Parabolic Trough R&D (Or Other Project Titles)

Total Page:16

File Type:pdf, Size:1020Kb

Parabolic Trough R&D (Or Other Project Titles) Concentrating Solar Power (CSP): Technology, Markets, and Development Craig S. Turchi, PhD [email protected] National Renewable Energy Laboratory Golden, Colorado, USA September 2009 National Renewable Energy Laboratory Innovation for Our Energy Future Outline • Technology Overview − Parabolic Troughs − Linear Fresnel − Power Towers − Dish / Engine Systems • CSP Siting, Integration and Markets • Projects • Research & Development Focus National Renewable Energy Laboratory 2 Innovation for Our Energy Future CSP Technologies and Market Sectors CSP w/ Storage (Dispatchable) – Parabolic Trough – Power Tower – Linear Fresnel CSP w/o Storage (Non-Dispatchable) – Dish/Engine National Renewable Energy Laboratory 3 Innovation for Our Energy Future Parabolic Trough www.centuryinventions.com National Renewable Energy Laboratory 4 Innovation for Our Energy Future Linear Fresnel systems Eck, et al., SolarPACES 2009, Berlin, Germany National Renewable Energy Laboratory 5 Innovation for Our Energy Future Parabolic Trough Power Plant w/ 2-Tank Indirect Molten Salt Thermal Storage Trough Field 390°C Salt Storage Tanks National Renewable Energy Laboratory 6 Innovation for Our Energy Future Power Tower (Central Receiver) Different design approaches: • Direct Steam Generation – Abengoa PS10 (Spain) – Abengoa PS20 (Spain) – BrightSource (USA/Israel) – eSolar (USA) • Molten Salt – Solar Two (USA demo) – SolarReserve (USA) • Air Receiver • Jülich (Germany) National Renewable Energy Laboratory 7 Innovation for Our Energy Future Molten Salt Power Towers Ability to store hot salt allows molten salt Towers to run at high capacity factors. 565°C 288°C Hot Salt Cold Salt Steam Generator Heliostat Field Conventional Condenser steam turbine & generator National Renewable Energy Laboratory 8 Innovation for Our Energy Future Dish Systems Dish/Stirling: Pre-commercial, pilot-scale deployments Concentrating PV: Commercial and pre- commercial pilot-scale deployments • Modular (3-25kW) • High solar-to-electric efficiency • Capacity factors limited to <25% due to lack of storage capability National Renewable Energy Laboratory 9 Innovation for Our Energy Future Outline • Technology Overview − Parabolic Troughs − Linear Fresnel − Power Towers − Dish / Engine Systems • CSP Siting, Integration and Markets • Projects • Research & Development Focus National Renewable Energy Laboratory 10 Innovation for Our Energy Future Solar Resource Screening All Solar Resources 1. Start with direct normal irradiance (DNI) estimates derived from satellite data. 2. Exclude locations with less than minimum DNI threshold (~6.75 kWh/m2/day) 3. Exclude culturally and environmentally sensitive lands, urban areas, lakes and rivers. 4. Exclude land with greater than 1% to 3% average land slope. 5. Exclude areas of less than 1 km2 Locations best for 6. Site near load centers and transmission Development corridors National Renewable Energy Laboratory 11 Innovation for Our Energy Future Site filtering example - USA Solar > 6.75 kWh/m2/day Land Exclusions Slope & Area Exclusions National Renewable Energy Laboratory 12 Innovation for Our Energy Future CSP Resource Potential - USA USA Total CSP Potential 18000 Assumptions : 16000 14000 • Solar Resource 6.75kWh/m2/day • Land use 5 acre/MW 12000 • Land slope < 1% 10000 • Capacity factor 27% 8000 • Water, urban areas, and 6000 environmentally sensitive lands 4000 excluded 2000 0 Land Capacity Energy (thousand (GW) (TWh) km2) National Renewable Energy Laboratory 13 Innovation for Our Energy Future Solar Resource – South America National Renewable Energy Laboratory 14 Innovation for Our Energy Future CSP Integration Advantages • Match load profile • Thermal inertia – Passing clouds have minor effect – Output exhibits slow ramp rates • Thermal energy storage − Can provide power after sunset − Dispatchable • Can be hybridized with fossil-backup or integrated into fossil power plants National Renewable Energy Laboratory 15 Innovation for Our Energy Future Thermal inertia avoids rapid power changes Comparison of power output from large CSP and PV plants located within 50 km of each other. Mehos, et al., IEEE Power & Energy Magazine, May/June 2009. 