INTODUCTION Engineering Is One of the Skills for Which the Romans Are Most Renowned. Some of Their Works, Such As Bridges Carryi

Total Page:16

File Type:pdf, Size:1020Kb

INTODUCTION Engineering Is One of the Skills for Which the Romans Are Most Renowned. Some of Their Works, Such As Bridges Carryi Cambridge University Press 0521792975 - Surveying Instruments of Greece and Rome M. J. T. Lewis Excerpt More information INTODUCTION Engineering is one of the skills for which the Romans are most renowned. Some of their works, such as bridges carrying roads or water, are visually spectacular because of their sheer scale and daring. Others are equally impressive for the less obvious reason that they required very precise surveying. Examples which leap to mind are roads which cut across country as straight as an arrow, kilometre-long tunnels whose headings met deep underground without significant error, and aqueducts on gradients that can average in for twenty-five kilometres or in , for eight. Such feats of engineer- ing would have been impossible without good surveying techniques and good instruments. That these existed has of course long been rec- ognised, and many historians of technology have commented on them, although there has been no fundamental discussion of the evidence for many years. The regular conclusion has been that the standard instru- ment for laying out straight lines and right angles was the groma, that the standard instrument for levelling was the chorobates, and that Hero’s dioptra was a non-starter. Constant repetition has almost sanc- tified this opinion into a dogma. But while it is partly true, it is also partly wrong, and it is very incomplete in that it is biased towards the Romans and ignores much of the evidence available in Greek. One of my aims is to remedy the deficiency, and in the process to restore to the Greeks their rightful share of the credit. ‘The Greeks had the brains, the Romans had good drains’, runs the jingle, in tune with the perception, common to the ancient Romans and to more recent generations alike, that it was Rome which borrowed the bright but unrealised ideas of Greece and brought them to fruition. Yet the Greeks were engineers too, even if their achievements in this field were often more modest and less immediately obvious. In contrast to the wealth, peace and unity of the Roman Empire at its height, the geog- raphy of Greece was divisive and its political units were smaller and incessantly at loggerheads. There was therefore less opportunity for major undertakings. But this did not inhibit creativity; and in the realm © Cambridge University Press www.cambridge.org Cambridge University Press 0521792975 - Surveying Instruments of Greece and Rome M. J. T. Lewis Excerpt More information INTODUCTION of instrumental surveying, as in so much else, it was the Greeks who developed not only the theory but much of the practice too, and their pioneering contribution deserves our wholehearted respect. This book embraces a thousand years, from the archaic Greek tunnels of the sixth century to the Roman aqueducts which were still being built in the fifth century . During that time span, two major revolutions which altered the political map of the Mediterranean also increased the demand for surveyors and indirectly affected their instruments. First, the death in of Alexander the Great ushered in the Hellenistic Age, when his huge empire was carved up by his generals into what, compared with the previous norm of small units, were super-states. Of these, Egypt, ruled by the Ptolemies, at first dominated the scientific and mechanical scene, with a profound input from the royal research institute, the Museum of Alexandria, founded about . At the same time Archimedes was engaged in largely independent but equally mould-breaking work in Syracuse. After a hundred years or so the influence of Alexandria waned. Its sci- entific lead seems to have been assumed by the emergent kingdom of Pergamon in Asia Minor in the realm of surveying and by the city state of Rhodes in the related pursuit of instrumental astronomy. The Hellenistic Age was ended by the coming of Rome. But it had seen the foundations of geometry laid, most notably by Euclid, and it had also seen the rise, rooted in that geometry, of the theory of surveying and of precision instruments. Surveyors could now answer questions asked by natural philosophers, such as the size of the earth and the heights of mountains, and more practically they could serve the state both in its military and its civil role. The second revolution was the rise of Rome and its acquisition between and , both by force of arms and by diplomacy, of most Greek territories. Its surveying instruments and even some of the uses (notably road building) to which it put them differed from those of the Greeks, but they evidently went back just as far in time. With the Roman take-over of the eastern Mediterranean these two largely inde- pendent traditions met and to some extent melded. Roman engineer- ing expanded eastwards, Greek theory (but not perhaps Greek surveying instruments) was exported west: Vitruvius, for example, the major Latin source of the first century , derived his material on sur- veying almost entirely from Greek sources. Nor was Greek enterprise © Cambridge University Press www.cambridge.org Cambridge University Press 0521792975 - Surveying Instruments of Greece and Rome M. J. T. Lewis Excerpt More information INTODUCTION stifled. Alexandrian science experienced a revival, exemplified by Hero in the first century , by Ptolemy the astronomer in the second and by Theon in the fourth. With its empire established and for two centuries in relative harmony, Rome was at leisure to undertake its mightiest engineering works. The profession of the ancient surveyor, whether Greek or Roman, may be divided into four distinct categories. The land surveyor (geometres or geodaistes in Greek, finitor, mensor, agrimensor or gromaticus in Latin) carried out relatively localised work on the ground surface. He might record the exact shape of an existing expanse of ground such as a