Genome Sequence of Picrophilus Torridus and Its Implications for Life Around Ph 0

Total Page:16

File Type:pdf, Size:1020Kb

Genome Sequence of Picrophilus Torridus and Its Implications for Life Around Ph 0 Genome sequence of Picrophilus torridus and its implications for life around pH 0 O. Fu¨ tterer*, A. Angelov*, H. Liesegang*, G. Gottschalk*, C. Schleper†, B. Schepers‡, C. Dock‡, G. Antranikian‡, and W. Liebl*§ *Institut of Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, D-37075 Goettingen, Germany; †Institut of Microbiology and Genetics, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 D-Darmstadt, Germany; and ‡Technical Microbiology, Technical University Hamburg–Harburg, Kasernenstrasse 12, 21073 D-Hamburg, Germany Edited by Dieter So¨ll, Yale University, New Haven, CT, and approved April 20, 2004 (received for review February 26, 2004) The euryarchaea Picrophilus torridus and Picrophilus oshimae are (4–6). After analysis of a number of archaeal and bacterial ge- able to grow around pH 0 at up to 65°C, thus they represent the nomes, it has been argued that microorganisms that live together most thermoacidophilic organisms known. Several features that swap genes at a higher frequency (7, 8). With the genome sequence may contribute to the thermoacidophilic survival strategy of P. of P. torridus, five complete genomes of thermoacidophilic organ- torridus were deduced from analysis of its 1.55-megabase genome. isms are available, which allows a more complex investigation of the P. torridus has the smallest genome among nonparasitic aerobic evolution of organisms sharing the extreme growth conditions of a microorganisms growing on organic substrates and simulta- unique niche in the light of horizontal gene transfer. neously the highest coding density among thermoacidophiles. An exceptionally high ratio of secondary over ATP-consuming primary Methods transport systems demonstrates that the high proton concentra- Sequencing Strategy. Genomic DNA of P. torridus strain DSM 9790 tion in the surrounding medium is extensively used for transport was extracted and sheared randomly. A shotgun library was con- processes. Certain genes that may be particularly supportive for structed by using fractions with sizes ranging from 2 to 3 kb. All the extreme lifestyle of P. torridus appear to have been internal- generated sequences were assembled into contigs with the PHRAP ized into the genome of the Picrophilus lineage by horizontal gene assembling tool (9) and have been edited with GAP4 of the STADEN transfer from crenarchaea and bacteria. Finally, it is noteworthy software package (10). A total of 25,694 sequences were aligned MICROBIOLOGY that the thermoacidophiles from phylogenetically distant branches leading to a database with a 9.4-fold coverage and a statistical error of the Archaea apparently share an unexpectedly large pool of rate of below 1 in 2,000,000 bp. Gap closure was accomplished by genes. primer walking on plasmids originating from the plasmid library and from PCRs with chromosomal DNA as template. Gene and gene order comparison with already sequenced genomes served icrophilus torridus is a thermoacidophilic euryarchaeon thriving as verification for the assembly of the contigs to the closed optimally at 60°C and pH 0.7. Strains of this species were first P chromosome. isolated from a dry solfataric field in northern Japan. In addition to being moderately thermophilic, the Picrophilaceae are the most ORF Prediction and Annotation. ORFs likely to encode proteins were acidophilic organisms known and are also able to grow at negative predicted by the YACOP software package (11) (www.g2l.bio.uni- pH values. It was reported for P. torridus that even adaptation to goettingen.de͞software), based on the algorithms CRITICA (12), conditions such as those in 1.2 M sulfuric acid is possible (1). ORPHEUS (13), and GLIMMER (14). Automatic and manual anno- Another unusual trait of Picrophilus is a very low intracellular pH tation was accomplished with the ERGO annotation tool (Integrated of 4.6, in contrast to other thermoacidophilic organisms that Genomics), which was refined by searches against PFAM, PROSITE, maintain internal pH values close to neutral (2, 3). The high PRODOM, and COGS databases, in addition to the BLASTP (15) versus specialization of Picrophilus strains for growth in extremely acidic SWISSPROT, NR, and TCDB databases. Putative signal peptides were habitats is evident from their inability to grow at pH values above predicted by using the SIGNALP program (16). 