Inhaled and Oral Corticosteroids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
This Fact Sheet Provides Information to Patients with Eczema and Their Carers. About Topical Corticosteroids How to Apply Topic
This fact sheet provides information to patients with eczema and their carers. About topical corticosteroids You or your child’s doctor has prescribed a topical corticosteroid for the treatment of eczema. For treating eczema, corticosteroids are usually prepared in a cream or ointment and are applied topically (directly onto the skin). Topical corticosteroids work by reducing inflammation and helping to control an over-reactive response of the immune system at the site of eczema. They also tighten blood vessels, making less blood flow to the surface of the skin. Together, these effects help to manage the symptoms of eczema. There is a range of steroids that can be used to treat eczema, each with different strengths (potencies). On the next page, the potencies of some common steroids are shown, as well as the concentration that they are usually used in cream or ointment preparations. Using a moisturiser along with a steroid cream does not reduce the effect of the steroid. There are many misconceptions about the side effects of topical corticosteroids. However these treatments are very safe and patients are encouraged to follow the treatment regimen as advised by their doctor. How to apply topical corticosteroids How often should I apply? How much should I apply? Apply 1–2 times each day to the affected area Enough cream should be used so that the of skin according to your doctor’s instructions. entire affected area is covered. The cream can then be rubbed or massaged into the Once the steroid cream has been applied, inflamed skin. moisturisers can be used straight away if needed. -
PATIENT FACT SHEET (Deltasone)
Prednisone PATIENT FACT SHEET (Deltasone) Prednisone (Deltasone) is part of a potent class of inflammatory conditions, including redness, anti-inflammatory agents, known as corticosteroids, swelling and pain. Prednisone is used to treat which are used to control inflammation of the rheumatoid arthritis, lupus, vasculitis, and many joints and organs. It is often used to treat a variety of other inflammatory diseases. WHAT IS IT? Dosing of prednisone varies widely depending on tablets take effect about 6 hours after taking the the state of the disease being treated. Doses used dose. Prednisone stops working soon after stopping in rheumatoid arthritis are commonly 5-10mg daily, the medication. If you have been taking prednisone while doses needed in lupus and vasculitis are often regularly for longer than 2 weeks, do not stop it 80mg daily, or sometimes higher. Prednisone usually suddenly. Instead, you should discuss a tapering HOW TO achieves its effect within 1-2 hours. The delayed release schedule with your physician. TAKE IT Most side effects are related to the dose administered medications, there is an increased risk of infection when and duration of treatment, so the goal is to use it at combining prednisone with other medications that the lowest effective dose for the shortest period of time affect your immune system. Additionally, when taking necessary. Some potential side effects include easy prednisone with NSAIDs (such as naproxen or ibuprofen), bruising, osteoporosis (or weakened bones), diabetes, there can be an increased risk of stomach ulcers. Make hypertension, weight gain, cataracts, glaucoma, and sure to review all of your medications with your physician SIDE a bone disorder called avascular necrosis. -
Understanding Asthma
Understanding Asthma The Mount Sinai − National Jewish Health Respiratory Institute was formed by the nation’s leading respiratory hospital National Jewish Health, based in Denver, and top ranked academic medical center the Icahn School of Medicine at Mount Sinai in New York City. Combining the strengths of both organizations into an integrated Respiratory Institute brings together leading expertise in diagnosing and treating all forms of respiratory illness and lung disease, including asthma, chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD) and bronchiectasis. The Respiratory Institute is based in New York City on the campus of Mount Sinai. njhealth.org Understanding Asthma An educational health series from National Jewish Health IN THIS ISSUE What Is Asthma? 