Decoherence: an Explanation of Quantum Measurement

Total Page:16

File Type:pdf, Size:1020Kb

Decoherence: an Explanation of Quantum Measurement Decoherence: An Explanation of Quantum Measurement Jason Gross\ast Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139-4307 (Dated: May 5, 2012) The description of the world given by quantum mechanics is at odds with our classical experience. Most of this conflict resides in the concept of \measurement". After explaining the originsof the controversy, and introducing and explaining some of the relevant mathematics behind density matrices and partial trace, I will introduce decoherence as a way of describing classical measurements from an entirely quantum perspective. I will discuss basis ambiguity and the problem of information flow in a system + observer model, and explain how introducing the environment removes this ambiguity via environmentally-induced superselection. I will use a controlled not gate as a toy model of measurement; including a one-bit environment will provide an example of how interaction can pick out a preferred basis, and included an N-bit environment will give a toy model of decoherence. I. INTRODUCTION function over each independent observable. Moreover, the law of superposition, which states that any linear For any physicist who learns classical mechanics before combination of valid quantum states is also valid, gives quantum mechanics, the theory of quantum mechanics at rise to states that do not seem to correspond to any clas- first appears to be a strange and counter-intuitive wayto sical system anyone has experienced. The most famous describe the world. The correspondence between classical example of such a state is that of Schr\"odinger'shypo- experience and quantum theory is not obvious, and has thetical cat, which is in a superposition of being alive been at the core of debates about the interpretation of and being dead. quantum mechanics since its inception. As Zurek notes in [1], one might na\"{\i}vely assume that In this paper, I will begin by describing the measure- the law of superposition should always be taken literally, ment and interpretation problems of quantum mechanics. that fundamentally, reality consists of quantum wave- I will talk about interference, one of the essential charac- functions. From this point of view, there is no a priori teristics of quantum systems. After describing a criterion reason to expect systems to have the well-defined local- for determining how close to classical a quantum system ized behavior that we observe (such as definite position is, I will introduce decoherence, the thermodynamically and momenta). Einstein noted in a 1954 letter to Born irreversible transfer of information from a system to the that such localization is incompatible with quantum me- environment; it provides a description of how to recover chanics, because time evolution tends to smear localized the illusion of classical mechanics from quantum mechan- states. [1, 3] Additionally, such superpositions often in- ics. I will present a toy model of decoherence|a one-bit volve interference effects, where probabilities do not add system with a one-bit measuring device, coupled to an N- classically. bit environment|and calculate decoherence time. I will close with remarks about how close decoherence gets us to solving the interpretation and measurement problems, B. The Role of The Environment and what's left to be explained. Most systems in the world are open in the thermody- namic sense; they interact with the environment, which A. The Problem: Classicality can be modeled as a \bath" with which a system can exchange information and energy. Decoherence is a de- The so-called \measurement problem" is the problem scription of the thermodynamically irreversible exchange of determining the correspondence between quantum me- of information with the environment. If we are largely chanical descriptions of a system and our classical expe- incapable of measuring the environment, then decoher- rience with measurements. One of the essential problems ence quickly renders most quantum systems indistin- in finding such a correspondence is that there are far guishable from classical ensembles of their possible (clas- more permissible quantum mechanical states of a system sical) states. We will see how quickly this happens by than there are classical states. Classically, to specify the developing a toy model for decoherence and calculating state of a system, you give the values of some small set the decoherence time in section VI C. of numbers, such as position, velocity, mass, charge, etc. The environment is constantly interacting with most Quantum mechanically, you must pick out an element systems, especially large ones, and most measuring de- of a vast Hilbert space, i.e., you must specify a complex vices are rather large. The strength of that interaction usually dominates the strength of the interaction between the system being measured and the device being used to measure it. This results in what is called environmentally \ast [email protected] induced super-selection, or einselection for short. [1] The Decoherence: An Explanation of Quantum Measurement 2 interaction between the observer and the environment j ti at time t; and tensor product j i1 \otimes j\phi i2 to denote picks out a preferred basis of states that are not (sig- the entangled state of \object 1 in a state and object nificantly) perturbed by further interactions; these are 2 in a state \phi ". Occasionally, the tensor product sym- the pointer states that remain correlated with the sys- bol will be dropped and j i1j\phi i2 will be used to save tem despite further interactions with the environment. space. Quantum systems are denoted by script letters Other states don't