4.0, and makes them model organisms to study thermoacidophilic adaptation. Points of major interest include questions about prop- Homology Prediction and Horizontal Gene Transfer. For gene com- erties and mechanisms that ensure viability under these conditions. parison, homology was specified as 30% amino acid sequence Specific adaptation mechanisms can be expected at the levels of (i) identity. Ortho- and paralogous sequences were counted only once. structure and function of biomolecules and (sub-)cellular struc- The threshold for specifying genes into the categories archaeal, tures, (ii) physiology and metabolic features, and (iii) regulation of bacterial, eukaryotic, or thermoacidophilic was set at a BLAST gene expression. For example, P. torridus cells need a specifically e-value of 1e-05 at the amino acid sequence level. adapted membrane. Indeed, the membrane of P. torridus displays a very low proton permeability, is highly acid stable, and loses its Results integrity when incubated at pH 7 (2). Furthermore, an acid-stable General Features of the P. torridus Genome. The genome of P. cell envelope and acid-resistant extracellular enzymes for the torridus consists of a 1,545,900-bp large single circular chromosome degradation of polymeric or oligomeric carbon sources are re- and contains 1,535 ORFs (Table 1). A total of 92% of the sequence quired. Finally, the organism needs to generate metabolic energy in is coding, which represents the highest coding density in the substantial amounts to maintain the intracellular pH at an accept- genomes of the thermoacidophile group (89%, 87%, 85%, and 85% able value. for Thermoplasma acidophilum, Thermoplasma volcanii, Sulfolobus The phylogenetic position of P. torridus lies within the order of Thermoplasmales, which comprises the thermoacidophilic group of the euryarchaeal branch of the domain Archaea, consisting of the This paper was submitted directly (Track II) to the PNAS office. Thermoplasmaceae, Ferroplasmaceae, and Picrophilaceae (Fig. 1). A Abbreviation: ABC, ATP-binding cassette. second group of thermoacidophiles can be found inside the cren- Data deposition: The sequence reported in this paper has been deposited in the GenBank archaeal branch, the Sulfolobaceae. With only a few exceptions, database (accession no. AE017261). members of both groups are aerobic or microaerophilic, hetero- §To whom correspondence should be addressed. E-mail: [email protected]. trophic organisms that are often found to share the same habitat © 2004 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0401356101 PNAS ͉ June 15, 2004 ͉ vol. 101 ͉ no. 24 ͉ 9091–9096 Downloaded by guest on October 2, 2021 Fig. 1. 16S rRNA phylogenetic tree. Highlighted are the two thermoacidophilic groups of the archaea. Sequences were aligned with the CLUSTALW algorithm. The tree was build by neighbor joining by using the Kimura 2-parameter for distance calculation. solfataricus, and Sulfolobus tokodaii, respectively). For 74% of all Pyrococcus furiosus, meaning that in this case ecological closeness ORFs found in the genome, it was possible to assign a function. Of overrides phylogenetic relatedness. The statement that P. torridus the 397 hypothetical ORFs, 79 are unique to P. torridus, whereas shares nearly the same number of homologs with T. acidophilum 318 showed similarities to hypothetical ORFs of other organisms. and S. solfataricus but significantly fewer homologs with Pyrococcus Interestingly, 174 of the latter ORFs have orthologs only in the furiosus remains true even when lowering the threshold for homol- genomes of other thermoacidophilic organisms, indicating that the ogy prediction from 30% to 25% identity. thermoacidic environment forms an old and genetically distinct The genome sequence data indicate that, in contrast to a previous niche of life (see supporting information, which