-1: view of calice (stereopaír), X2.25. C, D,

GSC Ki2A-I4/15-25: transverse sections, X4, X2. E, GSC N10-1-9: transverse section, X4. F, GSC NU-2-9: Ëransverse section, X4.

G, GSC N40-2-2: transverse section, X2. H, GSC N12-B-1: transverse section, Xl.5. I, GSC KI2A-I4/15-14: Ëransverse section, XI.5.

J-q, GSC Ki2A-14/15-11! J, cardínal view, X1; K, alar view (cardínal side left), Xl; L, M, longitudinal secËions (cardinal side left),

X1.5; N, O, transverse sections, X2. P, I, CSC Ki2B-T-I! P, longitudinal sectíon (cardinal side right), Xl.5; I, transverse section, Xl.5. R-U, Salvadorea sp. 2, GSC NA-1-5: R, longitudinal section (cardinal side ríght), X2.5; _l-!, transverse sections, X5, X2.5, X2.5. Position of ostrâcode (P) and epizoic bryozoan (Q) índicated by arrows.

Note: Photograph E should be rotat.ed 90o clockwise. Photograph Q ís located at the top of P.

Photograph U is locaÈed at Èhe bottom of R. .ffi'w

Wffi WW

ç9 66

Figure 7. Relationship between number of major septa and coral diameter in Salvadorea distincta distÍncta and Salvadorea sp. 2: BeaverfooÈ Formatíon, British Columbia and Alberta, and Alberta, respectively. 67

fL lU Ø40 E o ?

IL o20 É. . Salvadorea distincta distincta lrJ d¡ 50 sections from 40 corals f " Salvadorea sp. 2 z 2 sections from 1 coral 0 10 20 DIAMETER (mm) 68

Salvadorea sp. 2 of Nelson, 19Bi

Fíg. 6R-U

Salvadorea sp. 2.Nelson, 1981, p. 48, pl. 5' figs. I3-I7.

Specimen described herein--{SC NA-1-5, GSC loc. 56107, MounË l^Iilson'

Alberta (for location, refer Ëo Fig. 1; for stratigraphic position, refer to Appendix t).

Occurrences-Upper Ordovician: Beaverfoot Formation (Richmondian' possibly Maysvillian straËa), southern Rocky Mountains, Alberta,

Canada; member 2, Chasm Creek Fornation (uriddle to upper Richmondian),

Hudson Bay Lowland, Manitoba, Canada.

Descriptiorr-The sma11 , si1ícified specimen has a maximum diameter of 10.5 ¡arn. It is ËrochoÍd, and circular in cross section. The relationship between number of septa and coral diameter is shown in Fig. 7. The major septa are nondilated in the early stage, and appear to meet at the axis (Fig. 65). In íntermediaËe and late stages (Fig.

6T, U), adjacenË septa joín a short distance from the axis. Lobes arisíng from these groups extend to the axÍs, forming a small, simple axial structure. IËs radíus is 337" of the coral radius in the late stage. The cardínal septum is 1ong, and the cardinal fossula is moderaÈe1y broad. Minor septa cannot be recognLzed. If presenÈ, they are confined to the relatívely narror¡r stereozone. Tabulae are moderately convex upward, and slightly depressed ín the cardína1 fossula (Fig. 6R).

Díscussion-Except for iÈs smaller síze, the specimen described herein 69

cannot be distinguished from two individuals found in Manitoba and identified as Salv4do¡e4 sp. 2 by Nelson (1981). These corals differ

from S. distincta distíncta (I,Iilson, 1926) Í-n having nondilated and more numerous major septa (refer to Fig. 7), and a narror¡/ sËereozone. Nelson (1981,. p. 48) considered then to be eíther aberrant

representatives of S. distincta distincta, or a new species. Because of this uncertainty, and the smal1 amount of materiaL, a specific name has not been assigned. 70

Genus Bighornia Duncan, L957

Bighornia Duncan, 1957, p. 608-611; Nelsor¡ 1963, p. 39, 40;

Neuman, 1977, p. 75; Elias,1981, p. 24, 25i Eliag I982a, 79,

80; Elias,1983a, p. 948.

Tvpe species-BÍghornia patella (I^Iilson, 1926). The origína11y desígnated type species, B. parva Duncan, 1957, is herein considered

a juníor synonyn.

Diagnosis-Corallum typically depressed and subcalceoloídrwith concave

cardinal side. Cross-sectional shape ín early stages depressed and triangulate, or oval with flaËtened counter síde, or crescentÍc vríth

concave cardinal side; in later stages slíghtly depressed and

t.ríangulate, or oval, or round. Axial structure includes so1íd columella elongate in cardínal-counter direction and contiguous with counËer septum, plus a few septal lobes and rarely lamellae. Cardínal fossula moderately broad to broad in late stages.

DiscussÍon-The relationship bet¡¿een coral height and average cross-sectional dimension for Bighornía is shown in Fig. 8. Two groups of specimens can be identified. One consisËs of sma11 to medium-sized individuals, and the other comprises corals that expand rapidly above the apex and attain large sizes. Duncan (1957, p. 613) and Nelson

(1963r p. 39-41) dístinguished speeies wíthin the small to medíum size category on the basis of external form, number of septa, and length of minor septa. Subsequent studies (Elias,1981, I9B2a, 1983a, I985; present study) have documenËed the ranges of variabÍlity involvíng external form and its relation to fnternal morphology, including 7I

arrangement plus number of septa. Elias (1981, P. 25, 26; I982a,r. 81, 82;1983a, p. 952;1985, p. 4L,43) recognized a close simílarity of al1 corals in the sma1l to medirm size group, and tentatively referred to them as Bighornia sp. cf . B. paËella (I^Iilson, 1926) because B. Patella from the type area was poorly known. However, consistent differences ínvolving length of the cardinal septum and orientation of septal fibres vrere noted between Edenian-Maysvillian and Richmondian collections (Elias, 1985, p. 18). Material described herein frorn the Beaverfoot Formatíon provides sufficient data for a taxonomic revisíon.

The small to medíum-sized late Late Ordovician corals, including Èhose described as B. parva by Duncan (1957), are assígned to B. patella

(lnlilson, 1926). B. r¡ílsonae Knapp and Elias, n. sp. ís proposed for the early Late Ordovician forms. With the exception of Bighornia bottei Nelson, 1963, Ëaxa included defínitely or t.entatively in the large size category of Ëhe genus are poorly known. They are listed be1ow. Streptelasma íntegríseptatum Parks, 1915, p. 13-15, p1. 5, figs. 1-3; Churchill River Group (niddle Lo upper Ríchrnondian), lower rapids,

Shamattar,ra (Gods) RÍ-ver, Hudson Bay Lor.rland, Manitoba. StrepËelasma haysii (Meek, i865). 0oå 1937, p. 8, 9 fpartimf, pL. 2,

fig. 4a,b; Cape Frazíer, Ellesmere Island, District of Franklin, Northwest Territoríes. [?] Streptelasrna? oppleÈum Teichert, 1937, p. 5I.- 52, pl. 2, figs. 5-8, p1. 3, figs. I-4; Uglerlarsuk, Ungerlodjan, and Ig1u1ík

Island, east. coasË, Melville Peninsula, District of Franklin, and

Cape Calhoun Formatíon (Upper Ordovician), Cape Calhoun, 72

northwes tern Greenland. [?] Streptelasna? latum Teicherr, L937, p. 52, 53, pl. Z, figs. 3, 4, 9; drift, Cape GríffiÈh, Baffín Island, Dístrict of

Franklín, NorËhr^res È Territories. [?] streptelasua cf. inËegríseptatum parks, 1915. stearn, rg56, p. gB, 89; Stonewall Formation (upperrnost Richmondian to Gamachian), near

The Pas, Manítoba. Bighornia sp. Nelson,1959, p1. 4, figs. 3a-d, and Nelsoq1975, p1. B,figs.

4-7; chasm creek Formation (niddle Ëo upper Ríchrnondian) , Hudson Bay Lowland, Manitoba. Bighornía botteí Nelson, 1963, p. 4I-43, p1. 5, fig. 6, pl-.9, figs. 5, 6a-d, pl. 11, figs. 5qb,6a-c,7,8, pl. !2, figs. 1, 2^-g,

3a, b, 4a-c; chasm creek Formatíon (middle to'upper Richmondian),

Churchill River Group, Hudson Bay Lowland, Manitoba.

Bighornia sp. cf. B. bottei Nelson, 1963. Described herein; Beaverfoot Formation (Richrnondían, possibly Maysvillian sËrata), southern Rocky Mountai.ns, British Columbia. 73

,r Fígure 8. Relationship between coral height and average

I I cross-sectional dimension (average of cardinal-counter and alar-alar dimensions) in Bighornia. B. patella: Beaverfoot Formation, Brítish

Colunbia and Alberta; Fort Atkínson Formation, Maquoketa Group, Iowa;

Ellesmere Island, Distríct of Franklin (Cox, L937, p.16); Gunn and

i , PenitentÍ-ary members, Stony MounEain Formation, Manitoba; upper : Bighorn Dolomite, Llyouring (Duncan, 1957, p. 611, 612, pI. 70, figs.

' B, I4); Caution Creek and Ch¿sm Creek formations, Churchill River

Group, Manitoba (Nelson, 1963, pl. 11, fígs. 1b, c, 3b, c, 4b c); lower

. member, Vauréa1 Formatíon, Québec. B. wilsonae: Upham Dolomite

Second Value Dolomite, Montoya Group, New Mexico and Texas; , ".mber, , S"tkÍrk Member, Red River FormaÈion, Manitoba. B. sp. cf. B. bottei:

: , Beaverfoot FormatÍon, Britísh Colurnbia. B. bottei: Chasm Creek l forutation, Churchíll River Group, Manítoba (Nelson, 1963, p. 42, 43). : Streptelasrna íntegriseptatum: Churchill River Group, lower rapids,

: . Shamattan¡a (Gods) River, Manítoba. Streptelasma? latum: drift,

: , Baffin Island, District of Franklin (Teichert, 1937, pl. 2, figs. : 314). Streptelasma? oppletum: Melville Peninsula, District of

, Uranklin (Teichert, pL. : 1937, 2, figs. 6, 8).

; o B. patella, Beaverfoot Fm. 1 1 section(s) from 4 coral(s) Ft. Atk¡nson Fm. 2'.2 50 Ellesmere ls. 1..1 Stony Mt. Fm. 49 29 Bighorn Dolomite 2..2 Churchill R. Gp. 3,,3 Vauréal Fm. 3,2. o B. wllsonae, Montoya Gp. 14 5 . Red R. Fm. 132. !.. 8. sp. cl. B. bottel, Beaverfoot Fm. 3'.1 .¿ B. bottel, Churchill R. Gp. 256, * S. lntegilseptatum, 1".1 E + S.? latum, Baffin ls. 1"1 5so ìI S.? oppletum, Melville Pen. 1'.1 F g:E uJ o* I .:. û* È

o<( ..1 .2 * t

Ô a ù..o oo .o.. . o tig ol', . ..9". .' * ..oE Èo * æ' o .v

15 20 25 30 AVERAGE CROSS-SECTIONAL DIMENSION (mm)

! F. 75

Bighornia patella (I,trilson, 1926)

Fíg. 9A-R

Streptelasma patellum Wilson, 1926, p. 13, p1-. 2, fí-g. 1. strepËelasma disËinctr¡m l,Iilson L926, p. 12, 13 lpartirn], pl. t, fig. 6, [non] pl. 1, fig. 7. [?] Streptelasma aff. breve Ulrich in l^Iinchell and Schuchert, 1895.

Troedsson,I92ï, p. 109, pl. 26, fígs. 6, 7. Líndströnía solearís Ladd, 1929, p. 397-399, p1. 4, figs. 6-12. ?Holophragma gÉ9i! Cox, 1937, p. 15-17, pl. 2, figs. 14-16.

Holophragma anticonvexa Okulitch, 1943, p. 68,69, p1. 1, figs. 11, 12. Ross, pl-. "Xoþphr..æg" "p. 1957, 37, fÍgs. 3, 5-7. Bighornia parva Duncan, 1957, p. 6II-614, p1. 70, figs. 1-18; Norford, L962b, pl. 6, figs. 12,16; Norford et al. in Douglas,1970, pl.

5, figs . 3, 11 . Bighornia patella (I^Iilson, 1926). Nelson, 1963, p. 40, 41, p1. ll, fígs. Ia-c, 2, 3a-d. Bighornia solearis (Ladd, 1929). Nelson,1963, p. 4I, pL. 11, fig. 4a-d. [?] ni-gnornia sp. Norford and Macqueer¡ 1975, p1. 9, fígs. 9, l0;

Oliver in Oliver, Merriam, and Churkin,1975, pl. 5, fig. 6.

Bighornia cf. B. patella (Wilson, 1926). Elías,1981, p. 25, 26 [partim], [¡g"] p1. I0, figs. I-2I; Elias, l9ï2a, p. 80-82 [partim], pl. 14, figs. 17-24, p1. 15, figs. 1-11; Elías,1983a, p. 948, 950-952 [partiml, figs. 7d, I4e-r, 16a-o.

Bighornia sp. cf. B. patella (Wilson, 1926). Elias,1985rp. 40, 4I, 43

[partím], f igs . L6.14-16.16, [non] f igs. 16.1-,16.13, L7 .

LectoËype-Designated herein: GSC 6732 (rÃjLson, 1926, p1. 2, f.ig. 1;

Fig. 9A), 15 n (50 ft.) above base, Beaverfoot Forrnation, GSC loc. 76

7935, near head of l.Iinde¡mere creek, stanford Range, BriËish columbía, J.F. I.Ialker col_lectfon (for locatíon, refer to Fig. 1).

AdditÍonal- sPecinens described herein-Al-l frorn Beaverfoot Fornation.

Early collecÈions (for location, refer to Fig. l): GSC 673I

(I^Iílson, 1926, pr. 1, fíg. 6), belo¡+ "IlgÞ"it.". bedsr" GSC loc. 756r,

0.8 kn (0.5 ni.) east of the trail over Palliser Pass, BríÈish Columbia, J.R. Marshall collectíon.

Root collectlon (for location, refer to Fig. 1): GSC R21l-íi, R21l-ví, I{hite KnÍght peak, BriÈish Colunbia. Norford collection (for locations, refer to Fíg. l; for stratigraphic positions, refer to Appendíx I): GSC - NG_l_3, GSC loc. 5064, GSC NG-2-3, GSC loc. 5063, cSC NG-3-7, - NG_3;g, NG_3_12, cSC loc. 5062, carbonate creek, Britísh colunbia; GSC Nl0-1-3, N1o-r-7, N10-1-17, GSC pagliaro 1oc. 52183, creek, Brirish colu¡obia; GSC

Nl1-2-3 (FÍg. 9B-E) , Nl1-2-7, Nt1-2-9, Nr1-2-1I, GSC 1oc. 69g39, Horse creek, BrírÍsh colunbia; csc Nr2-4-r (FÍg. 9K-N), GSC 1oc. 45579, csc Nl2-6-1, GSc 1oc. 45580, BlackfooË creek, British colunbia; GSC N14-1-9, GSC l-oc. 58188, sharch MounÈain, Britísh coluurbia; GSC N40-2-5, GSC loc. 42026, Cirrus Mountain, Alberta. Present collection (al1 fron Akutlak creek, British columbia; for location, refer to Figs. l, 23 for stratigraphic positions, refer ro Fis. 4)z csc K12A-14l15-6 (Flg. 9r, J), Kl2A-14/15-r8, Kr2A_t4/15_rg,

Krz$-r4/L5-28, K12A-14/15-31, Ktz¡,-r4/15-34, inËerval A14 + A15; GSC

Kl2B-2-10, interval 82; cSC Kt2B-5-tO, KI2B-5-I2 (Fie. 9O_Q),

Kr2B-5-26, fnËerval ë.; csc Kl2B-6-; (Fig. 9R), Ínterval 86; GSC Kr2B-r6-2, interval 816; csc KrzB-24-2, Kr2B-24-s (Fig. 9F-H), inrerval 77

B24; GSC KI2B-25-2, K128-25-10, intervaL BZ5.