field or an estate and calculate the areas enclosed. He might divide land into plots, normally rectangular, whether in the country for distribution to settlers, or in a town for setting out a grid of streets, or in a military context for laying out a fort. His work is the subject of the Roman compilation known as the Corpus Agrimensorum. Land surveying was concerned essentially only with horizontal measurement, not with vertical. The cartographical surveyor (chorographos, geographos) made maps, usually of larger areas than the land surveyor, for example of regions or provinces or even of the whole known world. At least in theory, this might involve establishing latitudes and, indirectly, longitudes by a combination of astronomical and terrestrial methods, and the spheric- ity of the earth had to be taken into account. A related pursuit was the enquiry, originally philosophical, into the size of the earth and the heights of mountains. The military surveyor (mensor) supplied practical information to the commander and his engineers, who might call in particular for two precise dimensions that were highly dangerous to measure directly in the presence of the enemy: the height of a city wall in order to prepare ladders or a siege tower of the right height, and the width of a river in order to prepare a pontoon bridge of the right length. The engineering surveyor (mensor or librator) investigated terrain with a view to imposing man-made features on it. Roads and aque- ducts are the most obvious instances, but hand in hand with aqueducts went drainage and irrigation channels and navigable canals; and with them, on occasion, went tunnels and mine adits with their particular © Cambridge University Press www.cambridge.org Cambridge University Press 0521792975 - Surveying Instruments of Greece and Rome M. J. T. Lewis Excerpt More information INTODUCTION problems of maintaining direction and gradient underground. Harbour works could also require the services of a surveyor. These categories were by no means mutually exclusive. Surveyors in the different branches could employ the same instruments and similar techniques, and could even be the same men. Some of their instru- ments and techniques were also shared by astronomers who, especially with the rise of mathematical astronomy, wished to find the angular distances between stars and planets and the apparent diameters of the sun and moon, and to establish the celestial coordinates of stars and planets relative to the equator or the ecliptic. The various branches of surveying will not receive equal treatment in this book. The work of the agrimensor has already been much dis- cussed, and little can be added to our still imperfect understanding of its principal instrument, the groma. Nor can much new be said of map making, considerable though it evidently was. 1 Ptolemy, its greatest exponent, claimed (Source ) that places could be accurately located by coordinates determined either by astronomical observation or by terrestrial measurement. In practice, however, the vast majority of the latitudes and longitudes which he gives are the result of nothing more than dead reckoning.2 None the less, new light can be shed on the use of instruments in calculating the size of the earth and the heights of mountains. Astronomers and terrestrial surveyors shared the dioptra, which was one of the parents of that important and long-lived device the plane astrolabe; but otherwise astronomical instruments have little direct relevance to terrestrial surveying and will receive short shrift here. Part I of this book therefore concentrates on instruments for mil- itary and especially for engineering surveying. Since it would be non- sensical to discuss the instruments and not their application, Part II includes a number of examples of how different surveying tasks might have been undertaken. The subject, too, is one that cries out for experimental archaeology, and the results are presented here of trials with versions of the dioptra and libra which have never, as far as I am aware, been reconstructed before.
Recommended publications
  • Mathematical Discourse in Philosophical Authors: Examples from Theon of Smyrna and Cleomedes on Mathematical Astronomy
    Mathematical discourse in philosophical authors: Examples from Theon of Smyrna and Cleomedes on mathematical astronomy Nathan Sidoli Introduction Ancient philosophers and other intellectuals often mention the work of mathematicians, al- though the latter rarely return the favor.1 The most obvious reason for this stems from the im- personal nature of mathematical discourse, which tends to eschew any discussion of personal, or lived, experience. There seems to be more at stake than this, however, because when math- ematicians do mention names they almost always belong to the small group of people who are known to us as mathematicians, or who are known to us through their mathematical works.2 In order to be accepted as a member of the group of mathematicians, one must not only have mastered various technical concepts and methods, but must also have learned how to express oneself in a stylized form of Greek prose that has often struck the uninitiated as peculiar.3 Be- cause of the specialized nature of this type of intellectual activity, in order to gain real mastery it was probably necessary to have studied it from youth, or to have had the time to apply oneself uninterruptedly.4 Hence, the private nature of ancient education meant that there were many educated individuals who had not mastered, or perhaps even been much exposed to, aspects of ancient mathematical thought and practice that we would regard as rather elementary (Cribiore 2001; Sidoli 2015). Starting from at least the late Hellenistic period, and especially during the Imperial and Late- Ancient periods, some authors sought to address this situation in a variety of different ways— such as discussing technical topics in more elementary modes, rewriting mathematical argu- ments so as to be intelligible to a broader audience, or incorporating mathematical material di- rectly into philosophical curricula.