2 How Does Asthma Develop? 4 How Is Asthma Diagnosed? 5 What Are the Goals of Treatment? 7 How Is Asthma Managed? 7 What Things Make Asthma Worse and How Can You Control Them? 8 Nocturnal Asthma 18 Occupational Asthma 19 Medication Therapy 20 Monitoring Your Asthma 29 Using an Action Plan 33 Living with Asthma 34 Note: This information is provided to you as an educational service of National Jewish Health. It is not meant as a substitute for your own doctor. © Copyright 1998, revised 2014, 2018 National Jewish Health What Is Asthma? This booklet, prepared by National Jewish Health in Denver, is intended to provide information to people with asthma. Asthma is a chronic respiratory disease — sometimes worrisome and inconvenient — but a manageable condition. With proper understanding, good medical care and monitoring, you can keep asthma well controlled. That’s our treatment goal at National Jewish Health: to teach patients and families how to manage asthma, so that they can lead full and productive lives. -
Celestone Syrup Page 1 Nda 14-215/S-009, 015
CELESTONE SYRUP PAGE 1 NDA 14-215/S-009, 015 CELESTONE® betamethasone syrup, USP DESCRIPTION CELESTONE Syrup, for oral administration, contains 0.6 mg betamethasone in each 5 mL. The inactive ingredients for CELESTONE Syrup include: alcohol (less than 1%), citric acid, FD&C Red No. 40, FD&C Yellow No. 6, flavors, propylene glycol, sodium benzoate, sodium chloride, sorbitol, sugar, and water. The formula for betamethasone is C22H29F05 and it has a molecular weight of 392.47. Chemically, it is 9-fluoro-11β,17,21-trihydroxy-16β-methylpregna-1,4-diene-3,20-dione and has the following structure: (Add structure) Betamethasone is a white to practically white, odorless crystalline powder. It melts at about 240°C with some decomposition. Betamethasone is sparingly soluble in acetone, alcohol, dioxane, and methanol; very slightly soluble in chloroform and ether; and is insoluble in water. CLINICAL PHARMACOLOGY Glucocorticoids, naturally occurring and synthetic, are adrenocortical steroids that are readily absorbed from the gastrointestinal tract. Naturally occurring glucocorticoids (hydrocortisone and cortisone), which also have salt- retaining properties, are used as replacement therapy in adrenocortical deficiency states. Their synthetic analogs, such as betamethasone, are primarily used for their anti-inflammatory effects in disorders of many organ systems. A derivative of prednisolone, betamethasone has a 16β methyl group that enhances the anti-inflammatory action of the molecule and reduces the sodium- and water-retaining properties of the fluorine atom bound at carbon 9. INDICATIONS AND USAGE Allergic states: Control of severe or incapacitating allergic conditions intractable to adequate trials of conventional treatment in asthma, atopic dermatitis, contact dermatitis, drug hypersensitivity reactions, perennial or seasonal allergic rhinitis, serum sickness. -
Steroid Use in Prednisone Allergy Abby Shuck, Pharmd Candidate
Steroid Use in Prednisone Allergy Abby Shuck, PharmD candidate 2015 University of Findlay If a patient has an allergy to prednisone and methylprednisolone, what (if any) other corticosteroid can the patient use to avoid an allergic reaction? Corticosteroids very rarely cause allergic reactions in patients that receive them. Since corticosteroids are typically used to treat severe allergic reactions and anaphylaxis, it seems unlikely that these drugs could actually induce an allergic reaction of their own. However, between 0.5-5% of people have reported any sort of reaction to a corticosteroid that they have received.1 Corticosteroids can cause anything from minor skin irritations to full blown anaphylactic shock. Worsening of allergic symptoms during corticosteroid treatment may not always mean that the patient has failed treatment, although it may appear to be so.2,3 There are essentially four classes of corticosteroids: Class A, hydrocortisone-type, Class B, triamcinolone acetonide type, Class C, betamethasone type, and Class D, hydrocortisone-17-butyrate and clobetasone-17-butyrate type. Major* corticosteroids in Class A include cortisone, hydrocortisone, methylprednisolone, prednisolone, and prednisone. Major* corticosteroids in Class B include budesonide, fluocinolone, and triamcinolone. Major* corticosteroids in Class C include beclomethasone and dexamethasone. Finally, major* corticosteroids in Class D include betamethasone, fluticasone, and mometasone.4,5 Class D was later subdivided into Class D1 and D2 depending on the presence or 5,6 absence of a C16 methyl substitution and/or halogenation on C9 of the steroid B-ring. It is often hard to determine what exactly a patient is allergic to if they experience a reaction to a corticosteroid. -