Occurrences-Upper Ordovician: BeaverfooË Formation íncluding I,ühiskey

Trail Member (Richmondian, possibly Maysvillian strata) southern

Rocky MounËains, British columbia and Alberta, canada; Fort Atkínson

Forrnatíon (Richmondian), ossian, rowa, u.s.A. ; strandpilaren, Norman Lockyer rsland, Princess Marie Bay, Ellesmere rsland, Distriet of

Franklín, canada; Gunn and penj-tentiary members (rniddle to upper

RichnondÍan), stony Mountain Formation, stony Mountain, Manitoba, canada; shaly beds at top of Bighorn Dolourite (niddle to upper

Richmondian), Johnson county, I,Iyomi-ng, u.S.A.; caution creek and chasm

Creek formations (niddle Ríchrnondian strata), Churchill River Group, Hudson Bay Lowland, Manitoba, canada; lower member, vauráal Fornation

(Richmondian), Anticosti rsland, Québec, canada; cutter Dolomite (rniddle Richmondian strata), Montoya Group, Texas, U.S.A..

Diagnosis----Cora11um of sma11 Ëo medium size. Axial structure composed of prominent colume11a, plus septal lobes and rarely a few 1amellae in late stages. Cardinal septum becomes thin and decreases in length during intermediate stages, and uoderately broad cardinal fossula develops. rn transverse section, septal fibres are oriented perpendícular to ¡nedial line within septum. Tabulae in incompleËely dilated stages convex upward, greatly depressed in cardinal fossula.

Description of corals-Alar-alar and cardinal-counter dímensions across the calice rim of the largesË índividual are 22 m and 19 mm, respectively (GSc R21i-ii). The height of this specimen is about 20 mm, but the apex is missing. The relationship betr¡een coral heíght 78

and average cross-sectional dímensíon for the species ís shown in Fig. B. The coralla are subcalceoloid in form and slightly curved with concave cardínal sides. They are depressed throughout ontogeny (Fig. 10). Cross-sectional shapes are hígh1y variable, but íntergradational.

Of. 36 specimens, 501l are triangulate with flatËened counter sides and angulate cardinal sídes (Fig. 9B-H). The degree of triangulaËion

decreases during ontogeny. Tn one of Èhese corals, the counter side

ís slightly coneave (GSC K12B-25-i0). The shape of 36% of rhe specimens is suboval (Fig. 9r, J). one of these is subrectangular in early stages (GSC Kl28-16-2). A concave, spoon-shaped indentation

ríses from the apex on the cardinal side ín 14% of the corals. The shape of cross sections Èhrough these structures is generally crescentic (FÍg. 9o-Q), but one individual is subrectangular (Fig. 9K-N). rn all cases, a slight rídge is centred along the cardínal sepËum, and lateral projectíons extend the liidths of two coralla (Fig. 9KrL, o-Q). These spoon-shaped sËructures have been interpreted as attachment sites (see Attachment structures under I'Taphonomy and paleoecology"). The form of the coral returns to nornal above such structures (Fig. 9M,N).

I^IiËhin the calice, a promínent columella rises from a low boss formed by other elements of the axial structure (Fig. 94, R)

Ontogeny and internal structures--{he relatíonship betr+een number of septa and coral average cross-sectional dimension is sho¡¡n in Fig. 11. rndividuals with the highesÈ numbers of septa also have the most depressed cross-sectional shapes (GSC K128-16-2, K128-25-10). Of 18 specimens, 67% have very greaÈly to completely dilated septa until 79

just below the base of the calice (Fig. 9B-E, I, J). In LL%, dílaríon begins to decrease during intermediate stages (Fig. 9F-H). All of Ëhese corals are triangulate to suboval in forrn. In the rernaining

22%, septa are nondílated to moderately dílated ín all knor¡n ontogenetic sÈages (Fig. gK-Q). Each of these índividuals has a spoon-shaped indenËation on Ëhe cardinal side. ïn early ontogenetic stages, major septa meet at the axís of slightly depressed coralla (Fig. 98), or along a zone that is elongate in Èhe alar-alar direction of more depressed individuals

(Fig. 94 K,0) . During intermediate sËages (Fig. 9C, G, Io L, P) , a columella develops aË the axis. It is an extension of the counter sepËum, and is lenticular in cross section and elongate in the cardinal-counÈer direct,ion. The columella ís comparatively sma1l in narkedly depressed corals. The cardinal sepËum becomes Ëhin, detaches from the columella, and remaíns very short thereafter. In 12 specÍmens, it v¡as verifíed that Èhe cardinal septum becomes short below the 1eve1 at which sediuent fills interseptal spaces (Appendíx 5). The cardinal septum is long at higher levels in only two índivíduals. The cardinal fossula is moderately broad, with an expanded axial end. Tn intermedíate to late stages (Fíg. 9D,E,H,J,M,N,Q), the major septa join in groups axia11y, and septal lobes plus rarely a few lamellae appear on both alar sides of the columeIIa. Minor septa are confined Ëo the stereozone until the base of the calice, where some extend a very short distance beyond ít, in many corals. Thickness of the stereozone at the base of the calice ranges frorn lTil (GSC K!ZA-14/I5-6) to 3IT" of the average cross-sectional radius (GSC Nl1-2-3).

Tabulae are not apparent ín Ëhe najority of specirnens, which have BO

conpletely dílated septa until near the base of the calice. In coralla having incompletely dilated septa ín earlier stages, tabulae are greätly convex upward. They are greaËly depressed in the cardinal

fossula, and decline from the axis at an angle of approxirnately 80o

(rÍe. 9R).

Microstructure-In transverse thin sections, the major septa and axial structure are f ibrous (e 9.. , Elias, 1983a, f ígs. 7d, 169,). The f ibresextend perpendicularly from a medial line Ín the septurq and radiate from a medial positíon in the columella. A contorted suture extends between the major and minor sePta r¿here they are in lateral conËact. The epitheca consists of short, indistinct fibres that are approximat.ely perpendieular to the surface of the corallum. In a longitudinal thin section (GSC Kl28-6-5), septal fibres are slightly inclined from the coral ¡,¡a11 tor,¡ard the axís, and fíbres are inclined upward from a medial posi-tion in the co1ume1la.

Disc.ussior¡-Streptelasma patellurn was first described from the Beaverfoot Formation in Brírish columbia by I^Iilson (1926). she did not identify type specimens, but illustrated one coral which ís herein designated as the lectotype of Bighornia patella (I,Iilson, 1926) (GSC 6732; ülilson, 1926, pI.2, fig. t; Fíg. 9A). Anorher individual that was illustrated by itlilson (L926, pI. 1, fig. 6; GSC 673I) ís depressed and the cardinal septum is located on Ëhe concave síde. rt was originally ídentified as St.reptelasma dístincËum tr^Iilson, 1926, but is reassigned to Bíghornia patella.

The material described herein cannot be distinguíshed from well 8i

preserved specilnens in an unknown unit on Ellesmere Island (Co>{,1937;

PMO A 10585-10588 examined in this study), the Stony Mountain Formatíon

(Okulitch,1943; Elias,1983a), Ëhe upper Bíghorn Dolomite (Ross, 1957; Duncan, 1957; Norford, I962b; Douglas, I97O), and the Vauréal Fornation (Elias, L982a). All these corals lie v¡iËhin the range of variabí1íty

that has been documenËed for large collect.ions fron the Stony Mountain

and Beaverfoot formations, involvíng síze and shape of the cora11um, number and arrangement of septa, degree of septal dilation, length of the cardinal septum and minor septa, type of septal mícrostructure,

size and shape of the cardínal fossula, and size and natuïe of the

axial structure. rn this taxon, the length of the cardinal septum

decreases during interrnediate ontogenetic stages. It has been

verified that the cardinal septum becomes short belov¡ the leve1 at

r+hich sediment fills ínterseptal spaces ín 25 specímens (12 from the

Beaverfoot Formation, seven from Èhe Stony Mountain Formation, three

from Ellesmere rsland, tvro from the Bighorn Dolomíte, and one from

the vauréal Formation; Appendix 5). 0n1y tr¿o corals, both from the

Beaverfoot, are knor+n to have a long cardinal septum at levels where

sediment fi1ls ínËerseptal spaces. Septal fibres are

oriented perpendicular to a medial line ¡¿ithin the sepËum in transverse thin secÈíons (Elíag 1983a, fig. 7d). The microstructure of sílicified indÍvíduals from the Fort Atkinson Fonnation (Ladd, 1929; Elias,rgïza), churchill River Group (Nelson, 1963), and cutter Dolomite (Elias, 1985) is not known, but in other respects they cannot be dístinguished from the specímens discussed above. Streptelasma paËellum r"¡as the earliest nane proposed, and all Ëhese corals are herein assigned to Bighornia 82

patella.

B. wÍlsonae Knapp and Elias, n. sp. ís similar to B. patella (refer to Fígs. 8-11), but the cardinal sept"m remaíns long until just belovr the base of the calice, and septal fíbres curve outward in Èhe dírectíon of Ëhe coral axis from a medíal position within the septum. Specimens of Bighornia from the following Uppe::

Ordovician units probably belong to one of these specÍes, but cannot be assigned r¿ith certainty because the microsËTucture and naËure of the cardinal septum below the calice are unknown: Cape

Calhoun Formation in northwestern Greenland (TroedssonrIg2S; MMH 2994,

2995 exam:ined in this study), basal and uriddle members of the Mount

Kindle Formation in the District of Mackenzíe (Norford and Macqueen,

1975), and an unnamed unit in east-central Alaska (Oliver, Merriam, and Churkin, 1975).

Two specimens from the Beaverfoot Ïormation Èhat are representatives of Bighornía attaín subsËantially larger sÍ_zes, expand more rapidly above the apex, and are more depressed than coralla assigned to B. patella (Figs. 8-10). They are idenËífíed as B. sp. cf. B. boÈtei Nelson, 1963. 83

Figure 9. Bighornia patella (I^Iílson, 1926) from the Beaverfoot Formation, B. ¡vilsonae Knapp and Erías n. sp. from the selkirk Mernber, Red River FormaÈion, and cf . Þ. "p. B. bottei Nelson, 1981 frorn the Beaverfoot Formation. 4-8, B. patella. A, GSC 6732 (lectotype): víew of calice (stereopair), X2. B-E, GSC N11_2_3: transverse sections, x3.5. F-H, GSc Kr2B-24-5: transverse sectíons,

x3.5- Ã J, GSC K12A-14/15-6: transverse sectíons, x3.5. K-N, esc

N12-4-1: transverse sections, x3.5. 9-q, GSC K128-5-12: transverse sectj-ons' x3.5. R, GSc K12B-6-5: l0ngitudinal section (cardinal side q-V, ríght), X3.5. B. wílsonae. S, T, GSC UU 215: transverse sectionsr x3.5. u, V, GSC RJE 1-293: transverse sectíons, x3.5. w-BB B . sp. cf . B ' . bottei. I,J-r, GSc Ni i-2-2: transverse sections , XI.25. Z-BB, GSC NlO-l-2: Èransverse sectíons, Xl.25.

NoÈe: Photograph y should be rotated IB0o.

calice rim in 1ov¿er left of photograph A faces inward as a result of damage to specimen. 84

WF

o 8s

Figure 10. RelaËionship beËween cardinal-counter and alar-alar cross-sectional dimensions in Bighornia. B. patella: Beaverfoot Formation, British Columbia and Alberta; Fort Atkínson Formation,

Maquoketa Group, Iowa; Ellesmere Island, District of Franklín; Gunn and Penítentiary members, Stony Mountain Formatíon, Manitoba; upper

Bighorn Dolor¡r-ite, Wyoming (Duncan, 1957: p. 611-613); Caution Creek and chasm creek format.ions, churchill River Group, Manitoba (Ne1son,

1963, pl. 11, fígs. Ic,2, 3c, 4c); lower member, Vauréal Formation,Québec.

B. sp. cf. B. bottei: Beaverfoot Formation, Britísh Columbia.

B. ¡¿ilsonae: upharn DolomíËe Member, second Value DolomiÈe, MonÈoya

Group, New Mexico and Texas; selkirk Member, Red River Formation, ManíËoba. Equidímensional corals plot on the line, depressed corals plot below line. B6

8. pøtolla o BaÂverfôol Fm. 36 secl¡ons lrom l8 corals Fl- Alkinson Fm. 3,.3 a Ellesmerê ls. 6..4 . Slony Mt. Fm. 51 . . 43 ¡ B¡ohorn Dolom¡le a.t5 E'o Church¡ll R. Gp. 4..1 z vauréel Fm- 3..2 o 8. sp, c|.8. óotlo, zU' *Besverlool Fm. € sections trom 2 corals ul oEr tr l! t- 0 z o¡l of 4 o10 ./> JI .* | =ô (r I () **

E E z o z(D l! ô (E oo lJJ íeçn r I Fz o:f o Monloya 19 seclions lrom 10 corals I O B. utlsonae, Gp. J a. . RedR.Fm. 22 4 ' o fr= (J 0 ALAR-ALAR DIMENSION (MM) 87

Figure 11. Relatíonshíp between number of rnajor sepËa and coral

average cross-sectional dímensíon (average of cardinal-counter and alar-alar cross-sectíonal dimensions) in Bíghornia. B. patella: Beaverfoot Formation, Brítish Columbia and Alberta; Fort Atkinson Formation, Maquoketa Group, Iowa; Ellesmere Island, District of

Franklin; Gunn and Penitentiary members, Stony Mountain Formation,

Manitoba; upper BÍghorn Dolonite, I,Iyoming (Duncan, 1957, p. 611-613)

Caution Creek and Chasrn Creek ¡ormatíons, Churchíl1 River Group,

Manitoba (Nelson, 1963, p1. 11, figs. lc, 2,3c, 4c); lower member,

Vauréal Formation, Québec. B. wilsonae: Upharn Dolomj-te Member, second Value DolomiËe, Montoya Group, New Mexico and Texas; selkirk Member, Red River Formation, Manítoba. 88

o B. patølla, Beaverfoot Fm. ons from l8 , Ft. Atkinson Fm. ,3 , Ellesmere fs. '3 ' Stony Mt. Fm. .40 * ¡ , B¡ghornDolomite ,5 o , . churchill R. Gp. '4

o t- o- 8oo oo fr o bro fE l¡J c0 zÐ o

20

5 lo 15 20 AVERAGE CROSS-SECTIONAL DIMENSION (mm) 89

Bighornia wilsonae Knapp and Eliasr n. sp.

Fig. 9S-V

[?] streptelasna aff. breve ulrich ín l,Iinchell and schuchert, 1g95.

Troedssor¡ 1926, p. 109, pl. 26, fígs. 6, 7.

[?] nigfrorni-a sp. Norford and Macqueer¡ 1975, pi-. g, figs. g, 10;

Oliver in Oliver, Merríam, and Churkír¡ L975, pl-.5, fig. 6.

Bighornia cf. B. parella (Lrilson, 1926). Elias,1981, p. 25, 26 [partim], pl. 10, fígs. t-2I; Etias, L9B2a, p. 8O-g2 [-p.gr.ir], [æ"] pf. 14, figs. 17-24, pt. 15, figs. 1-11; E1ías, 19g3a, p. 948, g5O-952 he¡Ëu], t¡eA] figs. 7d, 14e-r, 16a-o.

Bighornía sp. cf . B. patella (I^/ilson 1926). Elias, 1985, p. 40, 4r, 43 Ipartim], fígs. 16.1-16.13, 17, Inon] t6.I4-16.16.

Derivation of name--{he species is named for Alice E. wílson, ¡¿ho first described the fauna of the Beaverfoot. Formation.

Holotvpe-Designated herein: usNM 381185 (E1ias, 1985, figs. 16.1-

16.7, 17), upham Dolomite Member, second value Dolomíte, Montoya Group, cooks Range, Luna county, New Mexico (interval RHF-CR2, section 4 of Elias, 1985).