    [Show full text]
  • The Geodetic Sciences in Byzantium
    The geodetic sciences in Byzantium Dimitrios A. Rossikopoulos Department of Geodesy and Surveying, Aristotle University of Thessaloniki [email protected] Abstract: Many historians of science consider that geodeasia, a term used by Aristotle meaning "surveying", was not particularly flourishing in Byzantium. However, like “lo- gistiki” (practical arithmetic), it has never ceased to be taught, not only at public universi- ties and ecclesiastical schools, as well as by private tutors. Besides that these two fields had to do with problems of daily life, Byzantines considered them necessary prerequisite for someone who wished to study philosophy. So, they did not only confine themselves to copying and saving the ancient texts, but they also wrote new ones, where they were ana- lyzing their empirical discoveries and their technological achievements. This is the subject of this paper, a retrospect of the numerous manuscripts of the Byzantine period that refer to the development of geodesy both in teaching and practices of surveying, as well as to mat- ters relating to the views about the shape of the earth, the cartography, the positioning in travels and generally the sciences of mapping. Keywords: Geodesy, geodesy in Byzantium, history of geodesy, history of surveying, history of mathematics. Περίληψη: Πολλοί ιστορικοί των επιστημών θεωρούν ότι η γεωδαισία, όρος που χρησι- μοποίησε ο Αριστοτέλης για να ορίσει την πρακτική γεωμετρία, την τοπογραφία, δεν είχε ιδιαίτερη άνθιση στο Βυζάντιο. Ωστόσο, όπως και η “λογιστική”, δεν έπαψε ποτέ να διδά- σκεται όχι μόνο στα κοσμικά πανεπιστήμια, αλλά και στις εκκλησιαστικές σχολές, καθώς επίσης και από ιδιώτες δασκάλους. Πέρα από το ότι οι δύο αυτοί κλάδοι είχαν να κάνουν με προβλήματα της καθημερινής ζωής των ανθρώπων, οι βυζαντινοί θεωρούσαν την διδα- σκαλία τους απαραίτητη προϋπόθεση ώστε να μπορεί κανείς να παρακολουθήσει μαθήμα- τα φιλοσοφίας.
    [Show full text]
  • Kytherian Newsletter November 2011
    Page 888 The KYTHERIAN, NOVEMBER 2011 ANCIENT GREEK TECHNOLOGY: THE ANTIKYTHERA MECHANISM Dr Amelia R Brown looks at ancient technology, and how it's affected modern technology The last two decades are generally described as an era of technology, characterised by the rapid development and global distribution of new technologies, especially in relation to transportation, by land or by sea. The ancient Greeks, however, are often described as overly traditional when it comes to technology, as they did not achieve modern levels of industrialisation. However the Antikythera Mechanism has been influential in changing opinions about ancient technology, as it is the most sophisticated geared machine to survive from Antiquity: a veritable primitive computer. Before its discovery on a shipwreck off the island of Antikythera in 1900, the existence of devices like it was hardly dreamed of, and in recent years it has been subjected to a battery of modern tests, though it is surely hiding secrets still (see Marchant's Decoding the Heavens. Three things seem clear, however, about ancient Greek technology, and about the Antikythera Mechanism. First, the Greeks knew how to work in bronze to a very high level of sophistication. Second, the Antikythera Mechanism derives from a context related to the city of Corinth, the origin for the names of the months on its dials, and the Greek city most famous for its bronze work. Finally, the mechanism was created to fulfil a perceived need in Greek society of its time, surely through incremental developments in technology, and NOT necessarily to fulfil the 'needs' which we perceive in our society today and which can be fulfilled by our technology.
