Information Socialtaxis and Efficient Collective Behavior Emerging In

Total Page:16

File Type:pdf, Size:1020Kb

Information Socialtaxis and Efficient Collective Behavior Emerging In Information socialtaxis and efficient collective behavior emerging in groups of information-seeking agents Ehud D. Karpasa, Adi Shklarsha, and Elad Schneidmana,1 aDepartment of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel Edited by Curtis G. Callan Jr., Princeton University, Princeton, NJ, and approved April 17, 2017 (received for review October 31, 2016) Individual behavior, in biology, economics, and computer science, is highly efficient in finding a sparsely signaling source in a tur- is often described in terms of balancing exploration and exploita- bulent environment. These infotaxis search trajectories resemble tion. Foraging has been a canonical setting for studying reward the paths of foraging insects, suggesting a biological implication seeking and information gathering, from bacteria to humans, of this model. mostly focusing on individual behavior. Inspired by the gradient- In nature, many species, including bacteria (15), amoebae (16), climbing nature of chemotaxis, the infotaxis algorithm showed insects (17, 18), fish (19), birds (3), and mammals (20, 21), dis- that locally maximizing the expected information gain leads to play complex group behavior, including foraging. The mecha- efficient and ethological individual foraging. In nature, as well as nisms that underlie group behavior have been of great experi- in theoretical settings, conspecifics can be a valuable source of mental and theoretical interest, focusing on the computation that information about the environment. Whereas the nature and role each individual performs (22–24) and emergent collective behav- of interactions between animals have been studied extensively, ior (24, 25). In terms of social behavior, such models have been the design principles of information processing in such groups used to describe exploration and exploitation of the environment, are mostly unknown. We present an algorithm for group forag- finding food or mates, decision making (26–29), and altruistic and ing, which we term “socialtaxis,” that unifies infotaxis and social opportunistic behavior, as well as the design of systems of conflict- interactions, where each individual in the group simultaneously ing components (30) and distributed algorithms (31). BIOPHYSICS AND maximizes its own sensory information and a social information We present a model of foraging in a group that combines COMPUTATIONAL BIOLOGY term. Surprisingly, we show that when individuals aim to increase infotaxis and social interactions, using information as a unifying their information diversity, efficient collective behavior emerges principle. In this socialtaxis model, agents seek a signal-emitting in groups of opportunistic agents, which is comparable to the source, using the information they receive through their own optimal group behavior. Importantly, we show the high efficiency “senses” and information they receive from other agents or that of biologically plausible socialtaxis settings, where agents share they infer from the behavior of their conspecifics. We show that little or no information and rely on simple computations to infer certain forms of socialtaxis allow a collection of opportunistic ECOLOGY information from the behavior of their conspecifics. Moreover, individuals to find the source considerably faster than a collection socialtaxis does not require parameter tuning and is highly robust of independent agents and comparable to the case of agents shar- to sensory and behavioral noise. We use socialtaxis to predict dis- ing all their sensory information and decision making using a cen- tinct optimal couplings in groups of selfish vs. altruistic agents, trally managed strategy (which is exponentially more expensive). reflecting how it can be naturally extended to study social dynam- Moreover, we find that coordinated group behavior emerges in a ics and collective computation in general settings. collection of selfish individuals each maximizing their own goal. We further present biologically plausible versions of socialtaxis, foraging j information maximization j chemotaxis j exploration j exploitation Significance From bacteria to humans, individual foraging has been a key oraging is fundamental for survival and reproduction in example of complex behavior, often analyzed experimentally Fnumerous species and is often based on sparse and noisy sen- and theoretically, in terms of a trade-off between exploration sory cues in complex environments. Understanding how organ- and exploitation. Finding a source in a nonturbulent environ- isms represent space and navigate and the utility functions and ment can be done by following the gradient of a signal, but in computations that underlie movement patterns and social behav- noisy environments, moving to maximize information about ior (1–6) critically depends on characterizing the nature of for- the source results in efficient searches. We present a model aging. Theoretical models of foraging have been pivotal in