is published on the report (4), the DNA-dependent RNA polymerase (RNAP) of P. PNAS web site). This is supported by whole genome comparison of the amino acid sequences of the complete genomes of three prominent members of the thermoacidophilic group, P. torridus, T. acidophilum, and the crenarchaeon S. solfataricus, for homology (Fig. 2). P. torridus and T. acidophilum display significant homology in 66% of all genes, and these two euryarchaea share 58% and 62% genes, respectively, with the crenarchaeon S. solfataricus, but only Ϸ35% with the phylogenetically more closely related euryarchaeon Table 1. General features of the P. torridus genome sequence General features Number Size, bp 1,545,900 Coding region, % 91.7 G ϩ C content, % 36 Total number of ORFs 1,535 ORFs with assigned function 983 ORFs without function 553 ORFs without function or similarity 73 ORFs without function, with similarity 480 ORFs with putative signal peptides 121 ORFs involved in transport 170 Stable RNAs rRNAs 1 5S; 1 16S; 1 23S tRNAs 47 Fig. 2. Occurrence of homologous ORFs in P. torridus, T. acidophilum, and S. solfataricus. The size of the circles is proportional to the size of the genomes. 9092 ͉ www.pnas.org͞cgi͞doi͞10.1073͞pnas.0401356101 Fu¨ tterer et al. Downloaded by guest on October 2, 2021 torridus is identical
Recommended publications
  • Microbial Diversity of Non-Flooded High Temperature Petroleum Reservoir in South of Iran
    Archive of SID Biological Journal of Microorganism th 8 Year, Vol. 8, No. 32, Winter 2020 Received: November 18, 2018/ Accepted: May 21, 2019. Page: 15-231- 8 Microbial Diversity of Non-flooded High Temperature Petroleum Reservoir in South of Iran Mohsen Pournia Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran, [email protected] Nima Bahador * Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran, [email protected] Meisam Tabatabaei Biofuel Research Team (BRTeam), Karaj, Iran, [email protected] Reza Azarbayjani Molecular bank, Iranian Biological Resource Center, ACECR, Karaj, Iran, [email protected] Ghassem Hosseni Salekdeh Department of Biology, Agricultural Biotechnology Research Institute, Karaj, Iran, [email protected] Abstract Introduction: Although bacteria and archaea are able to grow and adapted to the petrol reservoirs during several years, there are no results from microbial diversity of oilfields with high temperature in Iran. Hence, the present study tried to identify microbial community in non-water flooding Zeilaei (ZZ) oil reservoir. Materials and methods: In this study, for the first time, non-water flooded high temperature Zeilaei oilfield was analyzed for its microbial community based on next generation sequencing of 16S rRNA genes. Results: The results obtained from this study indicated that the most abundant bacterial community belonged to phylum of Firmicutes (Bacilli ) and Thermotoga, while other phyla (Proteobacteria , Actinobacteria and Synergistetes ) were much less abundant. Bacillus subtilis , B. licheniformis , Petrotoga mobilis , P. miotherma, Fervidobacterium pennivorans , and Thermotoga subterranea were observed with high frequency. In addition, the most abundant archaea were Methanothermobacter thermautotrophicus . Discussion and conclusion: Although there are many reports on the microbial community of oil filed reservoirs, this is the first report of large quantities of Bacillus spp.
    [Show full text]
  • 18Th EANA Conference European Astrobiology Network Association
    18th EANA Conference European Astrobiology Network Association 24-28 September 2018 Freie Universität Berlin, Germany Sponsors: Scientific Organizing Committee (EANA Council): Daniela Billi, Italy Oleg Kotsyurbenko, Russia Alexis Brandeker, Sweden Helmut Lammer, Austria John Brucato, Italy Harry Lehto, Finland Barbara Cavalazzi, Italy Kirsi Lehto, Finland Elias Chatzitheodoridis, Greece Zita Martins, Portugal Charles Cockell, UK Nigel Mason, UK Hervé Cottin, France Ralf Möller, Germany Rosa De la Torre, Spain Christine Moissl-Eichinger, Austria Jean-Pierre De Vera, Germany Lena Noack, Germany René Demets, ESA Karen Olsson-Francis, UK Cristina Dobrota, Romania François Raulin, France Pascale Ehrenfreund, The Netherlands