16 Thermal Storage - a key CSP advantage Solar Resource Load • Unlike Wind and PV, CSP can store thermal energy for later use. • Simple thermal storage makes CSP power dispatchable Generation w/ Storage Hour of Day Thermal storage tanks at Andasol 1 National Renewable Energy Laboratory 17 Innovation for Our Energy Future CSP integration Challenges • Cost higher than coal, natural gas, or wind • Economics favor large installations (high capital cost) • Land use & impact – 5-10 acres required per MWe – Land typically cleared and graded – Impact minimized by locating plants on previously disturbed lands • Water consumption – Approximately 3.0 m3 per MWh for wet-cooled plant – Air-cooled plants use 90% less water, but cost more and run at lower efficiency during hot days – Dish/Engine systems use water for mirror cleaning only • Transmission required National Renewable Energy Laboratory 18 Innovation for Our Energy Future CSP Costs - Troughs Today’s costs are 0.18 0.12 Technology Cost in 2007 >16¢/kWh due to higher ~$0.16/kWh (nominal) 0.11 0.16 material costs (e.g., steel, 0.10 0.14 nitrate salt) 0.09 0.12 0.08 Costs for Tower and Dish 0.07 0.10 systems will be defined 0.06 0.08 when commercial 2015 Goal 0.05 ~$0.10/kWh systems are built 0.06 Assumes: 0.04 Nominal LCOE ($/kwh) LCOE Nominal - Trough Technology w ith 6 hours of TES (2005$/kwh) LCOE Real 0.03 0.04 - IPP Financing; 30-year PPA Cost Reductions - California Property Tax exemption 0.02 0.02 - Includes scale-up, R&D, learning effects anticipated via 0.01 - Barstow , California site • R&D 0.00 0.00 0 1000 2000 3000 4000 • Deployment Cumulative New Capacity by 2015 (MW) • Plant Size National Renewable Energy Laboratory 19 Innovation for Our Energy Future Source: WGA Solar Task Force Summary Report, includes 30% federal Investment Tax Credit System Modeling: Download at http://www.nrel.gov/analysis/sam Solar Advisor Model (SAM) • Models solar performance, cost, finance, and incentives • Performance models include CSP and PV • Financial models include utility (IPP, IOU), commercial, and residential finance National Renewable Energy Laboratory 20 Innovation for Our Energy Future Outline • Technology Overview − Parabolic Troughs − Linear Fresnel − Power Towers − Dish / Engine Systems • CSP Siting, Integration and Markets • Projects • Research & Development Focus National Renewable Energy Laboratory 21 Innovation for Our Energy Future 354 MW Luz Solar Electric Generating Systems Nine “SEGS” Plants built 1984-1991 (California, USA) National Renewable Energy Laboratory 22 Innovation for Our Energy Future 64 MW Acciona Nevada Solar One (2007) Nevada, USA National Renewable Energy Laboratory 23 Innovation for Our Energy Future 50 MW Andasol One and Two with Storage (2009) Andalucía, Spain National Renewable Energy Laboratory 24 Innovation for Our Energy Future Abengoa Power Towers and Trough Plants Seville, Spain National Renewable Energy Laboratory 25 Innovation for Our Energy Future Stirling Energy Systems 25kW Prototypes New Mexico, USA National Renewable Energy Laboratory 26 Innovation for Our Energy Future Ausra 5 MW Linear Fresnel demo California, USA National Renewable Energy Laboratory 27 Innovation for Our Energy Future Power Tower Pilot Plants 5 MWe eSolar California, USA 6 MWthermal BrightSource Negev Desert, Israel National Renewable Energy Laboratory 28 Innovation for Our Energy Future CSP Projects in the US For projects list go to www.seia.org and http://nreldev.nrel.gov/csp/solarpaces/ National Renewable Energy Laboratory 29 Innovation for Our Energy Future Research & Development Focus • Thermal energy storage systems and materials • Direct steam generation • Collector/reflector performance and durability • Stirling engine design for manufacturing • Resource assessment and forecasting • Receiver performance • Heliostat control National Renewable Energy Laboratory 30 Innovation for Our Energy Future CSP Summary • Parabolic Trough CSP plants are commercial technology with a >20- year operating history providing intermediate and peak power. • Without government incentives, CSP costs are still 2x higher than conventional power generators. New Trough, Power Tower, and Dish/Stirling designs offer cost reduction potential. • CSP plants with thermal storage can provide power after sunset while increasing the value of power delivered and promoting grid stability. • The solar resource is immense, with prime CSP locations in the USA, Australia, Spain, North Africa, and India. • Primary environmental impacts are land usage and water consumption (for wet-cooled plants). Access to transmission lines is required. • CSP plants are being planned and built in USA, Spain, and other locations around the world. National Renewable Energy Laboratory 31 Innovation for Our Energy Future Closing thoughts… Solar Power has the greatest potential of any renewable energy source. PV and CSP are still expensive compared with fossil-fired generators, but prices have dropped and are expected to fall further. With thermal energy storage and conventional turbines, CSP is relatively easy to integrate into the electric grid. National Renewable Energy Laboratory 32 Innovation for Our Energy Future.