Paratypes-Designared herein: usNM 381190 (Elias, 1985 , f igs . t6 . 1l- 16.13), upham Dolomite Member, second value Dolomite, Montoya Group, Alamo canyon, otero county, New Mexico (interval AC2, sectíon 7 of Elias,1985); usNM 38i201 (Elias,1985, fig. t6.to), 3ïLzoz (Elias,19g5, figs. 16.8, 16.9), upham Dolomite Member, second value DolomiËe,

Montoya Group, scenic Drive, E1 paso county, Texas (ínterval sD1, section 11 of E1ias, 1985). 90

Specimens examined hereirr-A11 from Selkirk Member, Red River Formation,

Garson, Manitoba. GSCUM 2i5 (Fig. 9s, T), Rand. collecLion; GSC

RJE 1-271, Garson Limestone co. Ltd. quarry, Elias collection; GSC RJEl-293 (Fig. 9u, v), Gillis Quarríes Ltd. quarry, Elias collecrion.

Occurrences-Upper 0rdovician: Selkirk Member (rniddle Maysvillian

strata), Red River Formation, Garson, Manítoba, canada; upham Dolom1te

Member (middle Edenian to lowermost Maysvillian), Second Value Dolomite, Montoya Group, New Mexico and Texas, U.S.A.

Diagnosis-Like Bighornia patella (I^Iilson, 1926), but cardinal seprum

remains long untÍl imrnediately below base of calice in late stages. In transverse sectÍons, septal fibres curve outward in direction of coral axis from a medial position in septum.

Di.scussior¡-The corals assigned herein to Bighornia wilsonae Knapp

and E1ias, n. sp. resemble B. patella (I^ri1son, in external form .1926) (refer to Figs. 8-10). Internal morphologies of these taxa are similar

(refer to Figs. 9, 1I), but in B. wilsonae the cardi-nal septum is rong until just below the base of the calice. rt has been verified that

this septum remains long until above the level at which sedimenË begins

to fill ínterseptal spaces in 12 specimens (eight from the Red RÍver Formation, and four from the second value Dolomite; Appendix 5). rn B. patellarthe cardinal septum becomes short earlier during ontogeny (compare Fig. 95, T with Fig. 9D,E, and Fig. 9U,V with Fig. 9R Q). The mi-crostructure in transverse sections of these species is also different. Septal fíbres in B. wilsonae curve outward in the direction of the coral axis from a medial position within the septum (Eliaq 19g5, fig. 17) . rn B. pate1la, the fibres are perpendicular to the medial 91

line. Uncertainty concerning Èhe specifíc identiËy of specímens from

Greenland, District of Mackenzie, and Alaska !üas discussed under B. patella. 92

Bighornia sp. cf. B. botËei Nelson, 1963

Fig. 9I^I-BB

[.f.] Bighornia sp. Nelson,1959, pl. 4, figs. 3a-d., Nelson, 1975, p1. 8, figs. 4-7. ["f.] Bighornia borrei Nelson, 1963, p. 4I-43, pl. 5, fig. 6, pI.9, fígs. t 6a-d, p1. 11, figs. 5a,b, 6a-c,7,8, p1. 12, fígs. L,2a-g, 3arb, 4a-c.

Specimens described herein-A11 fron Beaverfoot Formation. Norford co11ecÈíon (for locaËions, refer to Fig. 1; for straËigraphic positions, refer to Appendix 1): GSC N10-1-2 (Fie. 9Z-BB), cSC

1oc. 52183, Paglíaro Creek, British Colurnbía; GSC N1I-2-2 (Fie. gt^I-Y),

GSC loc. 69839, Horse Creek, BriÈish Columbia.

Occurrence-Upper Ordovician: Beaverfoot Formation (Richmondian, possibly Maysvillian strata), southern Rocky MounLains, British Columbia.

Description of corals--Both specinens are poorly preserved, and are affected by sílicification and recrystallizatíon. The height of one is estimated at abouÈ 25 urn (GSC N11-2-2), but the apical end is terminaËed along a styloliÈic surface. The coralla expand rapídly above the apex (Fig. 8). Alar-alar dímensíons across Ëhe calice rims are approximately 33 nrn and 35 um (GSC Nl1-2-2, N10-1-2, respectively).

Both corals are depressed (Fig. 10; Appendix 3), with a spoon-shaped

índentation risíng from the apex on the cardínal side. A rídge along the cardinal septum is prominent on one individual (Fig. 9Z-BB). The other becomes suboval in cross sectíon above the indentation 93

(Fie. 9I^I-Y).

Ontogenv and internal structures---{ne specimen ís estimated to have

52 major septa at an alar-alar dÍmension of 27 nrn (GSC N11-2-2). In early stages, the major septa are moderately to greatly dílated, and meeË along a z,one Ëhat ís elongate in the arat-aLar dírection

(Fíg. 9W,Z). During int.ermedÍate stages, the thín cardinal septrrm

becomes short, and a broad cardinal fossula wíth an expanded axial

end develops (Fig. 9x,AA). A coluuellar structure Ëhat is apparenËly

cont.inuous wíth Ëhe counter sepËlfrr can be detected in one coral (GSC N11-2-2). septal lobes and lamellae are present in the axial region

during late stages (Fig. 9E BB). A promínent, lenËicular co1umel1a

can be seen in one specinen (GSC Nl1-2-2). A few minor septa extend

a short distance beyond the stereozone in both specimens.

Numerous tabulae are visible ín transverse sectíons of one

individual (Fie. 9I{, X) .

Microstructure-The original calcitic compositíon and mícrostructure

are preserved in parts of one specimen (GSc N11-2-2). In Ëransverse thin sections, septal fíbres extend perpendícularly from a rnedíal line in the sePtum. A contorted suture exËends between the major and minor septa where they are ín lateral contact.

Discussion-compared wiËh coralla assigned to B. patella (I^Iilson, 1926), the two specímens described above attain subsËant.ially larger sizes, expand more rapídly above Ëhe apex (Fig. 8), and are more depressed (Fig. i0). They are considered to represenË the large size group of Bighornia (see Discussion under "Genus Bighornia Duncan, 94

1957"). The beÈter preserved coral (GSC NlL-2-2) Ís similar to B.

bottei Nelson, 1963, ¡.¡hich was described fron Ëhe Chasm Creek Forrnation

(niddle Èo upper Richrnondian) of the Churchill River Group in norËhern

ManiËoba. It resembles the laËter species in exËernal form, number

plus dilation and arrangement of septa, naÈure of the cardinal

fossula, type of axial structure, and development of tabulae. The

other specimen (GSC N10-1-2) ís more depressed than the types of B. boËÈei, which !¡ere measured by Nelson (1963, p. 42, 43). Because of the limited amount of daËa, and the poor understanding of other taxa

included ín Èhe large size category of the genus, these corals from Ëhe Beaverfoot Formation are herein ídentified as B. sp. cf. B. botteí. 95

Genus Grewingkía Dybowski, 1873

Grewingkia haysii haysii (Meek, 1865)

Figs. 5A-D, 124-M

Zaphrentís haysii Meek, 1865, p. 32.

S trep telasma haysii (Meek, 1865) . Kirk, 1925 , p . 445; Lad,d., IgZg , p. 396,397, pL.4, figs. 3-5, [?] t, 2; Co4Ig37, p. 9,9 fpartíurl, [non] pl. 2, fig. 4a,b.

strepËelasma prolongatum wilson, 1926, p. 11, tz [ærgé*], pl. 1, fig. 3, [non] pl. 1, fígs. 4,5, pl. 2, fig. 2. Streptelasma foersteí Troedsson, 1928, p. 109, pl. 25, figs. I,3, p1. 26, fie. 5; Co4 1937r p. 6-8, p1. l, figs. 10, 11, IZ] 12-16.

StrepÈelasma goníophylloides Teíchert, 1937r p. 49, 50, pl. 3, figs. 5-11. strepËelasma trilobaËun (whiteaves, 1895) var. Nelson, 1959, p1. 3,

figs. 3a, b. strepËelasma prolongaÈum l^Iilson, 1926. Norf ord, r962b, pl. 6, figs.

13, 14 .

Lobocorallium Ërilobatum var. major Nelson, 1963, p. 35-37, pl. 5, fig. 1, pl. 8, fig. 4, pL. 10, figs. 1, 2a-h. Lobocorallium Ërilobatum (I{híteaves, 1895). Nelsoq r975, pr. g, figs. 2, 3.

[?] Lobocoralliun cf. L. trilobatr¡m major Nelson, 1963. Norford and

Macqueer¡ 1975, p1-. 9, fig. 17. Lobocorallium rnajor Nelson, 1963. Bo1Ëon and Nowlan,L979, pl. l, fíg, 2. 96

Lobocorallium trilobatum major Nelson, 1963. Nelson, l98l, p. 5I,

52, fig. 13, pl. 6, fígs. 9-11, p1. 7 , fígs. 1-5. Lobocorallium prolongatun (trIílson, 1926) . Norford et a1. in

Douglas,1970, pl. 5, fíg. 1. Grewingkia havsii (Meek, 1865). Elías, 1981, p. 17, iS h.g¡!rr], p1. 5, fígs. 1-5, [¡9"] pf. 5, figs. 6-15, p1. 6, figs. I-I2. Grewj-ngkía haysii haysii (Meek, 1865). Elias, 1985, p. 28, 29, 31.

Lectotype--DesignaËed by Ladd (1929, p. 396, 397): USNM 256g3

(Ladd, 1929, pI. 4, figs. 3-5; Elias,198l, p1. 5, figs. 1-5), Cape Frazier, Ellesmere Island, District of Franklin, Northwest Territories.

specimens described hereín-411 from Beaverfoot Formation.

Early collections (for location, refer to Fig. l): GSC 6729,

below "xgl¿"i!=" beds,'r GSC loc. 7563, i.2 krn (0.75 mi.) easr of rrail over Palliser Pass, British columbia, J.R. Marshall collectíon.

Root collection (for location, refer to Fig. l): GSC R2tI-i (Fig. 12M), Irrhire Kníght peak, Brirish Columbia. Norford collection (for locations, refer to Fig. 1; for

sËratigraphic posit,ions, refer to Appendix 1): GSC N4-l-3, GSC loc. 64584, 6.4 kn (4 mi.) south-southeast of Indianhead Mountaín, British colurnbia; GSC N7-3-10, GSC 1oc. 56076, pinnacle creek, British colunbia; csc N12-1-1, GSC 1oc. 52159, csc Nt2-2-1, Nl2-2-3, N12-2-5,

NI2-2-6, GSC loc. 45578, cSC N12-5-2 (Fíg. I2J-L), GSC 1oc. 47414,

Blackfoot creek, British columbia; GSC N17-I-1, GSC loc. 47426, Mounr

Onslow, British Coh¡mbia; GSC 16917 (Norfor( Ig62b, p1. 6, figs. 13,

14; Douglas,I97O, pl. 5, fig. 1; Fig. I2A), GSC loc. 42026, Cirrus 97

Mountain, Alberta.

Present collect.ion (all from AkuËlak creek, British colurnbia; for location, refer to Figs. r,2; for stratigïaphic positions, refer ro Fig. 4): csc K12A-14l15-4Þ (Fig. 12\c), K\2A-14/15-70,

KI2A-I|/I5-I2 (Fie. 12D), inrerval AI4 + A15; GSC KI2A-I'/L6-4,

interval 415 + 416; GSC K12A-18-2, K12A-1B-3, KlZA tB:5 (Fíe. LZ}-I),

K12A-18-9, K12A-18-14, K12A-18-15, KI2A-I8-22, inËervat A1B; GSC

K12A-BR-7, rubble near interval AIB; GSC Ki2B-l-4, ínterval n1; GSC

RI2B-2-6, interval 82; GSC KI2B-3-2, ínrerval 83; GSC KI2B-5-4,

K12B-5-14, K12B-5-19, KI2B-5-29, K12B-5-30 (Fig. 5A-D), inrerval 85;

GSc K12B-6-3 (ríg. l24F), interval åÉ.; GSC KtzB-7-4, inrerval 87; GSC K72B-23-2, inËerval 823: cSC Kl28-25-9, inrerval F25.

Occurrences-Upper Ordovician: Cape Frazier on Ellesmere Island and

MÈ. Nautílus on Baffin rsland, DÍstrict of Franklin, NorÈhwest

Territories, canada; cape calhoun Formatíon (upper ordovicían) , cape calhoun, norËhwestern Greenland; caution creek and chasm creek

formatíons (rniddle to upper Richnondian) , churchill River Group, Hudson Bay Lowland, Manitoba, canada; Richrnondian outlier north of

Aberdeen Lake, District of Keewatín, Northr¡¡est Territories, canada;

Beaverfoot Formation including lrrhiskey Trail Member (Ríchrnondian, possíb1y Maysvillian straËa), southern Rocky Mountaíns, British

Colunbia and Alberta, Canada.

Diagnosír{orallum slightly to markedly Ërilobate, Lrilobation most pronounced in intermedíate stages. Cross section generally depressed to equidímensional. Major septa completely dilated in early stages, 98

degree of dilatíon decreases gradually during ontogeny. Axial

structure large and conplex, with septal lobes fn periphery and conÈorÈed septal lamellae concentrated axial_ly.

Descriptíon of corals-The 1-ongesÈ coral has a length of 150 rrm, but

the base and parÈ of the calice rim are missing (Fig. rzJ). The

upper portion Ís nearly cylÍndrical, wíth a maximum average

cross-sectional dÍmension of 52 nrm. Another lndfvidual has an average cross-sectional dimension of 64 rnm just below the base of the calice

(GSc K12A-18-22), and two incomplete specirnens are even larger (GSC R211-i, N12-2-1). The corals are trochoid and moderately to greaËly

curved. They vary frou depressed to coEpressed; mosË are depressed to equidimensíonal throughout ontogeny (Fig. l3). The cross-sectional shape Ís tríangulate in early stages, and becomes trilobate early ín inÈeraedÍate stages. The maximum degree of trilobation, attained during inter-nediate sËages, varies fron slight to pronounced. rt

decreases during late stages, and the shape of some indivlduals

returns to triangulate. A convex caLicular boss corresponding to the axial structure begins to develop during intemediate stages (FÍg. LzA), and ís large in late sÈages. Depth of the calfce is approximatery 271¿ of the coral length (GSC KI2B-5-30, lengrh = /J mm; Fle. 5A).

One specimen has an outer wall- lrregularity of the type described and inÈerpreÈed by Elias (1984a, p. i03-105, fig.1; Fig. I2L, alar posirion on left síde). onÈogenv and interual strueturer,rhe relationship beÈween number of sepËa and coral average cross-sectionar dinension is shown ín Fig. 14. 99

rn early ontogeneÈic stages, the najor sepÈa are greaÈly to usually

cornpletely dilated (rig. I2B). The degree of dílation decreases

gradually during Ínteruediate (Fig. 12c, E, K) and late stages (Fig. l2D'4 IrL'M). By late sÈages, they vary from nondilated to moderately dilated, but remain completely dilated in the peripheral portion of Èhe septal region fn some corals. Major septa extend to the axis in early stages. Duríng íntermedíate stages, a few septal lobes followed by lobes plus a few lamellae forn the axíal strucËure. They are moderately to generally greatly dílated. A median lameIIa is present in only rwo specímens (csc Kl2A-14/15-4b, Kl28-5-4). DurÍng late stages, the 1arge, complex axial structure consists of septal lobes at the periphery plus numerous, nondÍlated to moderaËely dilated, generally long and contorted septal lamellae concenÈrated axíal1y.

The shapes of the axial region and coral exterior are síunilar in cross section. fn late stages, the average radius of the axial region varíes from 38"/" (GSC K12A-18-3) to 57% of rhe average coral radíus (GSc N12-5-2).