St John's Institute of Dermatology
St John’s Institute of Dermatology Topical steroids This leaflet explains more about topical steroids and how they are used to treat a variety of skin conditions. If you have any questions or concerns, please speak to a doctor or nurse caring for you. What are topical corticosteroids and how do they work? Topical corticosteroids are steroids that are applied onto the skin and are used to treat a variety of skin conditions. The type of steroid found in these medicines is similar to those produced naturally in the body and they work by reducing inflammation within the skin, making it less red and itchy. What are the different strengths of topical corticosteroids? Topical steroids come in a number of different strengths. It is therefore very important that you follow the advice of your doctor or specialist nurse and apply the correct strength of steroid to a given area of the body. The strengths of the most commonly prescribed topical steroids in the UK are listed in the table below. Table 1 - strengths of commonly prescribed topical steroids Strength Chemical name Common trade names Mild Hydrocortisone 0.5%, 1.0%, 2.5% Hydrocortisone Dioderm®, Efcortelan®, Mildison® Moderate Betamethasone valerate 0.025% Betnovate-RD® Clobetasone butyrate 0.05% Eumovate®, Clobavate® Fluocinolone acetonide 0.001% Synalar 1 in 4 dilution® Fluocortolone 0.25% Ultralanum Plain® Fludroxycortide 0.0125% Haelan® Tape Strong Betamethasone valerate 0.1% Betnovate® Diflucortolone valerate 0.1% Nerisone® Fluocinolone acetonide 0.025% Synalar® Fluticasone propionate 0.05% Cutivate® Hydrocortisone butyrate 0.1% Locoid® Mometasone furoate 0.1% Elocon® Very strong Clobetasol propionate 0.1% Dermovate®, Clarelux® Diflucortolone valerate 0.3% Nerisone Forte® 1 of 5 In adults, stronger steroids are generally used on the body and mild or moderate steroids are used on the face and skin folds (armpits, breast folds, groin and genitals). -
Finding Hazards
FINDING HAZARDS OSHA 11 Finding Hazards 1 Osha 11 Finding Hazards 2 FINDING HAZARDS Learning Objectives By the end of this lesson, students will be able to: • Define the term “job hazard” • Identify a variety of health and safety hazards found at typical worksites where young people are employed. • Locate various types of hazards in an actual workplace. Time Needed: 45 Minutes Materials Needed • Flipchart Paper • Markers (5 colors per student group) • PowerPoint Slides: #1: Job Hazards #2: Sample Hazard Map #3: Finding Hazards: Key Points • Appendix A handouts (Optional) Preparing To Teach This Lesson Before you present this lesson: 1. Obtain a flipchart and markers or use a chalkboard and chalk. 2. Locate slides #1-3 on your CD and review them. If necessary, copy onto transparencies. 3. For the Hazard Mapping activity, you will need flipchart paper and a set of five colored markers (black, red, green, blue, orange) for each small group. Detailed Instructor’s Notes A. Introduction: What is a job hazard? (15 minutes) 1. Remind the class that a job hazard is anything at work that can hurt you, either physically or mentally. Explain that some job hazards are very obvious, but others are not. In order to be better prepared to be safe on the job, it is necessary to be able to identify different types of hazards. Tell the class that hazards can be divided into four categories. Write the categories across the top of a piece of flipchart paper and show PowerPoint Slide #1, Job Hazards. • Safety hazards can cause immediate accidents and injuries. -
Small Molecules in Solution Has Rarely Been Reported, However, As a General Guide We Recommend Storage in DMSO at -20°C