Recommended publications
  • Are DOE Loan Guarantees an Energy Policy Mistake?
    Greentech Media http://www.greentechmedia.com/articles/print/Are-DOE-Loan-Guarantee... RESEARCH & ANALYSIS | POLICY ERIC WESOFF: JUNE 2, 2011 Are DOE Loan Guarantees an Energy Policy Mistake? It’s the Liberals versus the Libertarians: Is the DOE Loan Guarantee Program a righteous creator of jobs and new industry or a wrongful use of taxpayer money? The United States DOE Loan Guarantee Program has disbursed $30.7 billion and claims to have created or saved 62,350 jobs. The loan program has three categories: Section 1703 of Title XVII of the Energy Policy Act of 2005 authorizes the DOE to support innovative clean energy technologies that are typically unable to obtain conventional private financing due to high technology risks. Section 1705 is a temporary program designed to address the current economic conditions of the nation. It authorizes loan guarantees for certain renewable energy systems, electric power transmission systems and leading edge biofuels projects that commence construction no later than September 30, 2011. The Advanced Technology Vehicles Manufacturing (ATVM) Loan Program consists of direct loans to support the development of advanced technology vehicles and associated components in the U.S. The more publicized loan guarantee recipients include Solyndra , BrightSource Energy , Ford, Fisker , and Tesla. (See the more complete list of loan recipients at the end of this article.) The Loan Program Office (LPO) has issued conditional commitments to 13 power generation projects with cumulative project costs of over $27 billion. This represents a greater investment in clean energy generation projects than the entire private sector made in 2009 ($10.6 billion), and almost as much as was invested in such projects in 2008 -- the peak financing year to date ($22.6 billion), according to the DOE.
    [Show full text]
  • Solarreserve Tonopah DOI Approval 121810 FINAL
    For Immediate Release U.S. DEPARTMENT OF INTERIOR APPROVES SOLARRESERVE’S 110 MEGAWATT NEVADA SOLAR POWER PROJECT Project to use advanced US-developed technology with integrated energy storage, construction scheduled to begin mid-2011 SANTA MONICA, Calif., December 20, 2010 – Today, U.S. Secretary of the Interior Ken Salazar approved the Record of Decision (ROD) for the Crescent Dunes Solar Energy Project located in Nye County near Tonopah, Nevada. With this authorization, SolarReserve, a U.S. developer of utility-scale solar power projects, is preparing to begin construction on the plant in mid-2011, with some long-lead equipment already in manufacturing. The project will generate approximately 450 direct jobs and more than 4,000 indirect and induced jobs during construction, as well as 50 permanent operations and maintenance jobs for the region. In addition, the project has an annual operating budget estimated at more than $5.0 million, much of it expected to be spent locally, with the project forecasted to generate $40 million in sales and property tax revenues over the project’s operating period. “Crescent Dunes joins a host of renewable energy projects on public lands in the West that are opening a new chapter on how our nation is powered,” said Secretary of the Interior Ken Salazar in signing the Record of Decision. “Using American ingenuity, we are creating jobs, stimulating local economies and spurring a sustainable, clean energy industrial base that will strengthen our nation’s energy security.” SolarReserve will utilize advanced solar energy technology developed in the United States by Pratt & Whitney Rocketdyne, a subsidiary of United Technologies Corporation.