The cardínal sept'rm is long, and becomes thinner than other major septa toward the base of the calice. rn one specímen, it becomes shorr ar rhe base of the calice (GSC Kr2},-rs/16-4). The relarively narrow cardi.nal fossula is conspícuous ín interroedíate to 1aËe stages. rn some individuals it is slightly expanded at the axis. rn coral_s having nondí1ated najor septa in the latesÈ stages, some minor septa extend beyond the relatively narrovr stereozone. The maxfmuro length of these septa is 19% of the average corar radius, in a specimen where the correspondíng thickness of the stereozone is gZ of the radius 100

(csc Ki2A-r4lls-10). The complete and íncoroplete tabulae are moderately to greatly

convex upward in the axial region, and spaced 0.3 to 1.9 nrm ¿p¿¡¡

(Fig. 12GrH). Tabellae in the septal region are spaced up to 2.8 mr apart.

Microstructure-rn transverse thín sections, the major septa, septal

lobes, and lame11ae are fibrous (e. g., Nelson, l98l, fíg. L4;

E1Ías, 1981, fig. 5a, b). From a medíal position in the septuxa, fibres curve outward in the direcÈíon of the coral axis.

A contorted suÈure exÈends beÈween septa of both orders where they are in lateral contact in the stereozone. rn íncompletely dilated stages, u-shaped lamellae wíth concave sides facing the coral axis

apPear betr.Teen septa in the stereozone. A contorted suture extends

Èhrough the 1anel1ae in a medial position betr¿een the septa.

Discussion-rn her work on the BeaverfooÈ fauna, wilson (1926) díd

not describe a taxon to include the type of corals documented above. However, one specimen that she illustrated as Streptelasma prolongaËum

Wi.lson, L926 ls trilobed and has an axÍal structure (GSC 6729; trrlilson, 1926, pr. 1, fig. 3). The individual fllusrrared in Norford (1962b)

and Douglas (1970) and identified as sËreptelasma prolongatum and

Lobocoralliurn prolongatum, respectively, Ís also trilobed and has an

axía1 structure (Fig. 124). These corals are herein assigned to Grewingkia haysíí haysii (Meek, 1865).

These solitary rugosans from the Beaverfoot For¡ûation cannot be

distinguished from those Íncluded in the synonyny and assigned to G. haysii haysii by Elias (r985). Previously, rhe range of variabílity 101

ín this taxon had been established prímaríly on the basis of a relatively large collectíon from Èhe churchíll River Group (Nelson, L963, 1981; Figs. 13, 14). The BeaverfooË marerial described herein

provides addítional info¡mation on variability ínvolvíng external forrn

and ínternar morphology. Norford and Macqueen ( rgTs) illustrated a

transverse section cut through the calice of a large coral frour the basal member (upper ordovícian) of the Mount Kindle Formarion in

the District of Mackenzie. rt ís triangulate in shape and has a

Grewíngkia-type axial strucÈure. This specimen could represent G. haysÍi haysií, but a definite specífic assignment is not possible unÈi1 earlier ontogenetic stages are studied.

G. haysii selkirkensis Elias, l9g5 ís knor.¡n from the selkirk Member (niddle Maysvillian to possibly lower Ríchroondían) of the Red River Formation in southern Manitoba (Elias, r9g1r p. 17,1g, p1. 5, fígs. 6-15' p1. 6, figs. r-L2;1985, p. 3I). The coralla are all compressed,

vrhereas ¡oost indíviduals ín collecÈíons of G. haysií haysíi are depressed ro equídimensional (Elias,19g5, fig. l0; Fig. 13). G.

haysii selkírkensís issinilar to G. franklinensis Elias, 19g5 fron

the Alenan Formatíon (lower MaysvÍllian to lower Rich¡nondian) of the Montoya Group in Ne¡v Mexico and Texas, and G. sp. cf. G. franklinensÍs fron the cutter Dolomite (niddle Richrnondian) of the Montoya in Texas (E1ías,1985,p. 31-33, flgs. il.r-Ir.I9). corals of the latrer species are distinct frorn G. hayslÍ in having a median septal la¡nella in the axial structure during late stages.

Lobocorallíum trilobatum trilobatun (I{hiteaves, 1g95) is presenr in the Gunn and PenitentÍary members (niddle to upper Richnondian) of to2

the Stony ìlountain Fornation in southern Manitoba, and equivalent red

shaly beds withÍn the upper part of the Bighorn Dolomíte in wyoning (E1ías, 1983a, p. 944, 946-948, figs. Ilu-cc, 13a-m, i4a-d). Ir is most símilar ro G. haysíi haysií, but the degree of trilobatíon is rDore pronounced throughout onÈogeny, the septa are generally conpletely dilated until the base of the calíce, and the axial strucÈure is usually sualler and simpler. L. trilobaturo vaurealense (Twenhofel,

1928) is known frour Richmondian strata within the upper member of the Vaur6al Formation on AnticosÈi Island, and the l{híte Head Formation at Percé, Qu6bec. It mosÈ closely resembles G. haysií selkirkensis, but the coralla are all trilobate throughout onÈogeny, and the degree of septal dilation does not decrease until later ontogenetic stages. On the basís of external form, it can be diffícult to distinguísh

relatívely small' comPressed specímens of G. haysÍi haysÍi from mature corals of Deíracorallíum prolongatum (Wilson, 1926) in collections from the Beaverfoot Formation. However, indíviduals of the latter species are generally more compressed (Fíg. 13), are triangulate to only very slightly trilobate, and rarely have an axial structure, vrhich is comparatÍvely sna1l. Tiny corals representing early ontogenetic stages of these taxa are coumonly poorly preserved, and

can seldom be identified to the specifíc level. rt appears that such specimens belonging to D. prolongatum are ¡nore compressed than G. haysii haysíi. 103

Figure 12. Grewingkia haysíi havsii (Meek, 1865) frora the Beaverfoot Form¿Ëion. A' GSC 169i7: view of calice (stereopair), xl.5.

B, C, GSC K12A-14/15-4b: transverse sections, X3, X2. D, GSC

KIZA-I4/I5-I2: rransverse secrion, Xl.5. E, F, GSC K12B-6-3: Ëransverse secrions, xI. 5. .lir, GSC K12A- 1g-5 ! G, H, longítudinal sections (cardinal side ríght), xl.5; r, transverse section, xl.5. J-1, GSC N12-5-2: ¡1, alar view (cardinal side left), Xli K, L, transverse sections, xl.5. M, GSC R211-í: transverse section, xl.

Position of possíb1e ostracode (F) and Trypanites boring (L) indicated by arrows.

Note: "I-" should be posftioned nidway between ! and H. Trypanites boring present at the top of photograph L. r04 ffi 105

Figure 13. Relationship between cardinal-counter and alar-alar cross-sectional dinensions in GrewíngkÍa and Deiracorallium. G. haysii haysii: Beaverfoot Formation, Brítish columbía and Alberta; Ellesmere Island, District of Franklin; Cape Calhoun Forraation, northwesËern Greenland; caution creek and chasm creek formations,

churchill River Group, Manitoba; outlíer north of Aberdeen Lake, Distríct of Keewatin (except for Beaverfoot Formation, sources of data cited in E1ías, rgg5, fig. 10). D. prol0ngatum: Beaverfoot Formation, British coluurbia and Alberta; chasm creek Formatíon, ChurchÍll River Group, Manitoba (Nelson, 1963, p. 39, p1. 13, figs. 6a-c; 1981, p1. 8, figs. 15-17). 106

" G, haysll haysll, Beaverfoot Fm. 15 section(s) from 12 coral(s) Ellesmere ls. 2' 1. o . Cape Calhoun Fm. 8, 5, Churchiil R. Gp. 13 4. Aberdeen L- 1. 1. " D. ptolongaturr, Beaverfoot Fm. 14 8, . Churchilt R. Gp. 7, 2.

E E z o zU) tu õ fr tu zl- f o o JI z (ro o

20 40 60 ALAR-ALAR DIMENSION (mm) L07

Figure 14. Relationship between number of rnajor septa and coral average cross-sectÍonal dimension (average of cardinal_counter and a1¡rr-a1ar diroensíons) in Grewingkia havsii haysÍi: Beaverfoot Fo¡'mation, British colunbia and Alberta; Ellesmere rsland, District of Franklin; cape calhoun Formation, northwestern Greenland; caution crçek and chasm creek formatÍons, churchill Ríver Group, ManÍtoba; ouÈlier north of Aberdeen Lake, District of KeewatÍn (except for Beaverfoot Formation, sourcesof data cited in Elias, 19g5, fig. g). o .o o

oo t-- o fL o' t¡J U) ^o o o E o .O 9uo

o. lJ- o o fE o UJ fll 40 zf,

o G. haysii haysii, Beaverfoot Fm. 12 section(s) from 11 coral(s) o! ! u Ellesmerels. 2" 1 o u Cape Calhoun Fm. $r 3 .u u u Churchill R.Gp. 64u 24

.r u u AberdeenL. 'lu 1

H 20 30 40 50 O AVERAGE CROSS-SECTIONAL DIMENSION (mm) co 109

Genus Deiracoralliun Nelson, 1963

Deiracoralliun prolongatup (I,Iílson , L926) Fig. 154-N

StrePtelasma prolongatum'Wílson, 1926, p. II-IZ, p1. I, fig. 4, fnon] pl. 1, figs. 3, 5, lZl pl-. Z, fíe. 2. fnon] SÈreptelasma sp. cf. S. prolongatum l.Iilsonr1926. pestana, I960,

p. 866, 867, pL. 109, fig. 1.

t¡r"] streptelasma prolongatum I.Ii1son, 1926. Norford, Lg62b, p1. 6, figs. 13, 14. Deiracoralliuur giganteuur Nelson, 1963, p. 38, 39, pl. 13, fígs. 4a,b, 5, 6a-c; Nelson,198t, p. 54-55, fig. 13, p1. g, figs. 8-11, 15-17.

t¡gt] Lobocorallium prolongatum (trrlilson, 1926). Norford et a1. ín Douglas,1970, p1. 5, fíg. 1.

Lectotype-Designated herein: GSC 6729b (i,Iílson, 1926, pr. l, fig. 4),

below "xg-lv".i!g" beds," Beaverfoot FornaÈion, GSC loc. 7563, 1.2 lo (0.75 ui.) east of trail over palliser pass, Britísh columbia, J.R. Marshall collection.

Additíonal specirnens described hereÍn-411 from Beaverfoot Formation.

Early collections (for location, refer to Fig. r) : GSc t.Il-l-1,

76 n (250 fr.) belor "IlgUs'i-t"s beds," GSC 1oc. 756r,0.g kn (0.5 ni.¡ east of trail over Palliser pass, British coluurbia, J.R. Marshall collection. Norford collection (for locations, refer to Fig. l; for stratígraphic posítions, refer to AppendÍx l): GSC Nc-l-2, GSC loc. 110

57209, TÍpperary Lake, British colunbia; GSC N4-l-1, GSC 1oc. 645g4, 6.4 kro (4 ni.) south-souÈheast of Indianhead Mountaf-n, Britlsh Colunbía; GSC N14-1-3, Nl4-1-6, Gsc loc. 58188, shatch Mounrain, Brirish colunbia; GSc N40-3-6' N40-3-7, GSC 1oc. 70016, cirrus Mounraín, Alberta. Present collection (al1 from Akutlak Creek, British Colunbia; for locatíon, refer to Figs . 1,2; for stratÍgraphic positions, refer to Fig. 4)z csc KI2A-14l15-l (Fie. 15L-N), KI2A_L4/I5_7, KI}A_I4/15_8

(Fig. isA-F), KL2A-I4/15-20 (Iig. tsH-K), Ínrerval A14 + A15; GSC

Kl2B-2-12, ínterval B2; cSC K12B-5-9 (Fie. 15c), ínterval 85.

Occurrences-Upper OrdovicÍan: BeaverfooÈ Formation includÍng I{hiskey Trail Member (Richuondían, possibly Maysvillian strata), southern

Rocky Mountains, British colunbiaand Alberta, canada; chasrn creek

Fornation (middle to upper Richmondian) , churchill Ríver Group, Hudson

Bay Lowland, Manitoba, Canada.

Díagnosis--{ora11um of mediun síze, greatly compressed, triangulate to very slightly trilobate. septa greatly to generally coropletely dilated in early stages, degree of dílation decreases during inte:nediate or late stages. Major septa converge axially along zone elongate in cardinal-count.er directíon, or several septal lobes develop along axis, or rarely a sua11 axial strucÈure of short septal lobes and lame11ae forns. cardinal and counter septa long throughout ontogeny, cardinal fossula long and narroÌ,¡.

Description of corals-{ardína1-counËer and alar-alar dimensions at the top of the lectotype are 36 nr- and 26.5 mn, respectively (l,lílson, L926, pr. 1, fig. 4). corresponding dinensions across the calice rim 111

of anoÈher large lndividual are 37 nn and 23 nn (Fíg. 15A, B). coral lengths are unknown because both specimens are incomplete. The coralla are trochoíd in alar viev¡, and coupressed throughout ontogeny (Fig. 13). They are Èriangulate, and in sone cases very slightly trilobate in intermediate andfot late sÈages. The calice ís comparatively shallow (Fig. 15D).

Ontogenv and internal strucÈures--{he relationshíp between number of sePta and coral average cross-secÈional dinension is shor^m ín Fíg. 16. In early stages (Fig. 15G,H,L), the major septa are grearly to generally coupletely dilated. rn some indivíduals, septa become moderately dilated during inte:mediate stages (Fíg. l5E, M) and slightly dilated to nondílared in lare srages (Fíg. 15qN). rn orhers, they remain conpletely dilated through internedíate stages (Fig. I5r), and dilation does not decrease until near the base of the calice in laÈe stages (Fig. 15J, K). During early to intennediaËe stages, the major septa extend to the axis. Those on alar sides of the corallum meet along a zone thaË is elongate in the cardinal-counter directÍon. This sepÈa1 arrangement contÍnues through late sËages in some specimens (Fíg. l5F). rn oÈhers, several septal lobes develop at the axis (Fig. 15J, K). rn one individual, sepÈal lobes plus a few lamellae form a small axial sÈructure r.¡ith an average radius that ís 19% of the average coral radius (Fig. 15N) .

The cardÍnal and counter sepÈa are longer than the other major sePta throughout ontogeny. rn sÍx specimens, it was verified that the cardinal sePÈum remains long above the leve1 at which sediment fi11s t12

inËersepËa1 spaces (Appendíx 5). The cardinal septum becomes

relatívely thin during intemediate stages, when a narrow but long and conspicuous cardinal fossula develops. Minor septa are confined to the stereozone until above the base of the calice. Their length

ís up xo 28/. of the average coral radius (GSC K12A-14/15-8). Thickness

of the stereozone aË the base of the calice is 1 I% of the average coral

radius in one individual (csc Krz$-r4/r5-7), and 15% ín anorher (GSC

Kr2A-14/ 7s-20) .

Complete and incomplete tabulae are approxínately horizontal in the axÍal part of the corallun (Fig. r5c, D). Their spacing varies from 0.2 to 0.6 un. Tabellae Ín the perlpheral portion are moderately

to steeply inclíned from the qra1l tov¡ard the axis, and are spaced 0.3 to 0.9 îÌm apart.

Micros tructure--In transverse thin sections, the major septa are

(e. fibrous g. , E1ias, 1983a, fig. 7c). From a medial posÍtion Ín the septum, the fibres curve outward in the dírection of the coral axis.

Discussion-StreÞtelasma prolongatum l,Iilson, 1926, e¡as proposed for solitary eorals from the Beaverfoot Formation that have an elongate cardínal side with a long cardinal septun and fossula, but lack pronounced alar 1obes. i,Iilson (1926) did not ídentify type specimens, but illustrated four individuals. One of these ís markedly conpressed r¡ith an elongare cardinal side (Gsc 67zgb; i,Iflson11926, pl. l, fíg. 4) ' and is hereln designaÈed as the l-ectotype of DeiracorallÍum prol0ngatum (I.Iilson, L926). of the other three specimens, one is Grewingkia haysíi haysíi (Meek, 1865), another is Salvadorea distíncta distincta (wiLson, L926), and the thlrd may be s. distíncra distincra r13

(see discussions under those taxa). The coral illustrated in Norford (1962b> and Douglas (1970) and identified as SËreptelasma prolongatum and Lobocorallir¡m ÞrolongaËuro, respectively, fs G. haysli haysli (Meek, 1865) (see discussion under that specíes).