Petra Rettberg, Germany Franco Ferrari, Poland Séverine Robert, Belgium Kai Finster, Denmark Gyorgyi Ronto, Hungary Muriel Gargaud, France Dirk Schulze-Makuch, Germany Beda Hofmann, Switzerland Alan Schwartz, The Netherlands Nils Holm, Sweden Ewa Szuszkiewicz, Poland Jan Jehlicka, Czech Republic Ruth-Sophie Taubner, Austria Jean-Luc Josset, Switzerland Jorge Vago, The Netherlands Kensei Kobayashi, Japan Frances Westall, France Local Organizing Committee: Lena Noack (FU) Lutz Hecht (MfN, FU) Jean-Pierre de Vera (DLR, DAbG) Jacob Heinz (TU) Dirk Schulze-Makuch (TU, DAbG) Dennis Höning (VU Amsterdam) Alessandro Airo (TU) Deborah Maus (TU) Felix Arens (FU) Ralf Möller (DLR) Alexander Balduin Carolin Rabethge (FU) Mickael Baqué (DLR) Heike Rauer (DLR, TU, FU) Doris Breuer
    [Show full text]
  • Sulfur Metabolism Pathways in Sulfobacillus Acidophilus TPY, a Gram-Positive Moderate Thermoacidophile from a Hydrothermal Vent
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 18 November 2016 doi: 10.3389/fmicb.2016.01861 Sulfur Metabolism Pathways in Sulfobacillus acidophilus TPY, A Gram-Positive Moderate Thermoacidophile from a Hydrothermal Vent Wenbin Guo 1, Huijun Zhang 1, 2, Wengen Zhou 1, 2, Yuguang Wang 1, Hongbo Zhou 2 and Xinhua Chen 1, 3* 1 Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China, 2 Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, Changsha, China, 3 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory forMarine Science and Technology, Qingdao, China Sulfobacillus acidophilus TPY, isolated from a hydrothermal vent in the Pacific Ocean, is a moderately thermoacidophilic Gram-positive bacterium that can oxidize ferrous iron or Edited by: sulfur compounds to obtain energy. In this study, comparative transcriptomic analyses of Jake Bailey, University of Minnesota, USA S. acidophilus TPY were performed under different redox conditions. Based on these Reviewed by: results, pathways involved in sulfur metabolism were proposed. Additional evidence M. J. L. Coolen, was obtained by analyzing mRNA abundance of selected genes involved in the sulfur Curtin University, Australia Karen Elizabeth Rossmassler, metabolism of sulfur oxygenase reductase (SOR)-overexpressed S. acidophilus TPY Colorado State University, USA recombinant under different redox conditions. Comparative transcriptomic analyses of *Correspondence: S. acidophilus TPY cultured in the presence of ferrous sulfate (FeSO4) or elemental Xinhua Chen sulfur (S0) were employed to detect differentially transcribed genes and operons involved [email protected] in sulfur metabolism.
    [Show full text]
  • 2I52 Lichtarge Lab 2006
    Pages 1–11 2i52 Evolutionary trace report by report maker February 25, 2010 4.3.3 DSSP 10 4.3.4 HSSP 10 4.3.5 LaTex 10 4.3.6 Muscle 10 4.3.7 Pymol 10 4.4 Note about ET Viewer 10 4.5 Citing this work 10 4.6 About report maker 11 4.7 Attachments 11 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 2i52): Title: Crystal structure of protein pto0218 from picrophilus torridus, pfam duf372 Compound: Mol id: 1; molecule: hypothetical protein; chain: a, b, CONTENTS c, d, e, f; engineered: yes Organism, scientific name: Picrophilus Torridus; 1 Introduction 1 2i52 contains a single unique chain 2i52F (119 residues long) and its homologues 2i52A, 2i52D, 2i52C, 2i52E, and 2i52B. 2 Chain 2i52F 1 2.1 Q6L2J9 overview 1 2.2 Multiple sequence alignment for 2i52F 1 2.3 Residue ranking in 2i52F 1 2.4 Top ranking residues in 2i52F and their position on the structure 1 2 CHAIN 2I52F 2.4.1 Clustering of residues at 25% coverage. 1 2.4.2 Overlap with known functional surfaces at 2.1 Q6L2J9 overview 25% coverage. 2 From SwissProt, id Q6L2J9, 97% identical to 2i52F: Description: Hypothetical protein. 3 Notes on using trace results 9 Organism, scientific name: Picrophilus torridus. 3.1 Coverage 9 Taxonomy: Archaea; Euryarchaeota; Thermoplasmata; Thermoplas- 3.2 Known substitutions 9 matales; Picrophilaceae; Picrophilus. 3.3 Surface 9 3.4 Number of contacts 9 3.5 Annotation 9 3.6 Mutation suggestions 9 2.2 Multiple sequence alignment for 2i52F 4 Appendix 9 For the chain 2i52F, the alignment 2i52F.msf (attached) with 30 4.1 File formats 9 sequences was used.