    [Show full text]
  • Solar Thermal Energy an Industry Report
    Solar Thermal Energy an Industry Report . Solar Thermal Technology on an Industrial Scale The Sun is Our Source Our sun produces 400,000,000,000,000,000,000,000,000 watts of energy every second and the belief is that it will last for another 5 billion years. The United States An eSolar project in California. reached peak oil production in 1970, and there is no telling when global oil production will peak, but it is accepted that when it is gone the party is over. The sun, however, is the most reliable and abundant source of energy. This site will keep an updated log of new improvements to solar thermal and lists of projects currently planned or under construction. Please email us your comments at: [email protected] Abengoa’s PS10 project in Seville, Spain. Companies featured in this report: The Acciona Nevada Solar One plant. Solar Thermal Energy an Industry Report . Solar Thermal vs. Photovoltaic It is important to understand that solar thermal technology is not the same as solar panel, or photovoltaic, technology. Solar thermal electric energy generation concentrates the light from the sun to create heat, and that heat is used to run a heat engine, which turns a generator to make electricity. The working fluid that is heated by the concentrated sunlight can be a liquid or a gas. Different working fluids include water, oil, salts, air, nitrogen, helium, etc. Different engine types include steam engines, gas turbines, Stirling engines, etc. All of these engines can be quite efficient, often between 30% and 40%, and are capable of producing 10’s to 100’s of megawatts of power.
    [Show full text]
  • CSP Technologies
    CSP Technologies Solar Solar Power Generation Radiation fuel Concentrating the solar radiation in Concentrating Absorbing Storage Generation high magnification and using this thermal energy for power generation Absorbing/ fuel Reaction Features of Each Types of Solar Power PTC Type CRS Type Dish type 1Axis Sun tracking controller 2 Axis Sun tracking controller 2 Axis Sun tracking controller Concentrating rate : 30 ~ 100, ~400 oC Concentrating rate: 500 ~ 1,000, Concentrating rate: 1,000 ~ 10,000 ~1,500 oC Parabolic Trough Concentrator Parabolic Dish Concentrator Central Receiver System CSP Technologies PTC CRS Dish commercialized in large scale various types (from 1 to 20MW ) Stirling type in ~25kW size (more than 50MW ) developing the technology, partially completing the development technology development is already commercialized efficiency ~30% reached proper level, diffusion level efficiency ~16% efficiency ~12% CSP Test Facilities Worldwide Parabolic Trough Concentrator In 1994, the first research on high temperature solar technology started PTC technology for steam generation and solar detoxification Parabolic reflector and solar tracking system were developed <The First PTC System Installed in KIER(left) and Second PTC developed by KIER(right)> Dish Concentrator 1st Prototype: 15 circular mirror facets/ 2.2m focal length/ 11.7㎡ reflection area 2nd Prototype: 8.2m diameter/ 4.8m focal length/ 36㎡ reflection area <The First(left) and Second(right) KIER’s Prototype Dish Concentrator> Dish Concentrator Two demonstration projects for 10kW dish-stirling solar power system Increased reflection area(9m dia. 42㎡) and newly designed mirror facets Running with Solo V161 Stirling engine, 19.2% efficiency (solar to electricity) <KIER’s 10kW Dish-Stirling System in Jinhae City> Dish Concentrator 25 20 15 (%) 10 발전 효율 5 Peak.