make for good measuring devices; it (e.g., S), and sets of states by subscripted Latin letters would be terribly inconvenient if your measurement re- in curly braces (e.g., fjsiig). Unless otherwise specified, sults were scrambled every time a bit of light shined on the states in these sets are assumed to be orthonormal. them, or every time a bit of air passed by. We will see effect this more formally in section IV B and section VIB. Though it is beyond the scope of this paper, Zurek IV. THE HALLMARK OF THE QUANTUM: develops a complementary description of this process in INTERFERENCE AND RELATIVE PHASES [1, 4], which he calls quantum Darwinism, in which the classically observable, einselected states are the ones that The primary difference between quantum mechanical are best at propagating information about themselves states and classical states is the quantum mechanical law through the environment. Very roughly, the idea is that of superposition. It states that if j 1i and j 2i are valid we usually measure a system by interacting with a small states, then so is (up to normalization) \alpha j 1i + \beta j 2i for subset of the environment (e.g., by measuring some small arbitrary complex \alpha and \beta . This is most easily seen in subset of all the photons that bounce off the system in relative phases between terms and in interference exper- question). So the relative frequencies of states that we iments. [5] observe are the relative ``fitnesses"" of those states inen- coding their information in the environment. This de- scription has the benefit that it does not necessarily re- A. Interference Terms quire us to specify the measuring device as fundamental; the intrinsic characteristics of a system should not de- Classically, if there is a system S which has possible pend on how we measure that system. states i, we can suppose that we have an ensemble of such systems, in which the probability of one such system being in state i is P ( i). If we make a measurement of II. ENVIRONMENT, SYSTEM, OBSERVERS a physical observable \phi which can take on values \phij , then the probability of measuring it to be \phij is the sum of the The formalism of decoherence relies on partitioning the products of conditional probabilities: universe into three disjoint, interacting systems: the en- X vironment, which will generally be denoted E, the system PC(\phij ) = P (\phij j i)P ( i): (1) we are studying, which will generally be denoted S or A, i and the observer, or the measuring device, which will of- ten be denoted O. The environment and the system are Quantum mechanically, we may suppose that there is continuously interacting, and this forms the basis of de- a system S which has possible states spanned by an or- coherence. The measurement device interacts with the thonormal basis of (classically) observable states fj iig. system for some short period of time, after which it is Consider an ensemble of identically prepared systems, considered to have measured the system. We assume each in state that the observers are largely incapable of measuring the X j i \equiv \alpha j i: (2) environment. As we will see in section IV B and in our i i toy model in section VI C, after a short time, parts of the i wave-function that project on to orthogonal elements of If we measure the observable with eigenvectors j\phij i, then the Hilbert space E have little effect on each other; that the probability of measuring a system to be in a state j\phij i is, there is very little interference between different states is of the environment. Thus, from the point of view of the 2 observer, the outcome of any measurement will be equiv- PQM(\phij ) \equiv jh\phij j ij = h\phij j ih j\phij i alent to the ensemble average of that measurement over X 2 X \ast the states of the environment. This will be made more = j\alphai h\phij j iij + \alphai \alphak h\phij j iih kj\phij i: i i;k rigorous in section IV B. i6=k (3) III.
Recommended publications
  • Symmetry Conditions on Dirac Observables
    Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 2, 671–676 Symmetry Conditions on Dirac Observables Heinz Otto CORDES Department of Mathematics, University of California, Berkeley, CA 94720 USA E-mail: [email protected] Using our Dirac invariant algebra we attempt a mathematically and philosophically clean theory of Dirac observables, within the environment of the 4 books [10,9,11,4]. All classical objections to one-particle Dirac theory seem removed, while also some principal objections to von Neumann’s observable theory may be cured. Heisenberg’s uncertainty principle appears improved. There is a clean and mathematically precise pseudodifferential Foldy–Wouthuysen transform, not only for the supersymmeytric case, but also for general (C∞-) potentials. 1 Introduction The free Dirac Hamiltonian H0 = αD+β is a self-adjoint square root of 1−∆ , with the Laplace HS − 1 operator ∆. The free Schr¨odinger√ Hamiltonian 0 =1 2 ∆ (where “1” is the “rest energy” 2 1 mc ) seems related to H0 like 1+x its approximation 1+ 2 x – second partial sum of its Taylor expansion. From that aspect the early discoverers of Quantum Mechanics were lucky that the energies of the bound states of hydrogen (a few eV) are small, compared to the mass energy of an electron (approx. 500 000 eV), because this should make “Schr¨odinger” a good approximation of “Dirac”. But what about the continuous spectrum of both operators – governing scattering theory. Note that today big machines scatter with energies of about 10,000 – compared to the above 1 = mc2. So, from that aspect the precise scattering theory of both Hamiltonians (with potentials added) should give completely different results, and one may have to put ones trust into one of them, because at most one of them can be applicable.