eco- for group foraging, in which each agent aims to maximize nomics, physics (7, 8), and machine learning (9) as a general its own information and minimize its informational overlap framework for decision making, exploration and exploitation, with others. The result is a highly efficient, robust, biologically optimization, and learning (10). plausible, and nearly optimal collective group behavior. This Climbing the gradient of a sensory signal is an efficient forag- suggests information maximization from sensory and social ing strategy for finding a strong source in nonturbulent environ- sources as an optimization principle that can direct individual ments or on a microscopic scale, as demonstrated, for example, and group behavior. by theoretical and experimental studies of bacterial chemotaxis (1, 11). However, for weak sources, or on a macroscopic scale Author contributions: E.D.K., A.S., and E.S. designed research; E.D.K., A.S., and E.S. per- that is characterized by turbulent flows, the signal coming from a formed research; E.D.K. and E.S. analyzed data; and E.D.K. and E.S. wrote the paper. source is typically broken into random, sparse, and disconnected The authors declare no conflict of interest. patches (12). Without a continuous gradient, a different strategy This article is a PNAS Direct Submission. is needed to read and use information from these patches about 1To whom correspondence should be addressed. Email: elad.schneidman@weizmann. the location of the source (13). Vergassola et al. (14) presented ac.il. a foraging algorithm based on maximizing the information that This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. an agent has about the location of a source and showed that it 1073/pnas.1618055114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1618055114 PNAS Early Edition j 1 of 6 Downloaded by guest on October 6, 2021 in which agents share little or no information, and its robust- by Gi , or how individuals affect one another, and β, the cou- ness to various forms of noise. Finally, we show socialtactic opti- pling strength or inverse “temperature,” which balances individ- mal behaviors in game theory-like settings of competing and ual information and social interactions: β = 0 reduces socialtaxis opportunistic agents, suggesting a wide range of applications for to the standard individual infotaxis behavior of each agent, and this model. β ! 1 implies pure socially driven behavior. Following many models of collective behavior, a natural choice From Individual Infotaxis to Socialtaxis for the relation between individuals would be one that is deter- The infotaxis algorithm (14) describes a strategy for individual mined by the physical distance between them. We consider here foraging in space, where an agent (or animal) moves to maxi- the case where the free energy of agent i is given by mize the information it has about the location of a stationary dist α source that emits signals (or particles) in random directions at Fi = S[Pi ] + βΣj dij ; [2] a low rate. In its discretized version, the search space is divided into “cells,” and the agent estimates at each time t a probability where dij is the Euclidean distance between agents i and j , α > 1 map of the possible locations (r) of the source Pt (r). The entropy is a tunable parameter that determines the scaling of the dis- of the map at time t, given by S [Pt (r)] = −ΣrPt (r) log2Pt (r) tance between agents, and the summation goes over all group (32), measures the uncertainty or missing information about the members. We explored the behavior of groups of 2–20 agents location of the source, in bits. At each time point, the agent may searching for a single sparse source in a 2D arena and found (i) find the source, (ii) detect a signal from the source (“hit”), or that for each choice of α, there was an optimal β that was always (iii) detect nothing. The agent then updates its probability map positive and minimized the time needed for the first member of over the space based on one of these three events and uses the the group to find the source (Distance-Based Socialtaxis). How- new map to decide whether to move to a neighboring cell or stay ever, even for the optimal values, the improvement in search time still. This decision is based on the expected information it would compared with independent agents was very small (more below). gain from each possible move, which is given by the expected Fig. 1B shows an example of the cohesive trajectories of two cou- change in entropy of each of the possible events in that location pled agents with their optimal βopt (Movie S1). (finding the source, getting a hit, or not getting a hit), weighted We then considered a socialtaxis model in which social inter- by the probability of occurrence of each event (Materials and actions were based on the information that agents have and not Methods). Fig. 1A shows the trajectories of two agents who are their physical locations. Here each agent aims to minimize the independently searching the source using infotaxis in a 2D arena, combination of its entropy and the overlap in the information it completely ignoring one another (Movie S1).