    [Show full text]
  • Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma Divulgatum
    microorganisms Article Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma divulgatum Rafael Bargiela 1 , Karin Lanthaler 1,2, Colin M. Potter 1,2 , Manuel Ferrer 3 , Alexander F. Yakunin 1,2, Bela Paizs 1,2, Peter N. Golyshin 1,2 and Olga V. Golyshina 1,2,* 1 School of Natural Sciences, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK; [email protected] (R.B.); [email protected] (K.L.); [email protected] (C.M.P.); [email protected] (A.F.Y.); [email protected] (B.P.); [email protected] (P.N.G.) 2 Centre for Environmental Biotechnology, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK 3 Systems Biotechnology Group, Department of Applied Biocatalysis, CSIC—Institute of Catalysis, Marie Curie 2, 28049 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +44-1248-388607; Fax: +44-1248-382569 Received: 27 April 2020; Accepted: 15 May 2020; Published: 19 May 2020 Abstract: The archaeon Cuniculiplasma divulgatum is ubiquitous in acidic environments with low-to-moderate temperatures. However, molecular mechanisms underlying its ability to thrive at lower temperatures remain unexplored. Using mass spectrometry (MS)-based proteomics, we analysed the effect of short-term (3 h) exposure to cold. The C. divulgatum genome encodes 2016 protein-coding genes, from which 819 proteins were identified in the cells grown under optimal conditions. In line with the peptidolytic lifestyle of C. divulgatum, its intracellular proteome revealed the abundance of proteases, ABC transporters and cytochrome C oxidase. From 747 quantifiable polypeptides, the levels of 582 proteins showed no change after the cold shock, whereas 104 proteins were upregulated suggesting that they might be contributing to cold adaptation.
    [Show full text]
  • Extremely Thermophilic Microorganisms As Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals
    REVIEW published: 05 November 2015 doi: 10.3389/fmicb.2015.01209 Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals Benjamin M. Zeldes 1, Matthew W. Keller 2, Andrew J. Loder 1, Christopher T. Straub 1, Michael W. W. Adams 2 and Robert M. Kelly 1* 1 Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA, 2 Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point Edited by: that the use of these microorganisms as metabolic engineering platforms has become Bettina Siebers, University of Duisburg-Essen, possible. While in its early days, complex metabolic pathways have been altered or Germany engineered into recombinant extreme thermophiles, such that the production of fuels and Reviewed by: chemicals at elevated temperatures has become possible. Not only does this expand the Haruyuki Atomi, thermal range for industrial biotechnology, it also potentially provides biodiverse options Kyoto University, Japan Phillip Craig Wright, for specific biotransformations unique to these microorganisms. The list of extreme University of Sheffield, UK thermophiles growing optimally between 70 and 100◦C with genetic toolkits currently *Correspondence: available includes archaea and bacteria, aerobes and anaerobes, coming from genera Robert M.