    [Show full text]
  • Arxiv:Quant-Ph/0105127V3 19 Jun 2003
    DECOHERENCE, EINSELECTION, AND THE QUANTUM ORIGINS OF THE CLASSICAL Wojciech Hubert Zurek Theory Division, LANL, Mail Stop B288 Los Alamos, New Mexico 87545 Decoherence is caused by the interaction with the en- A. The problem: Hilbert space is big 2 vironment which in effect monitors certain observables 1. Copenhagen Interpretation 2 of the system, destroying coherence between the pointer 2. Many Worlds Interpretation 3 B. Decoherence and einselection 3 states corresponding to their eigenvalues. This leads C. The nature of the resolution and the role of envariance4 to environment-induced superselection or einselection, a quantum process associated with selective loss of infor- D. Existential Interpretation and ‘Quantum Darwinism’4 mation. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite II. QUANTUM MEASUREMENTS 5 of the environment. Einselection enforces classicality by A. Quantum conditional dynamics 5 imposing an effective ban on the vast majority of the 1. Controlled not and a bit-by-bit measurement 6 Hilbert space, eliminating especially the flagrantly non- 2. Measurements and controlled shifts. 7 local “Schr¨odinger cat” states. Classical structure of 3. Amplification 7 B. Information transfer in measurements 9 phase space emerges from the quantum Hilbert space in 1. Action per bit 9 the appropriate macroscopic limit: Combination of einse- C. “Collapse” analogue in a classical measurement 9 lection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselec- III. CHAOS AND LOSS OF CORRESPONDENCE 11 tion replaces quantum entanglement between the appa- A. Loss of the quantum-classical correspondence 11 B.
    [Show full text]
  • Relational Quantum Mechanics and Probability M
    Relational Quantum Mechanics and Probability M. Trassinelli To cite this version: M. Trassinelli. Relational Quantum Mechanics and Probability. Foundations of Physics, Springer Verlag, 2018, 10.1007/s10701-018-0207-7. hal-01723999v3 HAL Id: hal-01723999 https://hal.archives-ouvertes.fr/hal-01723999v3 Submitted on 29 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Noname manuscript No. (will be inserted by the editor) Relational Quantum Mechanics and Probability M. Trassinelli the date of receipt and acceptance should be inserted later Abstract We present a derivation of the third postulate of Relational Quan- tum Mechanics (RQM) from the properties of conditional probabilities. The first two RQM postulates are based on the information that can be extracted from interaction of different systems, and the third postulate defines the prop- erties of the probability function. Here we demonstrate that from a rigorous definition of the conditional probability for the possible outcomes of different measurements, the third postulate is unnecessary and the Born's rule naturally emerges from the first two postulates by applying the Gleason's theorem. We demonstrate in addition that the probability function is uniquely defined for classical and quantum phenomena.
    [Show full text]
  • Identical Particles
    8.06 Spring 2016 Lecture Notes 4. Identical particles Aram Harrow Last updated: May 19, 2016 Contents 1 Fermions and Bosons 1 1.1 Introduction and two-particle systems .......................... 1 1.2 N particles ......................................... 3 1.3 Non-interacting particles .................................. 5 1.4 Non-zero temperature ................................... 7 1.5 Composite particles .................................... 7 1.6 Emergence of distinguishability .............................. 9 2 Degenerate Fermi gas 10 2.1 Electrons in a box ..................................... 10 2.2 White dwarves ....................................... 12 2.3 Electrons in a periodic potential ............................. 16 3 Charged particles in a magnetic field 21 3.1 The Pauli Hamiltonian ................................... 21 3.2 Landau levels ........................................ 23 3.3 The de Haas-van Alphen effect .............................. 24 3.4 Integer Quantum Hall Effect ............................... 27 3.5 Aharonov-Bohm Effect ................................... 33 1 Fermions and Bosons 1.1 Introduction and two-particle systems Previously we have discussed multiple-particle systems using the tensor-product formalism (cf. Section 1.2 of Chapter 3 of these notes). But this applies only to distinguishable particles. In reality, all known particles are indistinguishable. In the coming lectures, we will explore the mathematical and physical consequences of this. First, consider classical many-particle systems. If a single particle has state described by position and momentum (~r; p~), then the state of N distinguishable particles can be written as (~r1; p~1; ~r2; p~2;:::; ~rN ; p~N ). The notation (·; ·;:::; ·) denotes an ordered list, in which different posi­ tions have different meanings; e.g. in general (~r1; p~1; ~r2; p~2)6 = (~r2; p~2; ~r1; p~1). 1 To describe indistinguishable particles, we can use set notation.