    [Show full text]
  • Filed October 27, 2016)
    BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA FILED 10-27-16 04:59 PM Application for Modification of Resolution E-4783 filed by San Diego A.16-10-018 Gas & Electric Company (U902E). (Filed October 27, 2016) CERTIFICATE OF SERVICE I hereby certify that I have on this date served a copy of RESPONSE OF THE OFFICE OF RATEPAYER ADVOCATES TO SAN DIEGO GAS & ELECTRIC COMPANY’S APPLICATION FOR MODIFICATION OF RESOLUTION E-4783 TO TERMINATE ITS RENEWABLE AUCTION MECHANISM PROCUREMENT REQUIREMENT to all known parties by either United States mail or electronic mail, to each party named on the official service list in A.16-10-018. I also hand-delivered a hard copy to the assigned Administrative Law Judge’s mail slot. Executed on November 9, 2016, at San Francisco, California. /s/ TERRY L. GRAY TERRY L. GRAY 169114648 CPUC Home CALIFORNIA PUBLIC UTILITIES COMMISSION Service Lists Proceeding: A1610018 - Application for Modi Filer: San Diego Gas & Electric Company List Name: LIST Last changed: November 1, 2016 Parties PAUL A. SZYMANSKI SR. COUNSEL SAN DIEGO GAS & ELECTRIC COMPANY 8330 CENTURTY PARK CT., CP32D SAN DIEGO, CA 92123 FOR: SAN DIEGO GAS & ELECTRIC COMPANY 169114648 CPUC Home CALIFORNIA PUBLIC UTILITIES COMMISSION Service Lists Proceeding: R0808009 - CPUC - OIR TO CONTI Filer: CPUC List Name: LIST Last changed: October 31, 2016 Parties BRYAN CRABB CARRIE A. DOWNEY EXECUTIVE DIRECTOR LAW OFFICES OF CARRIE ANNE DOWNEY CALIFORNIA SOLAR ENERGY INDUSTRIES ASSN EMAIL ONLY EMAIL ONLY EMAIL ONLY, CA 00000 EMAIL ONY, CA 00000 FOR: IMPERIAL IRRIGATION DISTRICT FOR: CALIFORNIA SOLAR ENERGY INDUSTRIES ASSOCIATION CHRIS LEVERIZA DANIEL W.
    [Show full text]
  • Understanding Solar Lease Revenues
    LIVE WORK PLAY RETIRE TURNING LAND INTO REVENUES: UNDERSTANDING SOLAR LEASE REVENUES Reprint Date: August 25, 2020 Mayor Kiernan McManus Council Member Council Member Council Member Council Member Mayor pro tem Claudia Bridges Tracy Folda Judith A. Hoskins James Howard Adams City Manager Finance Director Alfonso Noyola, ICMA-CM Diane Pelletier, CPA Boulder City Revenue Overview Table of Contents Unlike most other municipalities and counties in Nevada, the revenue stream for Boulder City does not include the lucrative Some History . gaming tax. Prior to the recession of 2007 - 2009, the City’s • 4 • revenue stream did not have a sizable amount of monies from land leases. With the recent focus by California and more Charter/Ordinance Requirements recently at the national level on renewable energy development, • 4 • the City was in a key position to take advantage of its unique Land Lease Process position for solar development by leasing city-owned land for • 6 • energy production. Because of those prudent actions, today the Energy Lease Revenue History solar lease revenues equate to roughly 28% to 34% of the City’s • 7 • overall revenue stream to support vital governmental functions. Energy Lease Revenue Projections • • But is Land Lease Revenue Stable? 9 A common question posed to our City Council surrounds the Energy Lease Revenue Potential stability of land lease revenues. Traditional commercial or • 9 • residential land leases have many risks, as the tenants are Overall Energy Lease Revenue subject to market conditions or changes in employment. And History and Projections with recessions, these types of leases are common casualties • 10 • of a downturn in the economy.
    [Show full text]
  • The Status of CSP Development
    The Status of CSP Development DISH STIRLING POWER TOWER CLFR Tom Mancini CSP Program Manager Sandia National Laboratories PARABOLIC TROUGH 505.844.8643 DISH STIRLING [email protected] [email protected] 1 Presentation Content • Brief Overview of Sandia National Laboratories • Background information • Examples of CSP Technologies − Parabolic Trough Systems − Power Tower Systems − Thermal Energy Storage − Dish Stirling Systems • Status of CSP Technologies • Cost of CSP and Resource Availability • Deployments • R & D Directions [email protected] 2 Four Mission Areas Sandia’s missions meet national needs in four key areas: • Nuclear Weapons • Defense Systems and Assessments • Energy, Climate and Infrastructure Security • International, Homeland, and Nuclear Security [email protected] 3 Research Drives Capabilities High Performance Nanotechnologies Extreme Computing & Microsystems Environments Computer Materials Engineering Micro Bioscience Pulsed Power Science Sciences Electronics Research Disciplines 4 People and Budget . On-site workforce: 11,677 FY10 operating revenue . Regular employees: 8,607 $2.3 billion 13% . Over 1,500 PhDs and 2,500 MS/MA 13% 43% 31% Technical staff (4,277) by discipline: (Operating Budget) Nuclear Weapons Defense Systems & Assessments Energy, Climate, & Infrastructure Security International, Homeland, and Nuclear Security Computing 16% Math 2% Chemistry 6% Physics 6% Other science 6% Other fields 12% Electrical engineering 21% Mechanical engineering 16% Other engineering 15% 5 Sandia’s NSTTF Dish Engine Engine Test Rotating Testing Facility Platform Established in 1976, we provide ………. • CSP R&D NSTTF • Systems analysis and FMEA • System and Tower Testing Solar Furnace component testing and support NATIONAL SOLAR THERMAL TEST FACILITY [email protected] 6 Labs Support the DOE Program The CSP Programs at Sandia and the National Renewable Energy Laboratory (NREL) support the DOE Solar Energy Technology Program.