    [Show full text]
  • Perspectives
    Copyright 1999 by the Genetics Society of America Perspectives Anecdotal, Historical and Critical Commentaries on Genetics Edited by James F. Crow and William F. Dove What Archaea Have to Tell Biologists William B. Whitman,* Felicitas Pfeifer,² Paul Blum³ and Albrecht Klein§ *Department of Microbiology, University of Georgia, Athens Georgia 30602-2605, ²Institut fuer Mikrobiologie und Genetik, Technischen Universitaet, D-64287 Darmstadt Germany, ³School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666 and §Fachbereich Biologie-Genetik, Universitaet Marburg, D-35043 Marburg, Germany E are excited to present the following review and While the study of fascinating microorganisms needs W research articles on archaeal research, and we no special justi®cation, the archaea provide unique op- thank the Genetics Society of America for this opportu- portunities to gain insight into a number of fundamen- nity. In addition, we recognize the contributions of our tal problems in biology. As one of the most ancient colleagues, Charles Daniels (Ohio State University) and lineages of living organisms, the archaea set a boundary Michael Thomm (Universitaet Kiel), who along with for evolutionary diversity and have the potential to offer the authors served as coeditors of papers on archaea in key insights into the early evolution of life, including this volume. the origin of the eukaryotes. Many archaea are also More than two decades after the initial proposal, the extremophiles that ¯ourish at high temperature, low or archaeal hypothesis remains the best explanation for high pH, or high salt and delineate another boundary the unexpected diversity of molecular and biochemical for life, the biochemical and geochemical boundary, properties found in the prokaryotes.
    [Show full text]
  • Insights Into Archaeal Evolution and Symbiosis from the Genomes of a Nanoarchaeon and Its Inferred Crenarchaeal Host from Obsidian Pool, Yellowstone National Park
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 4-22-2013 Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar University of Tennessee - Knoxville, [email protected] Kira S. Makarova National Institutes of Health David E. Graham University of Tennessee - Knoxville, [email protected] Yuri I. Wolf National Institutes of Health Eugene V. Koonin National Institutes of Health See next page for additional authors Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Part of the Microbiology Commons Recommended Citation Biology Direct 2013, 8:9 doi:10.1186/1745-6150-8-9 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Authors Mircea Podar, Kira S. Makarova, David E. Graham, Yuri I. Wolf, Eugene V. Koonin, and Anna-Louise Reysenbach This article is available at TRACE: Tennessee Research and Creative Exchange: https://trace.tennessee.edu/ utk_micrpubs/44 Podar et al. Biology Direct 2013, 8:9 http://www.biology-direct.com/content/8/1/9 RESEARCH Open Access Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar1,2*, Kira S Makarova3, David E Graham1,2, Yuri I Wolf3, Eugene V Koonin3 and Anna-Louise Reysenbach4 Abstract Background: A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes.
    [Show full text]
  • Orthologs of the Small RPB8 Subunit of the Eukaryotic RNA Polymerases
    Biology Direct BioMed Central Discovery notes Open Access Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and "Korarchaeota" Eugene V Koonin*1, Kira S Makarova1 and James G Elkins2 Address: 1National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA and 2Microbial Ecology and Physiology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Email: Eugene V Koonin* - [email protected]; Kira S Makarova - [email protected]; James G Elkins - [email protected] * Corresponding author Published: 14 December 2007 Received: 13 December 2007 Accepted: 14 December 2007 Biology Direct 2007, 2:38 doi:10.1186/1745-6150-2-38 This article is available from: http://www.biology-direct.com/content/2/1/38 © 2007 Koonin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract : Although most of the key components of the transcription apparatus, and in particular, RNA polymerase (RNAP) subunits, are conserved between archaea and eukaryotes, no archaeal homologs of the small RPB8 subunit of eukaryotic RNAP have been detected. We report that orthologs of RPB8 are encoded in all sequenced genomes of hyperthermophilic Crenarchaeota and a recently sequenced "korarchaeal" genome, but not in Euryarchaeota or the mesophilic crenarchaeon Cenarchaeum symbiosum. These findings suggest that all 12 core subunits of eukaryotic RNAPs were already present in the last common ancestor of the extant archaea.