Recommended publications
  • A Complex Adaptive Systems Perspective to Appreciative Inquiry: a Theoretical Analysis Payam Saadat George Fox University
    http://journals.sfu.ca/abr ADVANCES IN BUSINESS RESEARCH 2015, Volume 6, pages 1-13 A Complex Adaptive Systems Perspective to Appreciative Inquiry: A Theoretical Analysis Payam Saadat George Fox University Appreciate inquiry is utilized to facilitate organizational change by encouraging stakeholders to explore positives and generative capacities within their organization. In the literature, analysis of the effectiveness of AI is confined to psychological and managerial explanations such as highlighting the promotion of positive mindset and collective organizational planning. This paper will discuss a complex adaptive systems (CAS) perspective and present a new model for understanding the functionality of AI. The emphasis of this paper is placed on exploring the effects of AI on the behavior and interactions of agents/employees related to how they cope with change. An analysis of AI’s functionality through the lens of CAS reveals two critical insights: a) AI enhances adaptability to change by strengthening communication among agents, which in turn fosters the emergence of effective team arrangements and a more rapid collective response to change and b) AI possesses the potential to generate a collective memory for social systems within an organization. Furthermore, a systematic analysis of AI indicates a close connection between this method and CAS-based styles of management. This paper concludes by suggesting that AI might represent a potential method with the capacity to place organizational teams at the edge of chaos. Keywords: appreciative inquiry, organizational change, management, complex adaptive systems, edge of chaos Introduction In today’s fast-paced world where the fluctuating preferences of consumers, the growth in the global web of interdependence, and technological advancements guide the co-evolving relationship between the dominant business environment and the social systems within its domain, an organization’s capacity to cope with change in a timely manner determines its survival (Hesselbein & Goldsmith, 2006; Macready & Meyer, 1999; Senge, 2006).
    [Show full text]
  • Chapter 17: Social Change and Collective Behavior
    CHAPTER 17 SocialSocial ChangeChange andand CollectiveCollective BehaviorBehavior 566 U S Your Sections I Sociological N Imagination 1. Social Change G 2. Theoretical Perspectives on Social Change hen you see photos or films showing the Plains Indians of the 3. Collective Behavior WOld West—Sioux, Crow, and so forth—what do you think about the culture 4. Social Movements of those Native Americans? If you’re like most of us, you may assume that it had re- mained unchanged for many centuries—that these people dressed and acted in exactly Learning Objectives the same way as their ancestors. We often assume that nonindustrial soci- eties such as these stand still over time. After reading this chapter, you will be able to Actually, though, sociology teaches us that change comes to all societies. Whether by ❖ illustrate the three social processes that borrowing from other cultures, discovering contribute to social change. new ways of doing things, or creating inven- ❖ discuss how technology, population, nat- tions that ripple through society, all peoples ural environment, revolution, and war experience social change. cause cultures to change. Let’s return to the example of the Plains Indians. You may picture these tribes as ❖ describe social change as viewed by the fierce, buffalo-hunting warriors. Perhaps im- functionalist and conflict perspectives. ages of Sitting Bull and Crazy Horse astride ❖ discuss rumors, fads, and fashions. fast horses attacking Custer come to mind, ❖ compare and contrast theories of crowd leading you to think that their ancestors for centuries had also ridden horses. In fact, behavior. horses were a relatively recent introduction ❖ compare and contrast theories of social to Plains Indian culture in the 1800s.
    [Show full text]
  • Collective Behaviour
    COLLECTIVE BEHAVIOUR DEFINED COLLECTIVE BEHAVIOUR • The term "collective behavior" was first used by Robert E. Park, and employed definitively by Herbert Blumer, to refer to social processes and events which do not reflect existing social structure (laws, conventions, and institutions), but which emerge in a "spontaneous" way. Collective Behaviour defined • Collective behaviour is a meaning- creating social process in which new norms of behaviour that challenges conventional social action emerges. Examples of Collective Behaviour • Some examples of this type of behaviour include panics, crazes, hostile outbursts and social movements • Fads like hula hoop; crazes like Beatlemania; hostile outbursts like anti- war demonstrations; and Social Movements. • Some argue social movements are more sophisticated forms of collective behaviour SOCIAL MOVEMENTS • Social movements are a type of group action. They are large informal groupings of individuals and/or organizations focused on specific political or social issues, in other words, on carrying out, resisting or undoing a social change. CBs and SMs 19th C. ROOTS • Modern Western social movements became possible through education and the increased mobility of labour due to the industrialisation and urbanisation of 19th century societies Tilly’s DEFINITION SM • Charles Tilly defines social movements as a series of contentious performances, displays and campaigns by which ordinary people made collective claims on others [Tilly, 2004].]: Three major elements of SMs • For Tilly, social movements are a major vehicle for ordinary people's participation in public politics [Tilly, 2004:3]. • He argues that there are three major elements to a social movement [Tilly, 2004 THREE ELEMENTS OF SMs 1. Campaigns: a sustained, organized public effort making collective claims on target authorities; 2.
    [Show full text]
  • Threshold Models of Collective Behavior!