(Z)-Guggulsterone Small Molecules Retinoic acid receptor (RAR) pathway inhibitor; Inhibits farnesoid X receptor (FXR) Catalog # 73702 1 mg Product Description (Z)-Guggulsterone is a plant steroid found in the resin of the guggul plant Commiphora mukul that acts as a selective antagonist of farnesoid X receptor (FXR; Cui et al.). It decreases chenodeoxycholic acid (CDCA)-induced FXR activation (IC ₅₀ = 10 µM) in the presence of 100 µM CDCA (Urizar et al.; Cui et al.). Molecular Name: (Z)-Guggulsterone Alternative Names: Not applicable CAS Number: 39025-23-5 Chemical Formula: C₂₁H₂₈O₂ Molecular Weight: 312.5 g/mol Purity: ≥ 95% Chemical Name: (8R,9S,10R,13S,14S,17Z)-17-ethylidene-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15- decahydrocyclopenta[a]phenanthrene-3,16-dione Structure: Properties Physical Appearance: A crystalline solid Storage: Product stable at -20°C as supplied. Protect product from prolonged exposure to light. For long-term storage store with a desiccant. For product expiry date, please contact [email protected]. Solubility: · DMSO ≤ 800 µM · Absolute ethanol ≤ 3.2 µM · DMF ≤ 30 mM For example, to prepare a 10 mM stock solution in DMF, resuspend 1 mg in 320 μL of DMF. Prepare stock solution fresh before use. Information regarding stability of small molecules in solution has rarely been reported, however, as a general guide we recommend storage in DMSO at -20°C. Aliquot into working volumes to avoid repeated freeze-thaw cycles. The effect of storage of stock solution on compound performance should be tested for each application. Compound has low solubility in aqueous media. -
Prevention and Management of Occupational Dermatitis and Latex Allergy in a Healthcare Setting Policy
Prevention and Management of Occupational Dermatitis and Latex Allergy in a Healthcare Setting Policy V3.0 June 2020 Summary The aim of the policy is to: . protect individuals employed by the Royal Cornwall Hospitals Trust from developing skin conditions through exposure to potential irritants they may encounter whilst at work . describe the occupational health management of those who develop skin conditions . minimise the risks to patients and staff that may arise as a consequence of skin conditions developed by healthcare workers. Posts with specific responsibilities: . ward/departmental managers . individual staff . Occupational Health Service . Health and Safety Team . Infection Prevention and Control Team . Dermatology Department . Procurement Team . Health and Safety Committee. Key points in the document: . the risk of skin problems is increased in those who are exposed to agents through their work that can irritate or sensitise the skin. This can include frequent handwashing and the use of gloves in healthcare workers. Many of the exposures that place those working in a healthcare setting at increased risk are related to infection prevention and control requirements . background information for staff and managers regarding dermatitis and allergy . assessment forms . referral to Occupational Health . reporting of occupational dermatitis. Prevention and Management of Occupational Dermatitis and Latex Allergy in a Healthcare Setting Policy V3.0 Page 2 of 28 Table of Contents Summary ........................................................................................................................... -
Allergic Contact Dermatitis from Formaldehyde Exposure
DOI: 10.5272/jimab.2012184.255 Journal of IMAB - Annual Proceeding (Scientific Papers) 2012, vol. 18, book 4 ALLERGIC CONTACT DERMATITIS FROM FORMALDEHYDE EXPOSURE Maya Lyapina1, Angelina Kisselova-Yaneva 2, Assya Krasteva2, Mariana Tzekova -Yaneva2, Maria Dencheva-Garova2 1) Department of Hygiene, Medical Ecology and Nutrition, Medical Faculty, 2) Department of Oral and Image Diagnostic, Faculty of Dental Medicine, Medical University, Sofia,Bulgaria ABSTRACT atmospheric air, tobacco smoke, use of cosmetic products Formaldehyde is a ubiquitous chemical agent, a part and detergents, and in less extend – water and food of our outdoor and indoor working and residential consumption (11, 81). It is released into the atmosphere environment. Healthcare workers in difficult occupations are through fumes from automobile exhausts without catalytic among the most affected by formaldehyde exposure. convertors and by manufacturing facilities that burn fossil Formaldehyde is an ingredient of some dental materials. fuels in usual concentration about 1-10 ppb. Uncontrolled Formaldehyde is well-known mucous membrane irritant and forest fires and the open burning of waste also give off a primary skin sensitizing agent associated with both contact formaldehyde. It is believed that the daily exposure from dermatitis (Type IV allergy), and