    [Show full text]
  • Picrophilus Oshimae and Picrophilus Tomdus Fam. Nov., Gen. Nov., Sp. Nov
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1996, p. 814-816 Vol. 46, No. 3 0020-77 13/96/$04.00+0 Copyright 0 1996, International Union of Microbiological Societies Picrophilus oshimae and Picrophilus tomdus fam. nov., gen. nov., sp. nov., Two Species of Hyperacidophilic, Thermophilic, Heterotrophic, Aerobic Archaea CHRISTA SCHLEPER, GABRIELA PUHLER, HANS- PETER KLENK, AND WOLFRAM ZILLIG* Max Plank Institut fur Biochemie, 0-82152 Martinsried, Germany We describe two species of hyperacidophilic, thermophilic, heterotrophic, aerobic archaea that were isolated from solfataric hydrothermal areas in Hokkaido, Japan. These organisms, Picrophilus oshimae and Picrophilus torridus, represent a novel genus and a novel family, the Picrophilaceae, in the kingdom Euryarchaeota and the order Thermoplasmales. Both of these bacteria are more acidophilic than the genus Thermoplasma since they are able to grow at about pH 0. The moderately thermophilic, hyperacidophilic, aerobic ar- which comprises acid-loving (i.e., hyperacidophilic) organisms. chaea (archaebacteria) (7) Picrophilus oshimae and Picrophilus Separation of these taxa is justified by their phylogenetic dis- rorridus, which have been described previously (4, 5), were tance, (9.5% difference in the 16s rRNA sequences of mem- isolated from moderately hot hydrothermal areas in solfataric bers of the Picrophilaceae and T. acidophilum), by the lack of fields in Hokkaido, Japan. One of the sources of isolation was immunochemical cross-reactions in Ouchterlony immunodif- a solfataric spring which had a temperature of 53°C and a pH fusion assays between the RNA polymerases of P. oshimae and of 2.2, and the other was a rather dry hot soil which had a pH T. acidophilum, which also do not occur between members of of <OS.
    [Show full text]
  • Functionalized Membrane Domains: an Ancestral Feature of Archaea? Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger
    Functionalized Membrane Domains: An Ancestral Feature of Archaea? Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger To cite this version: Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger. Functionalized Membrane Domains: An Ancestral Feature of Archaea?. Frontiers in Microbiology, Frontiers Media, 2020, 11, pp.526. 10.3389/fmicb.2020.00526. hal-02553764 HAL Id: hal-02553764 https://hal.archives-ouvertes.fr/hal-02553764 Submitted on 20 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-11-00526 March 30, 2020 Time: 21:44 # 1 ORIGINAL RESEARCH published: 31 March 2020 doi: 10.3389/fmicb.2020.00526 Functionalized Membrane Domains: An Ancestral Feature of Archaea? Maxime Tourte1†, Philippe Schaeffer2†, Vincent Grossi3† and Phil M. Oger1*† 1 Université de Lyon, INSA Lyon, CNRS, MAP UMR 5240, Villeurbanne, France, 2 Université de Strasbourg-CNRS, UMR 7177, Laboratoire de Biogéochimie Moléculaire, Strasbourg, France, 3 Université de Lyon, ENS Lyon, CNRS, Laboratoire de Géologie de Lyon, UMR 5276, Villeurbanne, France Bacteria and Eukarya organize their plasma membrane spatially into domains of distinct functions. Due to the uniqueness of their lipids, membrane functionalization in Archaea remains a debated area.
    [Show full text]
  • Sulfolobus As a Model Organism for the Study of Diverse
    SULFOLOBUS AS A MODEL ORGANISM FOR THE STUDY OF DIVERSE BIOLOGICAL INTERESTS; FORAYS INTO THERMAL VIROLOGY AND OXIDATIVE STRESS by Blake Alan Wiedenheft A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Microbiology MONTANA STATE UNIVERSITY Bozeman, Montana November 2006 © COPYRIGHT by Blake Alan Wiedenheft 2006 All Rights Reserved ii APPROVAL of a dissertation submitted by Blake Alan Wiedenheft This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education. Dr. Mark Young and Dr. Trevor Douglas Approved for the Department of Microbiology Dr.Tim Ford Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this dissertation in partial fulfillment of the requirements for a doctoral degree at Montana State University – Bozeman, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this dissertation should be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted “the exclusive right to reproduce and distribute my dissertation in and from microfilm along with the non-exclusive right to reproduce and distribute my abstract in any format in whole or in part.” Blake Alan Wiedenheft November, 2006 iv DEDICATION This work was funded in part through grants from the National Aeronautics and Space Administration Program (NAG5-8807) in support of Montana State University’s Center for Life in Extreme Environments (MCB-0132156), and the National Institutes of Health (R01 EB00432 and DK57776).
    [Show full text]