    Threshold Models of Collective Behavior! Mark Granovetter State University of New York at Stony Brook Models of collective behavior are developed for situations where actors have two alternatives and the costs and/or benefits of each depend on how many other actors choose which alternative. The key concept is that of "threshold": the number or proportion of others who must make one decision before a given actor does so; this is the point where net benefits begin to exceed net costs for that particular actor. Beginning with a frequency distribution of thresholds, the models allow calculation of the ultimate or "equilibrium" number making each decision. The stability of equilibrium results against various possible changes in threshold distributions is considered. Stress is placed on the importance of exact distributions for outcomes. Groups with similar average preferences may generate very different results; hence it is hazardous to infer individual dispositions from aggregate outcomes or to assume that behavior was directed by ultimately agreed-upon norms. Suggested applications are to riot behavior, innovation and rumor diffusion, strikes, voting, and migra­ tion. Issues of measurement, falsification, and verification are dis­ cussed. BACKGROUND AND DESCRIPTION OF THE MODELS Because sociological theory tends to explain behavior by institutionalized norms and values, the study of behavior inexplicable in this way occupies a peripheral position in systematic theory. Work in the subfields which embody this concern-deviance for individuals and collective behavior for groups-often consists of attempts to show what prevented the established patterns from exerting their usual sway. In the field of collective behavior, one such effort involves the assertion that new norms or beliefs "emerge" 1 This report is heavily indebted to three co-workers.
    [Show full text]
  • Society As a Complex Adaptive System
    59. Society as a CompIex Adaptive System WALTER DUCKLEY WE HAVE ARGUED at some length in another place1 istic is its functioning to maintain the given struc- that the mechanical equilibrium model and the ture of the system within pre-established limits. It organismic homeostasis models of society that involves feedback loops with its environment, and have underlain most modern sociological theory possibly information as well as pure energy inter- have outlived their usefulness. A more viable changes, but these are geared principally to self- model, one much more faithful to the kind of regubtion (structure maintenance) rather than adap- system that society is more and more recognized tation (change of system structure). The complex to k,is in process of developing out of, or is in adaptive systems {species, psychological and socio- keeping with, the modern systems perspective cultural systems) are also open and negentropic. (which we use loosely here to refer to general But they are oppn "internally" us well as externally systems research, cybernetics, information and in that the interchanges among their components communication theory, and related fields). Society, may result in significant changr.s in the nature of or the sociocultural system, is not, then, principally the components theinselves with important con- an equilibrium system or a homeostatic system, sequences for the system as a whole. And the but what we shalt simply refer to as a complex energy level that may be mobilized by the system adaptive system. is subject to relatively wide fluctuation. Internal To summarize the argument in ove~lysimplified as well as external interchanges are mediated form: Equilibria1 systems are relatively closed and characteristically by infirmation flows (via chemi- entropic.
    [Show full text]
  • A Survey on Efficient and Scalable Method for Learning Collective
    21705 Umesh B.Shingote et al./ Elixir Comp. Sci. & Engg. 67 (2014) 21705-21709 Available online at www.elixirpublishers.com (Elixir International Journal) Computer Science and Engineering Elixir Comp. Sci. & Engg. 67 (2014) 21705-21709 A survey on Efficient and Scalable method for Learning Collective Behavior Umesh B.Shingote* and Setu Chaturvedi Department of Computer Science & Engineering, Technocrats Institute of Technology, Bhopal, Madhya Pradesh, India. ARTICLE INFO ABSTRACT Article history: For the many people in world social networks are playing major role day to day life. Received: 27 January 2014; Depending on the user’s behavior and interaction with each other, the social networking Received in revised form: sites are reshaped. Growing interest and development of social network sites like Facebook, 7 February 2014; Twitter, Flicker, YouTube etc. imposing many research challenges. And hence this is Accepted: 13 February 2014; allowing researchers to do many research studies using data mining concepts. The main challenge of such online social networking websites is to find out the individuals behavior Keywords over social network. Understanding the user’s behavior on social networking websites is Social networks, called as collective behavior. There are many data mining techniques presented to identify Users Behavior, the behavior of individuals. Such methods of collective behavior allows to learn and predict Learning, the users online behavior and based on it assign the appropriate label to actor in network. Prediction of behavior, But the another main problem occurs in such methods is the networks scalability due to k-means variant, which this systems becomes poor in performance and many not be work if the network size Clustering.