Deiracorallium gíganteum Nelson, 1963 was based on two specimens fro¡o the Chasm Creek FormatÍon ín northern Manítoba. They lie r¡ithin the range of variabilíty documented herein for D. prol-ongaÈum, ínvolving shape (Fig. 13), arrangement and number of septa (Fig. 16), degree of septal dilation, size and shape of fossula, and thickness of stereozone. !. gíganteum ís considered to be a junior synonym of D. prolongatum.

Pestana (1960) identified a single specimen from the Johnson Spring Formation (ìtiddle Ordovician; Rocklandian-Kirkfieldian) in

California as Streptelasrua sp. cf . S. prolongaËrm. It differs from D. prolongatum ín having a larger axial structure, and uinor septa that extend beyond the sÈereozone below the base of the calice. D. prolongatum resembles D. angulatum angulatum (Bi1lings, 1862) and D. angulaÈum gunni Elías, 1983a, known from the uPper member

(rniddle Èo upper Richmondian) of the Vauréal Fornation on Antícosti

Island in Québec, and the Gunn and PeniËentiary menbers (niddle to upper Richnondian) of Èhe Stony Mountain Formation in southern Manitoba, respectively (nlias,1982a, p. 64, 65, pl. 6, figs. 2I-33; 1983a, p. 938, 939, 94L, 942, figs. 1la-t). D. angulatum differs in beÍng snall, and havíng a short cardinal sePtum in late stages. It has been verlfied that the cardfnal septum decreases in lengÈh below the level at nhfch sedimenÈ fills interseptal spaces in ten specimens IT4

(two fron the vauréal For"mation, and eight fron the stony Mountain

FormaÈion; Appendlx 5). D. manftobense manitobense NeJ-son, 1963,

fron the cautfon creek and chasm creek formations (niddle to upper

Rlchnondían) of the churchill River Group in northern Manítoba, and

D. manitobense churchillense frorc the chasm creek Formationr Eây belong Èo D. angulatum (Nelson 1963, p. 37,38, p1. 13, figs. I,2arb,

3a,b; 1981, p. 53,54, fig. 13, p1. B, figs. l2-I4; see Elías, L9g2a, p. 65; 1983a, p. 947).

D. prolongatum ís sinílar to D. harveyf Nelson, lggl and D. delicatum Elias, 1981, which occur fn the portage chute and surprise

creek ¡ormations (?Edenian to 1o¡¿er Richuondian) of the Bad cache

Rapids Group in norËhern ManlÈoba, and the selkfrk Member (rnídd1e

Maysví1114n strata) of the Red Ríver For¡oation ín southern Manitoba, respectively (Nelsor¡ 1981, p.53, fig. I3, p1. 7, figs.6-9, p1.9,

figs. 1-7; Eliasr 1981" p. 22, 23, pI. g, figs. IZ-24). Corals belonging Ëo these three taxa are nedium-sízed, but D. harveyí and D. delicatum díffer fro¡n D. prolongatum in havÍng eomparatívely 1arge,

complex axíal strucËures. D. amplum (Troedssorr, l92B), from Èhe cape calhoun FormatJ.on (upper 0rdovícian) of northwesÈern Greenland, is poorly known (Troedssor¡ 1928, pl. 26, ftg. 4arb; E1ías 19g1, p. 22). rt has a sma1l axial structure, but atÈains greater cross-sectional dimenslons r+íth Dore septa Ëhan other specles of the genus.

The difflculty in distÍnguishing so¡ne specimens of D. prolongarum and G. haysii havsíl- in Beaverfoot collections was díscussed under Èhe laÈter species. 115

Figure 15. Deiracorallíum prolongatum (wilson , 1926) from the Beaverfoot Forîation. 4-f , GSC K12A- 14/ 15-g ! A, cardinal vÍew, Xl; B, alar view (eardinal side left), Xli C, D, longitudinal sections (cardinal side left), x2! E, F, transverse sectíons, x2.

G' GSC Kl2B-5-9: rransverse secrion, x3. H-K, GSc K12A-74/15-20r transverse sections, x2.5. !-N, GSC KI2A-14/15-i: transverse sectíons, X2.5. Position of ostr¿code (I) and Trypanites borings (J, K, N) indicated by arrows. TL6 1t7

Figure 16. RelaËíonship between number of major sepÈa and coral average cross-sectional dimensíon (average of cardinal-counter and alar-a1ar dimensions) in Deiracorallium prolongatum: Beaverfoot

Formation, British columbia and Alberta; chasm creek Formation, ChurchÍll River Group, Manitoba (Nelson, 1963, pl. 13, figs. 6a-c; 1981, p1. B, figs. 15-I7). r18

t- fL ut U) É. 40 o-)

lt o É. 20 LU m . D. prolongatum, Beaverfoot Fm. f 14 sections from I corals z " D. prolongatum, Churchill R. Gp. 4 sections trom 2 corals

AVERAGE CROSS- SECTIONAL DIMENSION (mm) I19

Acknowledgments

This research was funded by a Rotary Foundation (Graduate) scholarship (1983-84) and by grants to Roberr J. E1ías (universiry of Manitoba) from the Natural Sclences and Engineerfng Researeh Council

of canada. sincere thanks are extended to R. J. Elías for supervising the project. r am grateful to the following readers: Brian s. Norford

(Geological survey of canada, calgary), Thomas E. Bolton (Geologícal

Survey of Canada, Otta',¡a), and hlill iarn M. Last (Unfversity of Manitoba) Alan E. H. Pedder (Geologícal survey of canada, calgary) reviewed I'systemaÈic the section on paleontology.'r Field r¡ork vras carrÍed out

in AugustrL984, with the assistance of B. S. Norford, Robert J. McAuley and Ronald G. zelLstra (uníversity of Manitoba). r r,rould like to thank the following for the loan of specÍmens: T.E.Bo1ton, Davíd L. Bruton (Paleontologisk Museum, oslo, Norway), sfren Floris (Geologísk

Museum, CopenhagenrDenmarklandRussell D. LrIhÍte (peabody Museum, yale universíÈy, New Haven, connecticut, u.s.A.). R. G. ZeilsÈra assisËed with the preparation of specímens. Finally many thanks to my parents and Símon for all theír support

during the last two Years. 120

References cited

Barnes, C.R., Jackson, D.E. and Norford, B.S.

1976: Correlation between Canadian Ordovician zonation based on

graptoliÈes, conodonÈs and benthÍc macrofossíls frorn key

successions, in The Ordovícian system: proceedings of a Palaeontological Association synposíum, Birmingham,

Septeurber 7974, M.G. Bassett, ed.; university of wales Press and Natíonal Museum of Ï^Jales, cardíff , p. 209-226. Bi11ings, E. 1862: New species of fossils from different parts of the Lower, Middle, and Upper Silurian rocks of Canada; Geological Survey of Canada, Palaeozoic Fossils, v. I, no. 4, p. 96-185. 1865: ÌJotice of some nevl genera a¡d species of Palaeozoic fossils;

canadian Naturalist and Quarterly Journal of science, nevl series, v. 2, p. 425-432.

Bol-ton, T.E. and Nowlan, G.S.

1979: A Late Ordovician fossil assemblage from an outlier north of Aberdeen Lake, Distríct of Keewatin; Geological survey of CanadarBulletin 32I, p. l-26.

Budge, D.R.

r9772 BíostratÍgraphy, biochronology, and some tectonic

inplícations of Late ordovician corals from the eastern Great Basin; Geological socíety of AmericarAbstracts with Programs, v. 9rno. 6, p. 7L2. Burling, L.D.

79222 A cambro-ordovician section in the Beaverfoot Range, near

Golden, British Colunbia; Geological Magazine, v. 59, no. 10, p. 452-461. T2T

Cox, I.

19372 Arctic and some other species of Streptelasma; Geological Magazine, v. 74, no. 1, p. 1-19.

Douglas, R.J.W. (editor)

1970z Geology and economic minerals of Canada; Geological Survey

of CanadarEconomic Geology Report No. 1, 838 p. funcan, H. L957: Bighornia, a nelr Ordovieian coral genus; Journal of

Paleontology, v. 31, no. 3, p. 607-615. Elias, R.J.

1980: Boríngs in solitary rugose corals of the Selkirk Member, Red River Formation (1ate Middle or Upper Ordovician), southern Manitoba; Canadian Journal of Earth Sciences,

v. 17, no. 2, p. 272-277.

1981: Solitary rugose corals of the Selkirk Member, Red River

Formation (1ate Middle or Upper OrdovicÍan), southern Manitoba; C,eologícal Survey of Canada,Bulletin 344, 53 p. l982az Latest Ordovician solitary rugose corals of eastern North

America; Bulletins of Amerícan Paleontology, v. 81, no. 3I4, 116 p. 1982b: Paleoecology and biostratinouy of solitary rugose corals in

the SÈony Mountain Formation (Upper Ordovician), Stony Mountain, ManíÈoba; Canadian Journal of Earth

Scíences, v. 19, no. 8, p. 1582-1598.

1983a: Late Ordoviclan solitary rugose corals of the Stony Mountain Formation, southern Manitoba, and íts equivalents; Journal of Pa1eontology, v. 57, no, 5, p. 924-956. 122

1.983b: Middle and Late Ordovician solitary rugose corals of the

Cincinnati Arch region; United States Geological Surven Professional Paper 1066-N, 13 p.

1984a: Paleobiologic significance of fossulae in North American Late Ordovician solítary rugose corals; Paleobiology, v. 10, no. I, p. I02-I74. 1984b: Paleobiology of solitary rugose corals, Late OrdovÍcian of

North Anerica, in Recent Advances ín the Paleobiology and Geology of the Cnidaria (Proceedings of the Fourth

International Syurposium on Fossil Cridaría [and

Archaeocyathids and Stromètoporoids] Held Ín l^lashington, D.

C., U.S.A., August, i983), I,l .4. Oliver, Jr., et a1., eds.; Palaeontographica Amerícana, no. 54, p. 533-537.

1985: 'So1itary rugose corals of the Upper Ordovicían MonÈoya Group,

southern New Mexico and r¡resternmost Texas; Paleontological Society Memoír 16, 58 p.

Elias, R.J. and PoÈter, A.I^I . 1984: Late OrdovÍcian soliÈary rugose corals of the eastern Klanath Mountains, northern California; Journal of Paleontology, v. 58, no. 5, p. L203-IZI4. Harker, P., Hutchinson, R.D. and Mclaren, D.J.

1954: The sub-Devonian unconformity in the eastern Rocky Mountains

of Canada, in Western Canada Sedinentary Basin, L.M. Clark, ed.; Auerican Association of Petroleum Geologists, Tulsa, p. 48-67. Ho Xin-yi

19782 Tetracoral fauna of the LaÈe Ordovicían Guanyinqiao

For¡nation, Bijie, Guízhou Province; Chinese Academy of L23

Geological Scíences, Professional Papers of Stratigraphy and Palaeontologyr rlo. 6, p. 1-45.

Kaljo, D. and Klaamann, E.

L965: The fauna of the Portrane Limestone, III: The corals;

Bulletin of the British Museum (Natural History),

Geology, v. 10, no. 11, p. 4L3-434.

Kenda11, A.C. L977: Origin of dolornite nottling in Ordovícian limestones frou

SaskaÈchewan and ManiÈoba; Bulletin of Canadian Petroleum

Geology, v. 25, no. 3, p. 480-504.

Kirk, E.

1927: Review of "An Upper Ordovician fauna from the Rocky Mountains,

British Colunbía" by Alice E. I,Jilson; Journal of Geology, v.35,no.3, p.286-288.

Ladd, H.S.

19292 The stratigraphy and paleontology of the Maquoketa Shale of

Iowa, Part 1; Iorva Geological Survey, Annual F.eporË (1923),

v. 34, p. 305-448. Leech, G.B.

19542 Canal F1ats, British Colurnbía; Geologícal Survey of Canada,

Paper 54-7 , 32 p, McConnell, R.G.

1887: ReporÈ on the geologícal structure of a porÈion of the Rocky Mountafns; Geological Survey of Canada, Annual Reportr1886, v' 2t pL. D, p. I-4I. McCracken, A.D. and Barnes, C.R.

1981: conodont bíostratigraphy and paleoecology of the E11is Bay r24

Formation, Antícosti Island, Quebec, with speeial reference

to Late ordovician-Early silurian chronosËratlgraphy and the systemic boundary; Geological Survey of CanadarBulletin 329, p. 51-134.

Meek, F.B.

1865: Preliminary notíce of a sma1l collection of fossils found

by Dr. Hays, on the west shore of Kennedy Channel, at the highest northern locatíes ever explored; American Journal of Science, seríes 2, v. 40, p. 3l-34. Milne-Edwards, H. and Haime, J. 1850: A monograph of the Britísh fossil corals, part I: Introductíon; Palaeontographical Society, London, v. 3, 7i p. Nelson, S.J.

19592 Guide fossils of the Red River and stony Mountain equivalents (ordovician); Alberta society of p"¡¡6lgrm GeologístsrJournal, v. 7, no. 3, p. 51-6i.

L963: ordovicÍan paleontology of the northern Hudson Bay Lowland; Geologíca1 SocÍeÈy of Ameríca,Memoir 90, I52 p. r9752 Paleontological field guídes, northern canada and Alaska; Bulletin of Canadian Petroleum Geology, v.23, no.3, p. 428-683. 1981: solitary streptelasmatid corals, ordovicÍan of northern

Hudson Bay Lowland, Manitoba, Canada; Palaeontographica, AbÈeÍlung A, v. L72, no. 1-3, p. l-7I.

Neuman, B.

1969:. Upper Ordovician streptelasmatid corals from Scandinavia;

unÍversity of uppsala Geological rnstitutíons, Bulletín, new series, v. I, p. l-73. L9772 On the taxonomy of Lov¡er Palaeozoic solitary streptelasmatids; t25

France, Bureau de Recherches Géoloqíques et Miníères, llémoir 89, p. 69-77. Nicholson, H.A. and Lydekker, R.

1889: A Manual of Palaeontology for Èhe Use of Students, 3rd

edition; Iüilliarn Blackwood and Sons, Edinburgh and London, v. 1, p. 1-885, v. 2, p. 886-1624. Norford, B.S.

196l: The Beaverfoot-Brisco Formation aÈ Cirrus Mountain, Alberta; Journal of the Alberta Socíety of petroleum Geologists, v.9, no.8, p.248-250. 1962a: rllustrations of canadian fossÍ1s: canbrian, ordovician

and Silurian of the western Cordíllera; Geological Survey of CanadarPaper 62-14, 25 p.

1962b: The Beaverfoot-Brisco Formation in the Stanford Range, British Colurabía; Journal of the Alberra Society of

Petroleum Geologists,. v. 10, no. 7, p. 443-453.

L9692 ordovícían and silurian stratigraphy of the southern Rocky Mountains; Geological Survey of Canada, Bulletin 176, 90 p.

Norford, B.S. and Macqueen, R.W.

1975: Lower Paleozoíc Franklin Mountain and Mount Kindle formatíons, District of Mackenzie: Their type sections and regional

development; Geologícal Survey of Canada, paper 74-34, 37 p.

North, F.K. and Henderson, G.G.L.

19542 sunmary of the geology of the southern Rocky Mountains of Canada; Alberta Socíety of Petroleuu Geologists, Fourth Annual Field Conference, Guide Book, p. l5-Bl. Okulitch, V.J.

1943: The Stony Mountaín Fomation of ManÍtoba; Royal Society of t26

CanadarTransactíons, series 3, v. 37, no. 4, p. 59-74. O1iver, W.4., Jr., Merriatr, C.W. and Churkin, M., Jr. 1975: Ordovician, Silurian, and Devonian corals of Alaska; UníÈed States Geological Survey, professional paper 823-8, p.L3-44.

Parks, W.A.

1915: Palaeozoic fossils frou a region southwest of Hudson Bay;

Royal Canadian InsÈiËute, TransactÍons, v. 11, no. I, p. 3-95. Pestana, H.R.