    [Show full text]
  • Quantum Theory Cannot Consistently Describe the Use of Itself
    ARTICLE DOI: 10.1038/s41467-018-05739-8 OPEN Quantum theory cannot consistently describe the use of itself Daniela Frauchiger1 & Renato Renner1 Quantum theory provides an extremely accurate description of fundamental processes in physics. It thus seems likely that the theory is applicable beyond the, mostly microscopic, domain in which it has been tested experimentally. Here, we propose a Gedankenexperiment 1234567890():,; to investigate the question whether quantum theory can, in principle, have universal validity. The idea is that, if the answer was yes, it must be possible to employ quantum theory to model complex systems that include agents who are themselves using quantum theory. Analysing the experiment under this presumption, we find that one agent, upon observing a particular measurement outcome, must conclude that another agent has predicted the opposite outcome with certainty. The agents’ conclusions, although all derived within quantum theory, are thus inconsistent. This indicates that quantum theory cannot be extrapolated to complex systems, at least not in a straightforward manner. 1 Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland. Correspondence and requests for materials should be addressed to R.R. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:3711 | DOI: 10.1038/s41467-018-05739-8 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05739-8 “ 1”〉 “ 1”〉 irect experimental tests of quantum theory are mostly Here, | z ¼À2 D and | z ¼þ2 D denote states of D depending restricted to microscopic domains. Nevertheless, quantum on the measurement outcome z shown by the devices within the D “ψ ”〉 “ψ ”〉 theory is commonly regarded as being (almost) uni- lab.
    [Show full text]
  • Appendix: the Interaction Picture
    Appendix: The Interaction Picture The technique of expressing operators and quantum states in the so-called interaction picture is of great importance in treating quantum-mechanical problems in a perturbative fashion. It plays an important role, for example, in the derivation of the Born–Markov master equation for decoherence detailed in Sect. 4.2.2. We shall review the basics of the interaction-picture approach in the following. We begin by considering a Hamiltonian of the form Hˆ = Hˆ0 + V.ˆ (A.1) Here Hˆ0 denotes the part of the Hamiltonian that describes the free (un- perturbed) evolution of a system S, whereas Vˆ is some added external per- turbation. In applications of the interaction-picture formalism, Vˆ is typically assumed to be weak in comparison with Hˆ0, and the idea is then to deter- mine the approximate dynamics of the system given this assumption. In the following, however, we shall proceed with exact calculations only and make no assumption about the relative strengths of the two components Hˆ0 and Vˆ . From standard quantum theory, we know that the expectation value of an operator observable Aˆ(t) is given by the trace rule [see (2.17)], & ' & ' ˆ ˆ Aˆ(t) =Tr Aˆ(t)ˆρ(t) =Tr Aˆ(t)e−iHtρˆ(0)eiHt . (A.2) For reasons that will immediately become obvious, let us rewrite this expres- sion as & ' ˆ ˆ ˆ ˆ ˆ ˆ Aˆ(t) =Tr eiH0tAˆ(t)e−iH0t eiH0te−iHtρˆ(0)eiHte−iH0t . (A.3) ˆ In inserting the time-evolution operators e±iH0t at the beginning and the end of the expression in square brackets, we have made use of the fact that the trace is cyclic under permutations of the arguments, i.e., that Tr AˆBˆCˆ ··· =Tr BˆCˆ ···Aˆ , etc.