    [Show full text]
  • Evolving Collective Behavior in an Artificial Ecology
    Evolving Collective Behavior in an Christopher R. Ward University of Nottingham Artificial Ecology School of Computer Science Fernand Gobet∗ University of Nottingham School of Psychology Graham Kendall University of Nottingham Abstract Collective behavior refers to coordinated group School of Computer Science motion, common to many animals. The dynamics of a group can be seen as a distributed model, each “animal” applying the same rule set. This study investigates the use of evolved sensory controllers to produce schooling behavior. A set of artificial creatures “live” in an artificial world with hazards Keywords and food. Each creature has a simple artificial neural network ALife, artificial ecology, coexistence brain that controls movement in different situations. A of prey and predator, evolution, fish, flocking, schooling, sensor chromosome encodes the network structure and weights, which may be combined using artificial evolution with another chromosome, if a creature should choose to mate. Prey and predators coevolve without an explicit fitness function for schooling to produce sophisticated, nondeterministic, behavior. The work highlights the role of species’ physiology in understanding behavior and the role of the environment in encouraging the development of sensory systems. 1 Introduction Collective behaviors such as conformity, obedience, and leadership have been studied for years in social psychology. Yet we can see primitive characteristics of these behav- iors in animals, such as fish schools, insect swarms, and bird flocks. Even across such a diverse set of species, the dynamics of the group are very similar. Partridge [18] states that collective behavior occurs when animals move “in unison, more like a single organ- ism than a collection of individuals” (p.
    [Show full text]
  • Linking Individual and Collective Behavior in Adaptive Social Networks
    week ending PRL 116, 128702 (2016) PHYSICAL REVIEW LETTERS 25 MARCH 2016 Linking Individual and Collective Behavior in Adaptive Social Networks Flávio L. Pinheiro,1,2,3 Francisco C. Santos,1,3 and Jorge M. Pacheco2,3,4 1INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, 2744-016 Porto Salvo, Portugal 2Centro de Biologia Molecular e Ambiental da Universidade do Minho, 4710-057 Braga, Portugal 3ATP-group, P-2744-016 Porto Salvo, Portugal 4Departamento de Matemática e Aplicações da Universidade do Minho, 4710-057 Braga, Portugal (Received 11 December 2015; published 24 March 2016) Adaptive social structures are known to promote the evolution of cooperation. However, up to now the characterization of the collective, population-wide dynamics resulting from the self-organization of individual strategies on a coevolving, adaptive network has remained unfeasible. Here we establish a (reversible) link between individual (micro)behavior and collective (macro)behavior for coevolutionary processes. We demonstrate that an adaptive network transforms a two-person social dilemma locally faced by individuals into a collective dynamics that resembles that associated with an N-person coordination game, whose characterization depends sensitively on the relative time scales between the entangled behavioral and network evolutions. In particular, we show that the faster the relative rate of adaptation of the network, the smaller the critical fraction of cooperators required for cooperation to prevail, thus establishing a direct link between network adaptation and the evolution of cooperation. The framework developed here is general and may be readily applied to other dynamical processes occurring on adaptive networks, notably, the spreading of contagious diseases or the diffusion of innovations.
    [Show full text]
  • Research Statement Radhika Nagpal
    Research Statement Radhika Nagpal My research interest is developing programming paradigms for robust collective behavior, inspired by biology. Cells with identical DNA cooperate to form complex structures, such as ourselves, with incredible reliability in the face of constantly dying and replacing parts. Emerging technologies are making it possi- ble to bulk-manufacture and embed millions of tiny computing and sensing agents into materials and the environment. We would like to build novel applications from these technologies, like smart materials and self-reconfiguring robots, that achieve the kind of complexity and reliability that biological systems achieve. This requires solving two problems: How do we take a high-level description of global cooperative goals and translate it into local instruc- • tions for identically-programmed agents? How do we achieve robust and predictable behavior from vast numbers of unreliable parts? • I am interested in using morphogenesis and developmental biology as a source of algorithms and general principles for organizing complex behavior from locally interacting individuals. My approach is to formalize these general principles as programming languages — with explicit primitives, means of combination, and means of abstraction — thus providing a framework for the design and analysis of self-assembling systems. My PhD dissertation is an example of using this approach for shape formation on an intelligent recon- figurable surface composed of thousands of identically-programmed agents. I developed a programming language for specifying the desired global shape at an “abstract” level, as a folding construction on a contin- uous sheet of paper, which is then automatically compiled to produce the program run by an agent.