immediate, anaphylactic atmospheric air is up to 0.1 mg (35, 43, 44). reactions (Type I allergy). Inhalation exposure to According to the WHO industrial emissions could formaldehyde was identified as a potential cause of asthma. appear at each step of production, use, transportation, or Quite a few investigations are available concerning health deposition of formaldehyde-containing products. issues for dental students following formaldehyde exposure. Formaldehyde emissions are detected from various Such studies would be beneficial for early diagnosis of industries – energy industry, wood and paper product hypersensitivity, adequate prophylactic, risk assessment and industries, textile production and finishing, chemical management of their work. -
Steroids and Other Appearance and Performance Enhancing Drugs (Apeds) Research Report
Research Report Revised Febrero 2018 Steroids and Other Appearance and Performance Enhancing Drugs (APEDs) Research Report Table of Contents Steroids and Other Appearance and Performance Enhancing Drugs (APEDs) Research Report Introduction What are the different types of APEDs? What is the history of anabolic steroid use? Who uses anabolic steroids? Why are anabolic steroids misused? How are anabolic steroids used? What are the side effects of anabolic steroid misuse? How does anabolic steroid misuse affect behavior? What are the risks of anabolic steroid use in teens? How do anabolic steroids work in the brain? Are anabolic steroids addictive? How are anabolic steroids tested in athletes? What can be done to prevent steroid misuse? What treatments are effective for anabolic steroid misuse? Where can I get further information about steroids? References Page 1 Steroids and Other Appearance and Performance Enhancing Drugs (APEDs) Research Report Esta publicación está disponible para su uso y puede ser reproducida, en su totalidad, sin pedir autorización al NIDA. Se agradece la citación de la fuente, de la siguiente manera: Fuente: Instituto Nacional sobre el Abuso de Drogas; Institutos Nacionales de la Salud; Departamento de Salud y Servicios Humanos de los Estados Unidos. Introduction Appearance and performance enhancing drugs (APEDs) are most often used by males to improve appearance by building muscle mass or to enhance athletic performance. Although they may directly and indirectly have effects on a user’s mood, they do not produce a euphoric high, which makes APEDs distinct from other drugs such as cocaine, heroin, and marijuana. However, users may develop a substance use disorder, defined as continued use despite adverse consequences. -
Differential Effects of Hydrocortisone, Prednisone, And
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Nebesio et al. International Journal of Pediatric Endocrinology (2016) 2016:17 DOI 10.1186/s13633-016-0035-5 RESEARCH Open Access Differential effects of hydrocortisone, prednisone, and dexamethasone on hormonal and pharmacokinetic profiles: a pilot study in children with congenital adrenal hyperplasia Todd D. Nebesio1*, Jamie L. Renbarger2,3, Zeina M. Nabhan1, Sydney E. Ross2, James E. Slaven4, Lang Li5, Emily C. Walvoord1 and Erica A. Eugster1 Abstract Background: Little is known about the comparative effects of different glucocorticoids on the adrenal and growth hormone (GH) axes in children with congenital adrenal hyperplasia (CAH). We sought to compare the effects of hydrocortisone (HC), prednisone (PDN), and dexamethasone (DEX) in children with classic CAH and to investigate a potential role of pharmacogenetics. Methods: Subjects were randomly assigned to three sequential 6-week courses of HC, PDN, and DEX, each followed by evaluation of adrenal hormones, IGF-1, GH, and body mass index (BMI). Single nucleotide polymorphism (SNP) analysis of genes in the glucocorticoid pathway was also performed. Results: Nine prepubertal subjects aged 8.1 ± 2.3 years completed the study. Mean ACTH, androstenedione, and 17-hydroxyprogesterone (17-OHP) values were lower following the DEX arm of the study than after subjects received HC (p ≤ 0.016) or PDN (p ≤ 0.002). 17-OHP was also lower after HC than PDN (p < 0.001). There was no difference in IGF-1, GH, or change in BMI. SNP analysis revealed significant associations between hormone concentrations, pharmacokinetic parameters, and variants in several glucocorticoid pathway genes (ABCB1, NR3C1, IP013, GLCCI1).