    [Show full text]
  • Quantum Violation of Classical Physics in Macroscopic Systems
    Quantum VIOLATION OF CLASSICAL PHYSICS IN MACROSCOPIC SYSTEMS Lucas Clemente Ludwig Maximilian University OF Munich Max Planck INSTITUTE OF Quantum Optics Quantum VIOLATION OF CLASSICAL PHYSICS IN MACROSCOPIC SYSTEMS Lucas Clemente Dissertation AN DER Fakultät für Physik DER Ludwig-Maximilians-Universität München VORGELEGT VON Lucas Clemente AUS München München, IM NoVEMBER 2015 TAG DER mündlichen Prüfung: 26. Januar 2016 Erstgutachter: Prof. J. IGNACIO Cirac, PhD Zweitgutachter: Prof. Dr. Jan VON Delft WEITERE Prüfungskommissionsmitglieder: Prof. Dr. HarALD Weinfurter, Prof. Dr. Armin Scrinzi Reality is that which, when you stop believing in it, doesn’t go away. “ — Philip K. Dick How To Build A Universe That Doesn’t Fall Apart Two Days Later, a speech published in the collection I Hope I Shall Arrive Soon Contents Abstract xi Zusammenfassung xiii List of publications xv Acknowledgments xvii 0 Introduction 1 0.1 History and motivation . 3 0.2 Local realism and Bell’s theorem . 5 0.3 Contents of this thesis . 10 1 Conditions for macrorealism 11 1.1 Macroscopic realism . 13 1.2 Macrorealism per se following from strong non-invasive measurability 15 1.3 The Leggett-Garg inequality . 17 1.4 No-signaling in time . 19 1.5 Necessary and sufficient conditions for macrorealism . 21 1.6 No-signaling in time for quantum measurements . 25 1.6.1 Without time evolution . 26 1.6.2 With time evolution . 27 1.7 Conclusion and outlook . 28 Appendix 31 1.A Proof that NSIT0(1)2 is sufficient for NIC0(1)2 . 31 2 Macroscopic classical dynamics from microscopic quantum behavior 33 2.1 Quantifying violations of classicality .
    [Show full text]
  • Particle Or Wave: There Is No Evidence of Single Photon Delayed Choice
    Particle or wave: there is no evidence of single photon delayed choice. Michael Devereux* Los Alamos National Laboratory (Retired) Abstract Wheeler supposed that the way in which a single photon is measured in the present could determine how it had behaved in the past. He named such retrocausation delayed choice. Over the last forty years many experimentalists have claimed to have observed single-photon delayed choice. Recently, however, researchers have proven that the quantum wavefunction of a single photon assumes the identical mathematical form of the solution to Maxwell’s equations for that photon. This efficacious understanding allows for a trenchant analysis of delayed-choice experiments and denies their retrocausation conclusions. It is now usual for physicists to employ Bohr’s wave-particle complementarity theory to distinguish wave from particle aspects in delayed- choice observations. Nevertheless, single-photon, delayed-choice experiments, provide no evidence that the photon actually acts like a particle, or, instead, like a wave, as a function of a future measurement. And, a recent, careful, Stern-Gerlach analysis has shown that the supposition of concurrent wave and particle characteristics in the Bohm-DeBroglie theory is not tenable. PACS 03.65.Ta, 03.65.Ud 03.67.-a, 42.50.Ar, 42.50.Xa 1. Introduction. Almost forty years ago Wheeler suggested that there exists a type of retrocausation, which he called delayed choice, in certain physical phenomena [1]. Specifically, he said that the past behavior of some quantum systems could be determined by how they are observed in the present. “The past”, he wrote, “has no existence except as it is recorded in the present” [2].
    [Show full text]
  • Two-State Systems
    1 TWO-STATE SYSTEMS Introduction. Relative to some/any discretely indexed orthonormal basis |n) | ∂ | the abstract Schr¨odinger equation H ψ)=i ∂t ψ) can be represented | | | ∂ | (m H n)(n ψ)=i ∂t(m ψ) n ∂ which can be notated Hmnψn = i ∂tψm n H | ∂ | or again ψ = i ∂t ψ We found it to be the fundamental commutation relation [x, p]=i I which forced the matrices/vectors thus encountered to be ∞-dimensional. If we are willing • to live without continuous spectra (therefore without x) • to live without analogs/implications of the fundamental commutator then it becomes possible to contemplate “toy quantum theories” in which all matrices/vectors are finite-dimensional. One loses some physics, it need hardly be said, but surprisingly much of genuine physical interest does survive. And one gains the advantage of sharpened analytical power: “finite-dimensional quantum mechanics” provides a methodological laboratory in which, not infrequently, the essentials of complicated computational procedures can be exposed with closed-form transparency. Finally, the toy theory serves to identify some unanticipated formal links—permitting ideas to flow back and forth— between quantum mechanics and other branches of physics. Here we will carry the technique to the limit: we will look to “2-dimensional quantum mechanics.” The theory preserves the linearity that dominates the full-blown theory, and is of the least-possible size in which it is possible for the effects of non-commutivity to become manifest. 2 Quantum theory of 2-state systems We have seen that quantum mechanics can be portrayed as a theory in which • states are represented by self-adjoint linear operators ρ ; • motion is generated by self-adjoint linear operators H; • measurement devices are represented by self-adjoint linear operators A.