    [Show full text]
  • Collective Irrationality and Positive Feedback
    Collective Irrationality and Positive Feedback Stamatios C. Nicolis1*, Natalia Zabzina1, Tanya Latty2, David J. T. Sumpter1 1 Mathematics Department, Uppsala University, Uppsala, Sweden, 2 School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia Abstract Recent experiments on ants and slime moulds have assessed the degree to which they make rational decisions when presented with a number of alternative food sources or shelter. Ants and slime moulds are just two examples of a wide range of species and biological processes that use positive feedback mechanisms to reach decisions. Here we use a generic, experimentally validated model of positive feedback between group members to show that the probability of taking the best of n options depends crucially on the strength of feedback. We show how the probability of choosing the best option can be maximized by applying an optimal feedback strength. Importantly, this optimal value depends on the number of options, so that when we change the number of options the preference of the group changes, producing apparent ‘‘irrationalities’’. We thus reinterpret the idea that collectives show "rational" or "irrational" preferences as being a necessary consequence of the use of positive feedback. We argue that positive feedback is a heuristic which often produces fast and accurate group decision-making, but is always susceptible to apparent irrationality when studied under particular experimental conditions. Citation: Nicolis SC, Zabzina N, Latty T, Sumpter DJT (2011) Collective Irrationality and Positive Feedback. PLoS ONE 6(4): e18901. doi:10.1371/journal. pone.0018901 Editor: Yamir Moreno, University of Zaragoza, Spain Received December 21, 2010; Accepted March 11, 2011; Published April 26, 2011 Copyright: ß 2011 Nicolis et al.
    [Show full text]
  • Collective Information Processing and Pattern Formation in Swarms, Flocks and Crowds
    Collective information processing and pattern formation in swarms, flocks and crowds Mehdi Moussaid1, 2, Simon Garnier2, Guy Theraulaz2, and Dirk Helbing1 1ETH Zurich, Swiss Federal Institute of Technology, Chair of Sociology, UNO D11, Universitätstrasse 41, 8092 Zurich, Switzerland. Phone +41 44 632 88 81; Fax +41 44 632 17 67. 2Centre de Recherches sur la Cognition Animale, UMR-CNRS 5169, Université Paul Sabatier, Bât 4R3, 118 Route de Narbonne, 31062 Toulouse cedex 9, France. Phone: +33 5 61 55 64 41 ; Fax: +33 5 61 55 61 54. Keywords: Self-organization - Social interactions - Information transfer - Living beings - Distributed cognition - Collective behaviors. 1 Abstract The spontaneous organization of collective activities in animal groups and societies has attracted a considerable amount of attention over the last decade. This kind of coordination often permits group-living species to achieve collective tasks that are far beyond single individuals capabilities. In particular, a key benefit lies in the integration of partial knowledge of the environment at the collective level. In this contribution we discuss various self-organization phenomena in animal swarms and human crowds from the point of view of information exchange among individuals. In particular, we provide a general description of collective dynamics across species and introduce a classification of these dynamics not only with respect to the way information is transferred among individuals, but also with regard to the knowledge processing at the collective level. Finally, we highlight the fact that the individuals’ ability to learn from past experiences can have a feedback effect on the collective dynamics, as experienced with the development of behavioral conventions in pedestrian crowds.
    [Show full text]
  • Swarm Robotics: Collective Behavior Inspired by Nature
    Scienc er e & ut S p y s m t o e m C f s Journal of o B l i a Tan, J Comput Sci Syst Biol 2013, 6:6 o n l o r g u y o DOI: 10.4172/jcsb.1000e106 J Computer Science & Systems Biology ISSN: 0974-7230 EditorialResearch Article OpenOpen Access Access Swarm Robotics: Collective Behavior Inspired by Nature Ying Tan* Department of Intelligence Science, School of Electronic Engineering and Computer Science, Peking University, Beijing, China Definition of Swarm Robotics mining task or agricultural foraging task. The swarm robotics can be also involved in the tasks that require large space and time cost, and are Swarm robotics is a new approach to the coordination of multi- dangerous to the human being or the robots themselves, such as post- robot systems which consist of a number of simple physical robots disaster relief, target searching, military applications, etc. [1]. It is supposed that a desired collective behavior emerges from the interaction between the robots and the interaction of robots with The study of robotics application in target search has grown the environment. This approach emerged in the field of artificial substantially in the recent years. It is more preferable for the dangerous swarm intelligence as well as the biological study of insects, ants or inaccessible working area. The problems involved in swarm robotics and other fields in the nature, where a swarm behavior occurs. research can be classified into two classes. One class of the problems The aim of researches of swarm robotics is to study the design of large is mainly based on the patterns, such as aggregation, cartography, amount of relatively simple robots, their physical bodies and their migration, self-organizing grids, deployment of distributed agents and controlling behaviors.
    [Show full text]