    [Show full text]
  • Bay Free Viagra
    FOR IMMEDIATE RELEASE SOLARRESERVE REACHES MAJOR CONSTRUCTION MILESTONE IN COMPLETING TOWER FOR WORLD’S LARGEST MOLTEN SALT SOLAR TOWER PLANT Nevada project represents leading solar thermal technology worldwide – integrated energy storage provides predictable and zero-emissions electricity day or night to meet peak demands SANTA MONICA, Calif., Feb. 9, 2012 – SolarReserve, a U.S. developer of large-scale solar power projects, today announced completion of the 540-foot solar power tower for its 110 megawatt (MW) Crescent Dunes Solar Energy Plant located near Tonopah, Nev. Utilizing the most advanced solar thermal technology worldwide, the Crescent Dunes Plant will be the nation’s first commercial-scale solar power facility with fully integrated energy storage and the largest power plant of its kind in the world. “Completion of the solar power tower is a significant milestone not only for SolarReserve and our plant, but also for the solar energy industry as a whole. This project is on track to bring American innovation to fruition and is already creating jobs,” said Kevin Smith, CEO of SolarReserve. “Our U.S.-developed technology has the ability to store energy for 10-15 hours and solves the issue of intermittent power generation to the grid, the number one limitation to other solar and wind renewable energy technologies. We can deliver electricity ‘on demand’ the same way a coal, natural gas or nuclear fueled plant does – but without emitting any harmful pollution or hazardous materials – providing a genuine alternative to conventional power generation.” The flagship project is jointly owned by SolarReserve, ACS Cobra, a worldwide leader in the engineering and construction of power plants and solar thermal facilities, and Santander, a global financial services and banking leader.
    [Show full text]
  • Hot Times for Solar Energy
    Hot Times for Solar Energy Utility-scale solar thermal power may be poised for the big time. By Susan Moran and J. Thomas McKinnon ly into the surreal rainbow glow of the Las Vegas strip the rearview mirror to be replaced by the sagebrush-dotted at twilight and it becomes clear why the state of Nevada desert, and a silver-blue mirage appears shimmering in the dis- has become a metaphor for the energy crossroads con- tance. Apart from the transmission lines it is the only notice- F fronting the United States. The city’s hunger for elec- able break in the El Dorado Valley’s sepia tones. As you tricity, like its visitors’ appetite for carnal indulgence, approach the glistening structure its body becomes more is insatiable; it is the seat of Clark County, the second fastest apparent—thousands of curved mirrors gazing up in unison. growing county in the United States. Nevada’s two public Welcome to Nevada Solar One, a concentrating solar utilities project that the state will hit an electricity capacity power station with 64 megawatts of generating capacity, shortfall of 2,100 megawatts by 2016 if more isn’t built. enough to power as many as 14,000 homes. Reducing the The vision of a future powered by fossil fuels in one of the plant to numbers—182,400 mirrors, 120 hectares, 1.2 mil- sunniest spots in the world strikes many people, including lion liters of heat transfer oil, over 3 million kilograms of Harry Reid—majority leader of the U.S. Senate and a strong recycled aluminum, 130,000 tons of avoided carbon dioxide opponent of coal-fired plants—as ludicrous.