    [Show full text]
  • Einselection Without Pointer States
    Einselection without pointer states Einselection without pointer states - Decoherence under weak interaction Christian Gogolin Universit¨atW¨urzburg 2009-12-16 C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 1 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics Second Law ergodicity equal a priory probabilities Classical Mechanics [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics Second Law ergodicity ? equal a priory probabilities Classical Mechanics ? [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics * Quantum Mechanics X [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 quantum mechanical orbitals discrete energy levels coherent superpositions hopping Einselection without pointer states j Introduction Why do electrons hop between energy eigenstates? C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 3 / 26 discrete energy levels hopping Einselection without pointer states j Introduction Why do electrons hop between energy eigenstates? quantum mechanical orbitals coherent superpositions C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 3 / 26 Einselection without pointer states j Introduction Why do electrons hop between energy eigenstates? quantum mechanical orbitals discrete energy levels coherent superpositions hopping C.
    [Show full text]
  • Chapter 6. Time Evolution in Quantum Mechanics
    6. Time Evolution in Quantum Mechanics 6.1 Time-dependent Schrodinger¨ equation 6.1.1 Solutions to the Schr¨odinger equation 6.1.2 Unitary Evolution 6.2 Evolution of wave-packets 6.3 Evolution of operators and expectation values 6.3.1 Heisenberg Equation 6.3.2 Ehrenfest’s theorem 6.4 Fermi’s Golden Rule Until now we used quantum mechanics to predict properties of atoms and nuclei. Since we were interested mostly in the equilibrium states of nuclei and in their energies, we only needed to look at a time-independent description of quantum-mechanical systems. To describe dynamical processes, such as radiation decays, scattering and nuclear reactions, we need to study how quantum mechanical systems evolve in time. 6.1 Time-dependent Schro¨dinger equation When we first introduced quantum mechanics, we saw that the fourth postulate of QM states that: The evolution of a closed system is unitary (reversible). The evolution is given by the time-dependent Schrodinger¨ equation ∂ ψ iI | ) = ψ ∂t H| ) where is the Hamiltonian of the system (the energy operator) and I is the reduced Planck constant (I = h/H2π with h the Planck constant, allowing conversion from energy to frequency units). We will focus mainly on the Schr¨odinger equation to describe the evolution of a quantum-mechanical system. The statement that the evolution of a closed quantum system is unitary is however more general. It means that the state of a system at a later time t is given by ψ(t) = U(t) ψ(0) , where U(t) is a unitary operator.
    [Show full text]
  • A Model-Theoretic Interpretation of Environmentally-Induced
    A model-theoretic interpretation of environmentally-induced superselection Chris Fields 815 East Palace # 14 Santa Fe, NM 87501 USA fi[email protected] November 28, 2018 Abstract The question of what constitutes a “system” is foundational to quantum mea- surement theory. Environmentally-induced superselection or “einselection” has been proposed as an observer-independent mechanism by which apparently classical sys- tems “emerge” from physical interactions between degrees of freedom described com- pletely quantum-mechanically. It is shown here that einselection can only generate classical systems if the “environment” is assumed a priori to be classical; einselection therefore does not provide an observer-independent mechanism by which classicality can emerge from quantum dynamics. Einselection is then reformulated in terms of positive operator-valued measures (POVMs) acting on a global quantum state. It is shown that this re-formulation enables a natural interpretation of apparently-classical systems as virtual machines that requires no assumptions beyond those of classical arXiv:1202.1019v2 [quant-ph] 13 May 2012 computer science. Keywords: Decoherence, Einselection, POVMs, Emergence, Observer, Quantum-to-classical transition 1 Introduction The concept of environmentally-induced superselection or “einselection” was introduced into quantum mechanics by W. Zurek [1, 2] as a solution to the “preferred-basis problem,” 1 the problem of selecting one from among the arbitrarily many possible sets of basis vectors spanning the Hilbert space of a system of interest. Zurek’s solution was brilliantly simple: it transferred the preferred basis problem from the observer to the environment in which the system of interest is embedded, and then solved the problem relative to the environment.
    [Show full text]