1960: Fossils from the Johnson Spring Formation, Míddle Ordovician,

Independence Quadrangle, CalÍfornía; Journal of Paleontology, v. 34, no. 5, p. 862-873.

Reiman, V.M.

1958: Novya r.ogozy iz verchnyordovíkskik i Llandoveriyskik

otlochenia pribaltiki; Eesti NSV Teaduste Akadeemia, Geoloogia rnstÍtuudi uurimused, Trudy rnsËituta Geologíi, v. 2, p. 33-47.

Root, S.

1955: The Paleozoic geology of Èhe canal Flats area, British

colunbia; unpublished M.sc. thesis, universiÈy of Manitoba, I32 p. Ross, R.J., Jr.

1957: Ordovician fossí1s fron v¡ells in l^Iilliston Basin, easÈern

Monrana; united states Geological survey, BulleÈin 1021-M, p. 439-510. Severson, J.L.

1950: Devonian stratígraphy, area, AlberÈa, canada; Amerícan AssocíaÈion of PeÈroleum Geologists, Bulletin, 127

v.34, no.9, p. Ig26-1849.

SÈasek, C.R.

1958: A new species of Allogaussia (Anphipoda, Lysíanassidae)

found living wiËhin the gastrovascular cavity of the sea-anenome Anthopleura elegantissima; Journal of the

I,Jashington Academy of Sciences, v. 4g, no. 4, p. 119_126. Stearn, C.W. 19562 stratigraphy and palaeontology of the rnterlake Group and Stoner+all Formation of southern Manitoba; Geological Survey of Canada, Memoír 281, 162 p. Sweet, l,l . C.

L979: Late Ordovician conodonts and biosÈratigraphy of the western

Mídcontinent Province; BrÍgham young university¡ Geology Studies, v. 26r ûo. 3, p. 45-95.

Teichert, C.

1937: ordovícian and silurian faunas from arctic canada; Report

of the Fifth Thule Expedition, Ig2I_1924, v. l, no. 5, 169 p.

Troedsson, G.

79282 on the Middle and upper ordovícian faunas of northern

Greenland, Part rr; Meddelelser oru Grfnland, v. 72 (Fórste Afdeling, pÈ. t), I97 p. Twenhof el , W.H. 1928: Geology of Anticostí Island; Geological Survey of Canada, Memoír 154, 418 p. Verrill, A.E.

1865: classífication of polyps (Extract condensed from a synopsís of the polypi of the North pacific Exploring ExpedÍtíon,

under Captains Iùinggold and Rodgers, U.S.N.); Essex

Ins tftute, proceedíngs rv. 4, p. 145-t4g . r28

I{alcott, C.D.

7923: Nomenclature of some post Cambrian and Cambrian Cordilleran

formations (2); Snithsonían Miscellaneous Collections, v. 67, no. I, p. 457-476.

19242 Geological fornations of Beaverfoot-Brisco-Stanford Range, British Colunbía, Canada; Surithsonian Miscellaneous Collections, v. 75, no. 1, p. l-51. 1928: Pre-Devonian Paleozoic formaÈions of the cordilleran provinces of Canada; Snithsonian Miscellaneous Collections, v.75, no.5, p.175-368.

trIedekind, R.

1927: Die Zoantharia Rugosa von Gotland (besonders Nordgotland) : Nebst Bermerkungen zur Biostratigraphíe des Gotlandium;

Sveriges Geologiska Undersökníng, series Ca, v. 19, 94 p. I{hiteaves, J. F.

1895: systematÍ-c lÍst, wiËh references, of the fossils of the Hudson River or cíncinnati formation at stony Mountain, Manítoba; Geological survey of canada,palaeozoic Fossils, v. 3, no.2, p. 1Il-128. hlilson, A.E.

19262 An Upper Ordovicían fauna from the Rocky Mountains, British

colu¡nbia, canada; Department of MÍnes, Museum Bulletin 44, Geological Seríes, no. 46, p. I-34, 100-I15.

I.Iinchel1, N.H. and Schuchert, C.

1895: sponges, grapÈolites, and corals from the Lower silurían of

MínnesotE ín The Geology of Minnesota, v. 3, no. 1, Paleontology; MinnesoËa Geological and NaÈural HÍstory Survey, p.55-95. r)ø ¡"' lã tñ ÞF IE dotsô ot su{{{!{!{ !cÌ\Co!\O\O€LntJr H Þ ÞHlu\oo\(rþoìo\ u OU\Ou(r(t É rd O{ o o Èl z H (t Þ H H X ø lo¡ : NS t, @'H oø 156€ Ntlt E ÉÈl N6N! o :fÞ .À OÉ ñ!ol o ÈlF dË nF 5oa .gng Þ n o o! of'¡lo¡ KOFF

É9.=o¡ FÞO\ÉG) Salvadorea 0aFo.!læ distincta dlstincta (¡ È{ tsioÞrÞ tsstÉ:' 11* Probably i'Þ¡Þ¡ô S. dlstlncta dlstíncta tsÞttsLÊ.ooâ 0aoF :'Ø:'@ Poss lb ly Édñ S. dlstlncta dl-stincta (,)È'lôHÞots IUFLÞFl.lfq Salvadorea oñcÊÉÞ0aEln sP. 2 ÉÈÉo oÌtH!Þ!J O.FÞÞ Blghornia Hlo.Ê-ôÞ, patella ooFl'ó áttPFt Þdo ñcoÁ Probably OtsHÉ B. patella 'ooÉo ñooo Posslbly oFl B, patella oññ cFo nn)aÈlÀ B. sp. cf. lDn{ B. bottei Þ

6Zf 57209 2.1-4.9 n (7-16 fr.)

ND 47 404 173.4-174.7 a (569-573 fr.)

47398 45.4-50.0 n (149-164 fr.)

NC 5062 42.4 n L7 25 (139 fË.)

5063 39.3 n ll (129 fÈ. )

5064 hÈ 25.0-25.2 n

(82-83 fr. )

NF 456t2 61.6-64.6 n (2O2-2r2 ft.)

N4 64584 1. &-3.7 nr (6-12 fÈ.)

N] 56080 155.8-156.1 m (5ll-5r2 fr.)

56079 154.5-154.8 n

(s07-508 fÈ. )

560 78 I33.5-133.8 m

(438-439 fc. )

560 76 32.0-33.2 a t2 (105-109 fÈ.)

5607 5 2L.9-24.4 n (72-80 fr.)

56073 13. 7- 14 sr (4s-46 fr.)

N9 52t7 r 64.3-67.7 n (zLl-222 tE.)

45606 51.8-54.3 n (r70-178 fr.)

8043 23.5 m (77 fE.)

45604 2O.7-2L n (68-69 ft.) x.lo 52183 29.5-35.7 m t7 (97-117 ft.)

Nl1 69837 l8l-189.3 n l3 (s94-621 fÈ. )

69839 32.6-36.9 a 1t (r07-l2r fr.)

69844 Vt 0-32.6 m (0-107 ft.)

N12 45582 91.4-152.4 n

(300-s00 ft. )

52160 100-100.9 ur (328-33r fÈ.)

45580 83.8-85.3 n (27s-280 ft.) 474r4 30.5-91.4 n (r00-300 fr.)

45579 29.6- 33. 5 n (97-llo fr.)

52 158 27.7-31.7 n

(91-r04 fÈ. )

45578 25-28 a (82-92 f.t.)

52L59 24.4-24.7 n (80-81 fr.)

N.I4 58186 24.7-25.0 n (8r-82 fc.)

58187 20.4-23.5 n

(67-77 fE,>

58r88 0-9.4 n l3

(0-3r fE. )

Nl7 47426 4.6-t2,2 a (15-40 fc.)

N3_l 52186 43. 9-44.8 m

(144-r47 f.E.)

52185 22.9-24.7 n

(75JBl fL. )

N40 700 l6 10.7-16.2 n T4 (3s-s3 fÈ.)

700 l5 5.2-8.2 n 10 (17-27 ft.)

42017 5.2-12.2 a (17-40 fr.)

420t8 5.2-12.2 n (r7-40 fr.)

42026 5.2-12.2 n (17-40 fr.)

K12 BT (¡a1us)

R25 1L6.7-128 ¡¡ l2 (383-420 fÈ.)

824 I 10.9- I 16. 7 n

(364-383 fÈ. ) 823 109.2-110.9 n (3s8-364 fr.)

822 106.8-109.2 n

(3s0-358 fr. )

82 I 105.3-106.8 n¡

(345-3s0 fr. )

820 103.3-105.3 n

(339-34s fr. )

B19 103.2-103.3 m

(338-339 fr. )

Bl8 101.2-103.2 n

(332-338 fr. ) o Bt7 100.2-101.2 m (329-332 r.t.)

816 86.2-100.2 m (28T329 f.t.)

Bl5 84.0-86.2 n (276-283 fE.)

B14 82.0-84.0 ¡o (269-276 f.t.)

Bl3 81. 3-82.0 n (267-269 fE.)

BT2 80.3-81.3 n (26T267 tt.) Bll 78.7-80.3 n

(258-263 fË..)

Bl0 75.7-78.7 n (248-2sB fr..)

B9 73.0-75.7 n

(2t+0-248 f.E.)

B8 70.4-73.0 n (231-240 ft.>

B7 57.4-70.4 n 10 (188-231 fr.)

B6 55.4-57.4 n (182-188 fc.)

B5 47.4-55.4 n 1I 3l (ls6-182 fr.)

B4 47 .T47.4 n (l5s-156 fr.)

B3 46.6-47.3 ø (153-155 fr.)

B2 38. l-46.6 n 1l (r2s-rs3 fÈ.)

BI 35. l-38. I n 10 (1r5-l2s fr.) BR (rubble) noÈ 1n situ

Al8 32. l-35.1 m 10 20 (los-ll5 fE.)

A15/ 16 r.J 27.4-30.L n (90-los fr.)

Al4li5 I{ 25.1-27.4 n t2 35 (82-90 fr. )

69 l9 52 45 13 t4 8 t6t 4r7 38:l 0.5% 28"Á TZ 24.51t 8'/"

38.62 0.47" 272 o.8z 262 7 .2'L a - GSC localfty nuurbers except at locåEion Kl2. t : W = Whlskey Tratl Menber. 136

APPENDIX 2. Identificaríon of. 4I7 solitary rugose corals

representing Salvadorea, Bighornia, Deiracorallíum and

Grer¿ingkia, from the Beaverfoot Formation, southern Rocky Mountains, British Columbia and Alberta

Loc- Specimen

ation Interval number Identification

MP 7 56r wi- 1- 1 D. prolongatum

GSC 673la S. distíncta dístincta

GSC 6731 B. paLella

7 s63 itlI-2- 1 G. haysii haysii or S. distincta distincta wI-2-2 S. distincta distincta

I^I 1- 2- 3 S. distincta dístincta Íit-2-4 S. distincta distincta

GSC 6729 G. haysii haysií

GSC 6729a S. distincta distincta

csc 6729b D. prolongatum i,II^f 7933 I,I7- 1- I possibly S. distincta dis tinc ta 7935 GSC 6732 å. patella I"fSP 7969 I^/2- 1- I S. distincta dis tinc ta

F 7 793 or cSC 6730 S. distincta dis tincta

7 851

R21li G. haysii haysii

R2 I tii B. patella

R211iv S. dis tincta dis tinc La R21lv !.. dis tinc ta dis tincËa r37

R2 1lvi Ë. patella

NA 56t07 NA- 1- 1 probably S. distincta dis tincta

NA- i-2 unidentifiable

NA- 1-3 G. haysii haysii

NA- 1-4 unidentifiable

NA- 1-5 Salvadoreq sp. 2

NA- 1-6 unídentifiable

NA- 1- 7 S. distincta distincta

NA- 1- 8 B. patella

NC 47 4r0 NC-2- I unidentifiab le

NC-2-2 probably S. distíncta distincta

57209 NC- 1- 1 S. distincta distincta

NC- 1-2 D. prolongatum

NC- 1-3 possibly Deiracoralliu¡u

NC- 1- 4 S. distincta distincta

NC- 1- 5 S. dÍstincta dístincta

ND 47404 ND-2- 1 probably Salvadorea

ND-2-2 unidenËifíable

ND-2-4 unidenËifiable

ND-2-5 unidenËí fiab 1e

ND-2-6 unidentifíable

ND-2-8 unidentifiab le

ND-2-9 S. distincta dístincta

47 398 ND- 1- 1a possibly G. haysii haysÍi

Np- 1- Ib unidentifiable

NG 5062 NC-3- 1 possibly G. haysii haysii

NC-3-2 unidentifiable r38

NG- 3- 3 probably Bighornia NC-3-4 unidentifíab1e

NG-3-5 unidentifiable

NC-3-6 unídentifiab le

NC- 3- 7 B. patella

NG- 3- B B. patella NC-3-9 unidenËifíab1e

NC- 3- 10 unÍdentífiable NC-3-11 unidenti fiab le

NG-3- 12 B. patella

NC- 3- I3 unidentifÍable

NC- 3- 14 possibly B. parella

I'IG- 3- 15 unidentifiab 1e

NG- 3- 16 unidentifiable

NG- 3- 17 unídentifiable

NC-3- 18 probably B. patella

NG- 3- 19 unidentífiable NG-3-20 unidenÈÍfÍable

NC- 3-2 1 unídentifiable NCr3-22 B. patella

NG- 3-2 3 unidentifíable

NG-3-24 unident ifiab 1e

NG- 3-25 uni den tifiab le

50 63 NG-2- 1a S. distincta distincta NG-2- ib unidenti fíab1e NC-2-2 S. distincta distincta NC-2-3 B. patella 139

NCf2-4 unidentifiable

NG-2-5a possibly B. patella

NG-2-5b unidentifiable

NC,- 2- 7 unidentifiable

NC-2-8 unidentifiable

NG-2-9 unidentífíab1e

NG-2- 10 unidentifiable

5064I^J NC- 1- 1 probably B. patella

NC- 1-2 probably B. patella

NC,- 1- 3 B. patella

NG- 1-4 unidentÍfiable

NC- 1-5 probably B. patella

NF 45612 NF- i- I unidentifiable

N4 64584 N4- 1- I D. prolongatum

N4- 1-2 S. distincta distincta

N4- l- 3 G. haysii haysii

N4- 1-4 possíbly G. haysii haysii

N7 56080 N7-6- 1a S. distincta distincta

N7-6- lb uniden tí fiable

N7-6-2 uniden tifiable

56079 N7-5- 1 unidenti fiable

56078 N7-4- 1 unidenÈi fiable N7-4-2 unidentifiable

56076 N7-3-1 unidenti fíab 1e

N 7- 3-2 S. distincta distincta

N7-3-3 unidentifiable

N7-3-¿+ probably S. distincta distincta r40

N7-3-5 unidentifiable N7-3-6 S. disrincta disÈincra N7-3-8 Ë. dístíncta disrincta N7-3-9 probably Salvadorea N7-3-10 G. haysií haysii N7-3-11 unidenrifiable N7-3-12 B. parella N7-3-13 unidenrifiable 56075 N7-2-1 B. parella N7-2-2 B. parella N7-2-3 B. patella

56073 N7- 1- I unidentifiable N7-1-2 unidenrifiable N9 52r7r N9-4-1 possÍbly s. dístincra disrincta 45606 N9 3-1 S. disrincta disrincra N9-3-2 S. disrÍncra disrincra N9-3-3 unÍdenÈifiable N9-3-4 B. patella N9-3-5 unidentifiable 8043 N9-2-1 probably G. haysii haysii 45604 N9-1-1 S. distincra disrincra N9-1-2 unidenrifiable N10 52183 NI0-1-1 possibly G. havsii havsií N10-1-2 B. sp. cf. B. boÈrei Nl0-1-3 B. patella N10-1-4 unidentifíable Nf0-l-5 probably B. parella 141