    [Show full text]
  • Agenda Opportunities for Solar
    Agenda Opportunities for Solar: Ways Forward for Inland Southern California The University of California, Riverside Center for Sustainable Suburban Development Center for Environmental Research and Technology Southern California Research Initiative for Solar Energy February 25 th 2016, 8:00 AM − 5:30 PM This conference is designed for city leaders, planners, council members, businesses, utility companies and the general public to learn about the state of solar energy by discussing the market ready technologies, public policy/regulations, economics/financing, and the associated environmental/sustainability issues. Attendees will learn about the challenges and opportunities for incorporating solar energy in their communities, including how the marketplace works, local policies and initiatives already in place. Bourns Technology Center 1200 Columbia Ave. Riverside, CA 92507 8:00 – 8:30 Breakfast and Attendee Check In 8:30 – 8:35 Introductory Remarks Remarks by: Matthew Barth, Director, College of Engineering Center for Environmental Research and Technology 8:35 – 9:25 Inland Region, State and Federal Perspective Morning Keynote Presentation by: Karen Douglas, Commissioner, California Energy Commission 9:25 – 9:40 Solar Storage and the Low-Carbon Grid Starting Session by: V. John White, Executive Director, Center for Energy Efficiency and Renewable Technologies 9:40 – 10:40 1st Panel Discussion−The State of Solar Energy and the Role of Energy Storage Description: The panelists will discuss the state of the solar energy from a variety of perspectives, focusing on the opportunities for solar energy, and how to better address the challenges facing this industry as it continues to rapidly grow and achieve higher levels of penetration in the energy generation market.
    [Show full text]
  • Concentrating Solar Power and Water Issues in the U.S. Southwest
    Concentrating Solar Power and Water Issues in the U.S. Southwest Nathan Bracken Western States Water Council Jordan Macknick and Angelica Tovar-Hastings National Renewable Energy Laboratory Paul Komor University of Colorado-Boulder Margot Gerritsen and Shweta Mehta Stanford University The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy’s National Renewable Energy Laboratory, the University of Colorado-Boulder, the Colorado School of Mines, the Colorado State University, the Massachusetts Institute of Technology, and Stanford University. Technical Report NREL/TP-6A50-61376 March 2015 Contract No. DE-AC36-08GO28308 Concentrating Solar Power and Water Issues in the U.S. Southwest Nathan Bracken Western States Water Council Jordan Macknick and Angelica Tovar-Hastings National Renewable Energy Laboratory Paul Komor University of Colorado-Boulder Margot Gerritsen and Shweta Mehta Stanford University Prepared under Task No. 6A50.1010 The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy’s National Renewable Energy Laboratory, the University of Colorado-Boulder, the Colorado School of Mines, the Colorado State University, the Massachusetts Institute of Technology, and Stanford University. JISEA® and all JISEA-based marks are trademarks or registered trademarks of the Alliance for Sustainable Energy, LLC. The Joint Institute for Technical Report Strategic Energy Analysis NREL/TP-6A50-61376 15013 Denver West Parkway March 2015 Golden, CO 80401 303-275-3000 • www.jisea.org Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.
    [Show full text]
  • Advanced Solar Thermal Power Generation
    Advanced Solar Thermal Power Generation SPE, 16 September 2009 by Steve Henzell, WorleyParsons Acknowledgements Steve Henzell Manager of Select, Conceptual Design at WorleyParsons Not an expert in Advanced Solar Thermal An expert in conceptual design and project assessment Thanks to: Barry Lake, who is an expert in Advanced Solar Thermal Geoff Wearne and Rod Touzel who are experts in electrical transmission 2 Agenda Advanced Solar Thermal Power Explained History of AST WorleyParsons involvement in AST Base load power plant Alignment with power demand Other AST initiatives Strengths and weaknesses of AST Other renewable energy sources Assessment of alternatives Common challenges for renewable energy What this means to the Oil & Gas industry 3 Concentrating Solar Power Storage Molten Salt Solar Energy Heat Transfer Medium Concentrating parabolic dish Generator Steam G 3 Stage Condensing Steam Turbine 4 How it Works Solar Island Parabolic mirrors concentrate sunlight onto collector tubes Mirrors track the sun from East to West Oil is heated in the collector tubes Power Island Heated oil from the Solar Island heats water in a boiler to produce steam The steam drives a conventional turbine to generate power Storage Operating hours of the plant can be extended by storing heat in molten salt for later recovery Conventional technology in nuclear power generation 5 5 15-Sep-09 Parabolic Troughs 7 Concentrating Solar Power Station 8 History of AST 9 Current Technology Parabolic Trough Proven technology SEGS plant
    [Show full text]