N10- 1-6 possibly S. distíncta distincta N10-1-7 å. patetla

N10- 1-8 probably B. patella

N 10- 1-9 S. distincta distincta

N10- 1- t0 possibly B. patella

N10- 1- 11 unidentifiable

N 10- 1- 12 unidenri fiable

N10-1-13 unidentifiable

N10- 1- 14 G. haysii haysii or S. distincta distincta

N10- 1- 15 unídentifiable

N10-1-16 unidenti fíable

N10-1-17 B. patella

N11 69837 NIl-3-1 S. distincta disEincta

N11-3-2 unidenti fiable Nr1-3-4 unidenti fíab le N11-3-5 unidentifiable

N11-3-6 unidentifiable

NlI-3-7 possibly S. distincta dis tinc ta N11-3-8 unidentífiable

Nl I-3-9 uní denti fiab le

Ni1-3-10 probably S. distíncta dis tincta r.r11-3-11 possibly S. dÍstincta dis tincta N11-3-12 unidentifiable

N11-3-13 unidentí fiable

N11-3-14 possibly S. distincta dis tinc ta

69839 N11-2- I unidentifíable

N11-2-2 B. sp. cf. B. bottei r42

Nil-2-3 B. patella

N11-2-4 probably !. patella N11-2-5 unidentifiable

N1 I-2-6 B. patella Nl1-2-7 B. patella

N1 1-2-8 possibly B. patella

N11-2-9 B. patella

N1 1-2- 10 unidentifiable N11-2-11 B. patella

69844W N11-1-1a unÍdentifiable N11-l-1b unidentífiable N1l-1-2 unidentífiable

N12 45582 N12-8-1 S. distincta distincta

52L60 N12-7-1 unidentifiable NI2-7-2 S. distincta distincta

455 80 N12-6-1 B. patella

47 414 N12-5-1 unidentifiable

N 12-5-2 G. haysii haysii N12-5-3 unidentifiable

N 12- 5-4 uniden ti fiab 1e

45579 N12-4- 1 B. patella N12-4-2 unidentifiable

52t58 N 12- 3-_1 possibly S. dístincta dístincra N12-3-2 probably G. haysíi haysii

4s57 B N12-2-1 G. haysii haysii

NL2-2-2 unidenti fÍ ab le

N 12-2- 3 G. haysii haysii 143

N12-2-4 unidentifiable N12-2-5 G. haysii haysíi N12-2-6 G. haysíi haysii NL2-2-7 unidentifiable

52r59 N12- 1- I G. haysii haysii NI2-t-2 G. haysii haysii N12-1-3 unidenti fiable

N14 5 8186 N14- 3- 1 unidentifiable

N 14- 3-2 probably S. distíncta disrincra

58187 N 14-2- 1 possibly G. haysii haysii 58188 N14-1-1 G. haysii haysii Ni4- 1-2 probably S. distincra disrincta Ni4-I-3 D. prolongatum N14-1-4 unidentifiable

N 14- 1-5 unidentifiab 1e N14-1-6 D. prolongatum N14-1-7 G. haysii haysii or D. prolongatum N14- 1-8 S. distincta dístincta

N14- 1-9 B. patella

N14- 1- 10 S. dístincta distincta

N14- 1- 11 unídentifiable

N14- 1- 12 probably D. prolongatum N14-1-13 probably B. patella

Nl7 47 426 Nl7-1-1 G. haysii havsii N31 52186 N31-2- i S. distíncta distincta N31-2-2 unidentifiable N31-2-3 G. haysii haysíi or D. prolongatum 14+

N31-2- 4 unidentífiable

N31- 2- 5 S. distincËa distincta N31-2-6 unidentifiable

N31-2- 7 unidenËifiable N31-2-8 unídentifiable

52L85 N31- 1- I unidentifiable

N31- 1-2 B. patella

N40 70016 N40-3-2 unídentífiable

N40- 3- 3 possibly D. prolongatum

N40- 3-4 unidentifiable

N40- 3- 5 unidentifiable

N40- 3- 6 D. prolongatum

N40- 3- 7 D. prolongatum

N40- 3- 8 unidentifíab1e

N40- 3-9 unidentifiable

N40- 3- 10 G. haysii havsíi or D. prolongatum

N40-3- i 1 unidentifiable

N40- 3- 12 G. haysii haysii or D. p rolongatum

N40-3- 13 G. haysii havsii or D. prolongatum

N40- 3- 14 B. patella

N40- 3- 15 unidentifiable

700 i5 N40-2- la unidentifiable N40-2- ib unidentifiable

N40-2- I c unidentifíab1e N40-2-2 S. distincta distincta

N40- 2- 3 unidentifiable N40-2-4 unídentifiable L45

N40-2-5 B. patella

N40-2-6 S. distincta distincta

N40-2-7 unidentifiable

N40-2-8 unidentifiable

420t7 N40- 1A- I possibly G. haysii haysii

42018 N40- 1B- 1 unídentifiable

N40- 1B-2 unidentifiable

N40- 1B- 3 unidentifiable

N40- 18-4 possibly D. prolongatum

N40- 1B- 5 unidentifiable

N40- iB-6 possibly B. patella

42026 N40- 1C- 1 S. distincta distincta

N40- 1C-2 unidentifiable

N40- 1C- 3 unidentifiable

csc 169 17 G. haysii haysii

KI2 Talus Kl2B-T- 1 S. dístincta distincta

825 RL2B-25-T B. patella KIZB-25-2 B. patella KI2B-25-3 unidentifiable KI2B-25-4 S. distincta distincta

KI2B-25-5a probably S. distincta dis tinc ta

K12B-25-5b probably S. dístincta dis tincta KL28-25-5c probably S. distíncta dis tinc ta KI2B-25-6 G. haysii haysii KI2B-25-7 unídentifiable KI2B-25-9 G. haysii haysii

Kl2B-25- 10 B. patella L46

KIZB_25-IT S. distincta distincta

824 KL2B-24_L unidentifiab le RrzB-24-2 B. patella RI2B-24-3 unídentifiable KIZB-24-4 unidentifiable Kl2B-24-5 B. patella KrzB-24-6 B. patella

823 KT2B-23-T S. distincta distincta KI2B-23-2 G. haysíi haysii B2t K128-21-1 probably G. haysii havsii 820 KlzB-20-1 S. distincta distincta

816 K 128- l6- I S. distincta distíncta K12B-16-2 B. patella

K12B- i6-3 uni den ti fiab 1e B12 KIZB-T2-I unídenEifiable

KT?B_T2-2 unidentifíable KI?B-T2-3 unidentifíable

810 K128- 10- I B. patella

B7 K128-7-1 G. havsii havsii or D. prolongatum RI2B-7-2 S. dístincta distincta KI2B-7-3 S. distincta distincta KI2B-7-4 G. haysii haysii KL2B-7-5 unidentífiab le KtzB-7-6 unidentifiable KtzB-7-7 unidenti fiable

K128- 7- 8 G. havsií haysii or D. prolongaturo r47

KL2B-7-9 unidentifiable

K128-7- 10 unidentifiable 86 K12B-6-t G. haysii haysii RI2B-6-2 S. distincta distincta KI2B-6-3 G. haysii haysii KI2B-6-4 S. distincta distincta K12B-6-5 Ë. patella KI2B-6-6 probably G. haysii haysii KI2B-6-7 probably S. distincËa distincta K12B-6-9 unÍdentífíable R72B-6-12 unidentifiable 85 Kl2B-5- 1 unidentifiable KI2B-5-2 S. distincta distincta K12B-5-3 probably G. haysii haysii RI2B-5-4 G. haysii haysii K12B-5-5 S. distincta distincta K12B-5-6 B. patella K128-5-7 unidentifiable KI2B-5-8 B. patella K12B-5-9 D. prolongatun K12B-5-10 B. patella K12B-5-11 probably S. distincta distincta K12B-5-12 B. paLella K12B-5-13 S. distincta distincta K12B-5-14 G. havsíi haysii K12B-5-15 B. patella 148

K128-5- 16 _q.. disËincta distincta Kl2B-5-L7 u¡ridentifiable

K128-5- 18 unidentifíable

K128-5- 19 G. haysii haysíi KT2B-5-2I unídentifiable

KIZB-5-22 unÍdenti fiable

KI2B-5-23a unidenti fi able

KI2B-5-23b unidentifiable

K1 2B- 5- 2 3c unidentifiable

KLZB-5-24 uniden ti fiab 1e

KI2B-5-25 probably S. distincta dis tincta RIZB-5-26 B. patella

KIZB-5-27 unídentifiab 1e Kl2B-5-28 G. haysíi haysii KI2B-5-29 G. haysii haysii

K 128- 5- 30 G. haysii haysii

B3 K12B- 3- 1 unidentifiable Kl2B-3-2 G. havsii haysii

B2 KIZB-2-l probably G. haysii haysíi KIZB-2-2 probably S. distincta distincta Kl2B-2-3 probably S. distincta distincta KlzB-2-4 probably G. haysii haysii KI2B-2-5 probably G. haysii havsii

KLZB-2-6 G. haysii haysii

K128-2- B unidentifiable

K128-2- 10 B. patella 149

KT2B_2-L2 D. prolongatum

KIZB-2-13 uníden tífiab le

KT2B-2_14 probably G. haysii haysii

B1 K 128- 1- 1 S. distincËa distincta Kl2B-I-2 unidentifiable Kl28-t-3 probably S. distincta distincta Kl2B-L-4 G. haysii haysii

K12B- 1-6 unidentífiable

K128- 1-8 unident Ífí ab le K128-1-10 unidentifiable

K128- 1- 11 unÍdentifíab1e K128-1-12 unidentifiable K128-1-13 S. distincta distincta

BR K12B-BR- 1 S. distincta distincta K12B-BR-2 S. distincta distíncta

K 128-BR-4 unidentifiable KI2B-BR-5 probably G. haysii haysii

K12B-BR_6 S. dístincta distíncta

K12B-BR- 7 G. haysii haysii Ai8 K12A-18-1 probably G. haysii haysii

K12A- 1B-2 G. haysii haysii

Ki2A- 1B-3 G. haysii haysii

K12A- 1B-4 S. distincta distincta K12A-18-5 G. haysii haysii

K12A- 18-6 unidentifíable

K 12A- 1B-8 G. haysií haysii 150

K12A- 18-9 G. haysii haysií

K12A- 18- 10 G. haysii haysii

Kl2A_ T8_12 unídentifiable K12A-18-13 G. haysii haysii

K12A- I 8- 14 G. haysii haysíi

K12A- 1 B- 15 G. haysii haysii

Kl2A- 1 8- 16 unidentifiable

KI2A- 18- 1 7 unídentifíab1e

Kl2A- 18- 1B unidentifíab1e K12A-18-19 unidentífiable

K12A- 18-20 unidenÈifiable KI2A-18-21 S. dístincta distincta

K12A- LB-22 G. haysií havsii

A15/ 16!ü KI2A_15 / T6-I S. distincta dÍstincta

KTZA-15 / T6_2 probably G. havsii haysíi

K12A- 15 / L6-3 probably S. distincta distincta

Kt2¡'-rs / 16-4 G. haysii haysii

At4 / rsw KLZA-14/ 15_T D. prolongatum K12A-14/ 15-2 S. distincta distíncta Kr2A-14/ 7s-3 S. distincÈa distíncta Kr2A-14 / 15-4a S. distincta distincta Kr2A-14/ L5-4b G. haysii haysii

K12A- 14 / rs-s probably S. distincta distincta K72A-t4 / 15-6 B. patella Kr2A-14/ t5-7 D. prolongatum

KLZA_14 / I5-B D. prolong¿tum 15i

K12A- 14/ l5-9 unidentifiable KL2Ã-I4/L5-L0 G. haysii haysii KIZA-I4/I5-]1 S. disrincra dísrincra ]KL2A-I4/15-12 G. haysii haysii

K12A- 74/ 15-13 unidentifíable K12A-14/15-14 S. distincta distincËa

K12A- 14/ 15-15 unidentifiable KI2A-L4/T5-L6 G. haysii haysii or D. prolongatum KlzA-14/15-17 probably G. haysii haysii K12A-14/I5-L8 S. dÍsrincta dísríncra KL21'-14/I5-I9 B. patella KI2A-14/L5-20 D. prolongatum KI2A-14/ 15-21 S. distincta disrincrq KIZA-14/ 75-22 S. disËincra disrincra KIZA-I4/ 15-23 S. dísrincra disrincra KI2A-14/15-24 unidentifiable KIZA-I4/15-25 S. distincta disrincra K12A-14/15-26 B. patella Kl2A-14/15-27 S. dísrincÈa disrincra KIZA-14/ 15-28 B. parella Klzlr-74/15-30 unidenÈifiable Kl21'-14/15-3I B. pare114 RI2A-14/15-32 unidentifiable KI2A-14/ 15-33 S. distincra disrincra KI2A-I4/15-34 B. parella KIZA-14/75-35 unidentifiable AppENDIX 3. Biometric data (- = no informatíon, X = not applícable, e = estimate) [= Dl-ameter of transverse section (mm).

B= Counter-cardínal dimension (n'in) .

C- Alar-alar dirnension (mm) .

D_ Average dimension (nun).

B= Height above típ (rnm) .

F- Number of major septa. tt- Epizoans; coloníal coral = CC, bryozoan = B, none visíble = Q. Position; cardinal = C, counter = K, alar = A. Specimen abraded beneath epízoan = _, specimen nonabraded beneath -, epizoan = longitudinal sections = (L) .

H- Borings; Trypanites = T, none visíble = 0. position; as above. I- Abrasion; epítheca present = EP, epitheca absent = EA, stereozone partl-ally or all absent = SA. J = Salvadorea cross-sectíonal shape; triangulate = Tr, circular = Cr. = Length of cardinal septum in salvadorea and Bighornia; long = 1, short = s.

= Blghornia cross-sectional shape; depressed and tríangulate = dt, oval = o, crescentic with concave cardinal side = cs, crescentic with concave counter side = cs-k, rectangular = r.

L¡ N) Specimen

number A H IJKL

Salvadorea .distincta dis tincta

GSC 6731a 13 36 -cr-x wt-2-2 L2 35 -CrsX GSC 6729a L7 .5 37 -CrsX \t2- I- I 11 -cr-x R2 1 liv 1Be EPCTlX R21lv 6 22 -CrlX NA- 1- 7 10 34 -Trsx NC- 1- i 10 32 -Cr-X NC- i-4 T4 35 -CrsX NC- 1-5 7.5 29 -CrsX ND-2-9a 4.5 27 EPCTlX b 6.5 26 EPCTlX

NC,-2- þ 22 47 EPTTsX

NC-2-2 9 30 -X (¡ U) N4- 1-2 1B 411 -cr-x N7-3-2 8.5 24 -Cr1X N7-3-6 22 -CrsX N7- 3- 8a 6 -cr-x b 10. 5 29 -Cr1X c 11 33 -CrlX N7-6- ra 6 -0 0 EACTlX

N9- 3- 1 22 43 B,A 0 -CrsX N9- 3-2 19 43 -CrsX N9- 1- I I2 33 -CrsX N10- 1-9a 3 -Cr1X b 5.5 24 0 -Cr1X Nl1- 3- i 4 1B -Cr1X

Ni2-B- 1 25 45 0 EPCTsX

N12-7-2 28 44 T 'C,K(L) EPCTsX N 14- 1-B 6 23 0 -Cr1X

N 14- 1- 10 10. 5 30 0 -Cr1X

N31-2-5 9 28 0 -CrlX L¡ls. N40-2-2 16 47 -TrsX Kr2A-14/rs-L 19 37 EPCrI

KI2A_T4/15_3 T6 37 -CrlX K12A- t4/ IS-4a L6 40 -cr1x K12A- 14l 15- I la 15 15 36 -Cr1X b20 23 40 -CrlX K12A- 14/ rs-rî 27 51 -CrsX K12A- 14l 15- 18 L6 44 T(L) -CrsX Kr2^-r4/ts-2r 23 40 -CrsX KL2A-L4/rs-22 9 29 -Cr1X KLZA-Lî/ Ls-23 19 44 -CrsX Klz/|-t4/I5-25a 5 22 -Cr1X b12 34 0 -Cr1X c 13 36 B,C 0 -Cr1X KT2A_T|/ T5-27 L6 340 0 EPCTlX Kr2A-14/ rs-33 13 38e 0 Tr2KrA -Cr1X KLZA-I'/16-T 2I 45 T,K (L) -CrsX

(¡Uì Ki2A- 18-4a 27 -Cr1X b 2t 47 EPCTlX K12A-18-21 10 32 -CrlX K12A_BR- 1 T9 45 -CrlX K12A-BR-2 25 -Cr1X K12A-BR_6 16 42 -Cr1X K12B-1-13 27 -Cr1X KLZB-5-2 42 _X K 128- 5-5 11 29 -TrsX K128-5- 13 2It -CrlX K128-5- 16 SACr-X KI2B-6-2 t6 42 EA Cr 1 X K 1 28-6- 4a t9 44 -CrsX b 27 X 48 0 0 -CrsX KL2B-7-2 l0 X X 3I 0 0 -Cr1X KI2B-7-3 22 46 -CrsX K12B- 16- 1a 6 22 -Cr1X b t0 32 -Cr1X ôL¡ I6 39e EPCTlX

d 19 42 EPCTsX KI2B-20-l 42e -CrsX K128-23-1a 10 33 -Cr1X b 19 43 -CrlX

RI2B-25-4 1B 39 0 EATTlX

K 128- 25- 1 1 11 B'A EPCTsX

K12B-T- 1a 22e 45 0 SACTlX b 30 x - 52 B,A-C SACTsX

Salvadorea sp. 2 NA- 1- 5a 3.5 EACr-X

b I 31 EACTlX

c 10. 5 40 EACTlX Bighornia patella

GSC 6731 9 10 9.5 - 24 -Xso GSC 6732 16e 17e 16.5 - 46e -Xsdt

R2 I 1- iia 0 -Xsdt b 44 F,C - X s dt (¡ ._l c 19 22 20.5 44 E,C -Xsdt

R21l-ví 7.5 11 9.25 32 0 EPXsdt

NG-3- 7 I2 14 .5 13.25 32 0 EPXsdt

NG- 3- 8 4 6 5 0 -Xso

NG-3- 12a 2 4 3 19e 0 Xldt

b 2.5 6 4.25 22e 0 -X1dt

c 5.s 10. 5 B 32 0 EPXsdt

d 6 11 8.5 34 c EPXsdt

NG-2- 3 i1 19 15 46 0 -Xsdt

NC- 1- 3 0 -Xsdt N10-1-3 -dr

N10-1-7 7 15 11 0 -Xscs

N10-1-17 5 10. 5 7.75 -Xso

N11-2-3a 4 4.5 4.25 1B 0 EPXldt

b 6.5 10 8.25 30 0 EPXldt

c 7.5 11 9.25 34 0 EPXldt tjl d 10 r4 l2 36 0 EPXsdt æ e 11 15 13 36 EPXsdt

N 1 1-2- 7a 1¡ 4 6.5 5.25 22 0 0 -X1o

b v 7.5 11 9 .25 32 0 0 -Xso

N 1 1-2-9 0 0 - X s dt

N 11-2- 11 0 EAXSo

N12-6- 1 -Xldr

N12-4-1a 4 9 6.5 0 -X1cs

b 6 10 B 0 -X1cs

c 9.5 t2 10. 75 37 -Xsr

d I4e 16e 15e 43 -Xso

N 14- 1-9a 0 0 -Xsdt

b 10 T6 13 0 0 -Xsdt

N40- 2-5 8e 15e 11. 5 33e -Xscs

KIZA-14/ L5-6a 1 4 2.5 1.5 -X1o

b 6 10 B 5 34e -X1o

c 10 13. 5 r1.75 10 3B -X1o

K12A- 14/ 15-t9 11 I4 12.5 4l -Xso ljl K12A- 14 / r5-28a 7.5 10 8.15 34 -X1o 11 13 t2 36 TrCrA -Xso c 13 T4 13.5 36 TrCrA -Xso K72A-14/ 15-3Ia 5 10 7.5 31e 0 -X1o b 10 13 11.5 10 3B 0 -Xso KI2A-14/ Ls-34 12 15 13. 5 37 0 0 -Xso KI2B-2-tO 9 11 10 32 0 0 -Xldt Kt 28-5- i0 T'C -Xsdt K128-5- 12a 2 EPXlcs

b 4.5 11 7.75 38 EPXScS

c 7 13e 10 EPXScS Kl2B-5-26 10 1B L4 -x 1dt K 1 28- 6-5 16 .5 I7 16.75 47 -Xscs

KL2B-16-2a 1 5 31 2le EPXIr

b 5 12 .5 8.75 t+ 40 EPXIr

c 8.5 1B 13.25 46 EPXSo KI2B-24-2 9 l1 10 31 EPXsdt KIZB-24-5a 4 B 6 3e 2B EPXldt o\ b 7 T6 11.5 5e 37 EPXsdt o c 9 18 13. 5 8e 39 0 T'C EPX sdt

Kl2B-25-2 ]¿ 11 18 74 .5 39 0 0 EPX sdt K128-25- 10a X 5.5 11.5 8.5 3B 0 0 EPX I cs-k b B L7 12.5 46 0 0 EPX S CS-K

c L2 2T 16. 5 5C 0 T'A EPX sdr MMH 2995 X 10 13 11 .5 I4 0 0 EA -o PMO A105B5a X 9 L2 10. 5 31 0 0 EA SO PMO 410586a SA

b 5 9e 7 SA 1o PMO A105B7a v B L2 i0 32 0 0 EA 1dr b 11 l3 T2 33 0 0 EA SO PMO A105BBa X 4 4.5 4.25 0 0 SA 1dt b 8 9 8.5 26 0 0 EA So Bighornía wilsonae

UM 215a 1i 13 I2 39 0 0 EA 1o b l2 13.5 12.75 39 0 0 EA SO UM RJE l-271a 9 L2 10. 5 3B 0 T'A EA 1o o\ L1 t4 12. s 4T 0 T'A EA SO UM RJE 1-293a 7 10 8.5 36 0 0 EA - I o/cs

b X 8 I2 i0 39 0 0 EA - s o/cs Bíghornia sp. cf. B. bottei N 10- 1- 2a 5e 20e r2.5 3 - -cs

b X 5e 24e r4.5 4 - SCS

c X 9e 30e 19.s B - SCS

N I 1-2-2a X 5e 19e T2 -cs b 15e 27e 2I-52 scs

c X 23e 30e 26.5 SO

Grewingkia haysíi haysií

GSC 6729 19 54e -XXX R21l-i X T,3A XXX

N4- 1- 3 X 1B t4.5 16,25 - 44 0 0 -XXX

N7-3- 10 X 13 11.5 12.25 0 0 -XXX

N 1 2-5-2a ^ 30 32 31 - 70 C-e,A -XXX b x 45 45 45 Eõ,A T,K,A -XXX c 45 46 45.5 cT,A T'C -XXX o, F.J N 12-2- 1 X 0 EAXXX N12-2-3 29.5 33 3r.25 79e 0 T,2K,5A,5CSAXXX

N12-2-5 29 31 30 66e 0 O-XXX NL2-2-6 21 2T 2T 51 0 T,4K,1C SA X X X N12- 1- 1a l4e 15 14 .5 -0 EAXXX b 24e 26 25 -0 EAXXX N17-1-1 - cc,c-A -XXX csc 16917 25 23 24 66 -XXX

KIZA-I4/I5-4bà 7 6e 6.5 e 24e 0 -XXX

b 15 I2 13.5 40 0 -XXX RI2A-14/ L5-rc 37 27 32 7l T'K -XXX

KTZA-T4/ L5-T2 29 25 27 64 T'A EAXXX

KL2A_ T5 / 16 - 4 2L 32 24 28 67 0 T,2K,A -xxx K12A- 18-2 Ã 0 T,2C,A SAXXX

K12A- 1B-3a 22 T7 19 .5 59 T'K'54 SAXXX

b 33 30 31.5 80 o SAXXX K12A- 18-5 44 45 44. s 99 0 SAXXX K12A- 1B-9 38 39 38. 5 7le 0 -XXX (,c\ K12A- 1B- 14a 20 L6 18 50 T,24 SAXXX b 30 25 27 .5 63 0 T,A SAXXX

K 12A- 1B- 15 29 26 27 -XXX

KI2A-18-22a 3B 3B 38 79e 0 EAXXX b 65.5 62 .5 64 -XXX K12A-BR- 7 - CC,K; B,K -XXX K128- 1-4 31 30 31.5 720 -XXX Kl2B-2-6 29 35 32 -XXX

KI2B-3-2a 7 0 T'A -XXX

b L2 i1.5 0 _XXX

c 19 15 17 .5 -XXX K I 28- 5-4 26 2T 23.5 51 0 T, 2K,2^ -XXX

K128-5- 14 2B 35 31.5 6300 EAXXX

K128-5-19 40 40 40 98 CC,K O XXX

KIZB-5-29 X 25 25 25 5400 XXX

K128-5-30 - cc,K-A 0 XXX Kl 2B- 6- 3a 1i I2 11.5 34 0 T,c SAXXX

b 20 20 20 l+7 SAXXX c\ c 32 32 32 75 T,2K SAXXX .Ê-. KlzB-7-4 15 13 14 T, C,A SA XXX KI2B-23-2 x l2 I4 13 T,A,K XXX

KI2B-25-9 X 34 32e 33e - dõ,c T,2C EA XXX Deiracorallíum prolongatum

I^I1- l- I X T7 10 13.5 L4 XXX GSC 6729b X 37 27 32 XXX NC- 1-2 X 7.5 3.5 5.5 XXX N4- 1- 1 25 1B 21.5 60 XXX Ni4-1-3 31 2I 26 51e 0 XXX v N 14- 1-6 1i. 5 B 9.5 33 0 T'A XXX

N40- 3- 6 X 8.5 5 6.75 23 o XXX

N40- 7 v 3- T2 7.5 9 .75 35e 0 XXX

K12A- 14/ 15-Ia X 72 7.5 9.75 0 T'A XXX

b X I6 11 13. 5 4B 0 XXX

c 23 L6 i9 .5 56 0 Tr3K, C XXX

d 0 Tr2K, C XXX KI2A-14 / I5-7 a t6 11.5 13.7 5 39 0 0 XXX c\ Ln b 21 74 17 .5 49 0 T'A XXX K12A- 14l 15- 8a 25 I4 19.5 51 EPXXX

b 31 19 25 54 EPXXX

KI2A-14/ I5-20a 7 31 SAXXX

b 15 11 13 44 B,K T,KSAXXX

c 2T t7 t9 53 T,ZK,2A,C SA X X X

d 23 1B 20.5 56 SAXXX

KT2B-2-12 T2 i0. 5 32 -XXX

K 128- 5-9 5 6.5 28 EPXXX GSC 10848a 15 13 t4 42 -XXX b 23 T9 2l 58 -XXX c 29 24 26.5 6o -XXX d 33e 26e 29e -XXX GSC 10850a T7 T4 15. 5 4T -XXX b 33 23e 28 -XXX c 39 3le 35 -XXX

o\ o\ 167

APPENDIX 4. Additional data on Salvadorea distincta distincta

1. Specimens wÍth triangulate cross sections in late stage;

NG-2- 1a 3s.P

N40-2-2 5 .2- 12.2

Kt2B-25-4 116.7-I2&+

) Specimens r,rith greatly dilated septa in late stage, from

locality K12;

K72^-t4 / I5-2 25.r- 27.4

K12A- 74 / 15-3 25.r- 27.4

K72A-r4/ i5-33 25.L- 27 .4

K128-5- 16 47 .4- 55.4

Rr2B-6-2 s5.4- 57 . 4

K12B-23-1 IO9 .2- 1 10. 9

3. widrh of Minor Axial Specimen Radius stereozone septa struc-

numbers Heights (m) (um) (run) (*t)Þ tureg

NG-2- 1a 39. 3 11 3 Q7Ð! 1

N7- 3- 6 32.0- 33.2 11 l+ (367.) confined

N9-3- I s1.8- 54.3 11 (r87") I

N12-8- i 97.4-752.4 12 .5 (24"/") 0.5

NI2-7- 2 25 -28 t4 4 (297.) 2 10

N40-2-2 5.2- 72.2 I I.5 (I9%) confined 4

Kr2A-14/ 15-l1 25.r- 27 .4 10 2 (20%) confined 5

K12A- 14/ rs-14 25.r- 27.4 13.5 4 (30"/.) I 9 168

KI2A-14/75-L8 25.I- 27.4 I I (I3%) confined 4

K72A-I4 / L5-23 25 .1- 27 .4 9 .5 2 (2I7") conf ined A

Kl2A- I 8-4 32.8- 3s.1 10.5 2 (r9%) r 4

K12A-BR-1 not in situ 9.5 I (L11.Á) confined 3

KIZB-7-3 57.4- 70.4 li 3.5 (32%) confined 7

K128-16-1 86 .2- 100. 2 9 . 5 3 (32"/.) conf ined 3

Kr2B-2s-4 Lt7 _128+ 9 3 (33"A) r 4

K12B-T- 1 not ín situ 15 2 (I3%) I 12

4a. Specimens with sírnple axial structure in late sËage;

NG-2-1a 39.3 rn

N 9-3- I 51.8- 54.3 m

N12-8-1 91.4-152.4 m

N40-2-2 5.2- I2.2 m

K12A-BR- 1 not in siËu

KIZB-25-4 117 -728 m 4b. Speci.mens wíth cornplex axial structure ín late stage;

N72-7-2 100 -101 K12A-14/I5-].1 25.I- 27.4

Kr2^-I4/75-14 25.I- 27.4

K12A- 14 / r5-I8 25. I- 27 .4

KT2B_23-T 109.2-11i

gH.ight", in metres, measured above top of Mount l^Iilson Quartzite. h :Length of minor septa (portion that extends beyond stereozone). 9Di"r"L"r of axial structure. 4¡iaan expressed. as percentage of coral radius. 169

APPENDIX 5. Length of cardinal septum

Specimen Cardinal Cardinal a number sepEum long- septum shortL

Bíghornia pate1la, Beaverfoot Formation

NG- 3- 8

NG- 3- 12

N11-2-3

N i4- 1-9

N40-2-5

K12A- t4 / t5-6

KrzA-14/ t5-28

K12B-2- 10

KIZB_5-L2

K72B-24-2

KIZB-24-5

KrzB-25-2

K128-25- 10

B. patella, Stony Mountain Formation csc 6774r X

GSC 67742 X

GSC 67745

GSC 67746 X

GSC 67747 X u,..1 1-549 X uþ| I-27 3 X 170

B. pate11a, Ellesmere Island

PMO A 10585 X

PMO A 10587 x

PMO A 10588 X

B. patella, Bíghorn Dolomite

USNM 127576 X

USI'IM 127577 X

B. patella, Vauréal Formation

YPr4 2877Ê x

Bíghorni¿ wilsonae, Red River Formation

GSC 60752 v

csc 60753 ltv

csc 60754 It

v csc 60755 l\

uM 215 x

UM RJE 1-271 J(

IJM RJE 1-293 x

B. wilsonae, Second Value Dolomite

USNM 38i185 v

USNM 381203 v

USì{M 381204 ]¡

USNM 381207 X

Deiracorallíum prolongatum, Beaverfoot Formatíon

N40-3-6 X

N40- 3- 7

Kl2A- 14 / rs-7 T7I

]Kr2A-14/ rs-g X

K12A- 14/ 15-20 x

KIZB-5-9 x

D. angulatum angulatum, Vaur6al Formatíon

GSC 66592 X csc 66594 X

D. angulatum gunni, Stony Mountain Formation

GSC 67727 X

csc 67729 v

csc 67730 X

esc 67731 x

csc 67754 x uM 1-40

IIM 1-T rrM 1-263 X

3 S.dir.rrt fills ínterseptal spaces.

Þ u.1or level ar whích sedi-ment fills interseptal spaces. g Peabody Museum, Yale Universíty, New Haven, Connectícut.