    [Show full text]
  • Decoding the Antikythera Mechanism: Investigation of an Ancient Astronomical Calculator
    Decoding the Antikythera Mechanism: Investigation of an Ancient Astronomical Calculator 2 Supplementary Notes T. Freeth 1,2 , Y. Bitsakis 3,5 , X. Moussas 3, J.H. Seiradakis 4, A.Tselikas 5, E. Magkou 6, M. Zafeiropoulou 6, R. Hadland 7, D. Bate 7, A. Ramsey 7, M. Allen 7, A. Crawley 7, P. Hockley 7, T. Malzbender 8, D. Gelb 8, W. Ambrisco 9 and M.G. Edmunds 1 1 Cardiff University, School of Physics andAstronomy, Queens Buildings, The Parade, Cardiff CF24 3AA, UK. Mike Edmunds Mike.Edmunds @ astro.cf.ac.uk 2 Images First Ltd10 HerefordRoad, South Ealing, London W5 4SE, UK. Tony Freeth tony @ images- first.com 3 National & Kapodistrian University of Athens, Department of Astrophysics, Astronomy andMechanics, Panepistimiopolis, GR15783, Zographos, Greece. Xenophon Moussas, xmoussas @ phys.uoa.gr 4 Aristotle University of Thessaloniki, Department of Physics, Section of Astrophysics, Astronomy and Mechanics, GR-54124 Thessaloniki, Greece. John Seiradakis jhs @ astro.auth.gr 5 Centre for History andPalaeography, National Bank of Greece Cultural Foundation, P. Skouze 3, 10560 Athens, Greece. Yanis Bitsakis bitsakis @ gmail.com 6 National Archaeological Museum of Athens, 44 Patission Str, 106 82 Athens, Greece. 7 X-Tek Systems Ltd, Tring Business Centre, IcknieldWay, Tring, Herts HP23 4JX, UK. 8 Hewlett-PackardLaboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA. 9 Foxhollow Technologies Inc., 740 Bay Road, RedwoodCity, CA 94063, USA. Decoding the Antikythera Mechanism , published in Nature, Volume 444, Issue 7119, pp. 587-591 (2006). 1 Supplementary Information Guide There are three Supplementary Information sections: Supplementary Notes 1 (Fragments ) giving a key to fragment identification for Figure 1 of the main text andthe dimensions of the fragments.
    [Show full text]
  • Max Planck Institute for the History of Science Aristotle And
    MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science 2012 PREPRINT 422 TOPOI – Towards a Historical Epistemology of Space Pietro Daniel Omodeo, Irina Tupikova Aristotle and Ptolemy on Geocentrism: Diverging Argumentative Strategies and Epistemologies TOPOI – TOWARDS A HISTORICAL EPISTEMOLOGY OF SPACE The TOPOI project cluster of excellence brings together researchers who investigate the formation and transformation of space and knowledge in ancient civilizations and their later developments. The present preprint series presents the work of members and fellows of the research group Historical Epistemology of Space which is part of the TOPOI cluster. The group is based on a cooperation between the Humboldt University and the Max Planck Institute for the History of Science in Berlin and commenced work in September 2008. Contents 1 Introduction 1 2 Aristotle 5 2.1 Aristotle’s confrontation with the cosmologies of his prede- cessors . 6 2.2 Aristotle’s presentation of his own views . 9 3 Ptolemy 15 3.1 The heavens move like a sphere . 16 3.2 The Earth, taken as a whole, is sensibly spherical . 24 3.3 The Earth is in the middle of the heavens . 24 3.4 The Earth has the ratio of a point to the heavens . 32 3.5 The Earth does not have any motion from place to place . 33 4 Conclusions and perspectives 37 Chapter 1 Introduction This paper aims at a comparison of the different argumentative strategies employed by Aristotle and Ptolemy in their approaches to geocentrism through an analysis of their discussion of the centrality of the Earth in De caelo II, 13-14 and Almagest, I, 3-7.
    [Show full text]
  • Understanding the Antikythera Mechanism M.T
    Understanding the Antikythera Mechanism M.T. Wright Imperial College, London. Preprint of the written version of a lecture given at a conference held in Athens, 17th – 21st October 2005: 2o Διεθνές Συνέδριο Αρχαίας Ελληνικής Τεχνολογίας (2nd International Conference on Ancient Greek Technology). This paper is to be published in the Proceedings, of which the bibliographical details are to be announced, and is reproduced here with permission. The fragmentary Antikythera Mechanism, recovered from a shipwreck that is dateable to the 1st. century B.C., stands alone as evidence of the high level of attainment of the Hellenistic mechanic. A remarkably accomplished instrument of small size, it is justly celebrated as the earliest artefactual evidence for the use of toothed gearing. It is most widely known through the writing of the late Professor Derek Price1 and through secondary sources based on his work. Yet, as far as the instrument itself was concerned, Price’s treatment was inadequate and the Mechanism remained but poorly understood. A new reconstruction of the Antikythera Mechanism is now presented which, unlike all earlier reconstructions, accords with and accounts for very nearly all of the mechanical detail observed in the original fragments. It is based on a detailed survey of the original fragments carried out by the author at The National Archaeological Museum, Athens, in collaboration with the late Professor Allan Bromley (University of Sydney). Early results of this survey were presented at the First International Conference on Ancient Greek Technology (Thessaloniki, 1997).2 Price’s reconstruction was shown to be fundamentally flawed, but we could not then offer a more satisfactory alternative.
    [Show full text]
  • INTODUCTION Engineering Is One of the Skills for Which The
    Cambridge University Press 0521792975 - Surveying Instruments of Greece and Rome M. J. T. Lewis Excerpt More information INTODUCTION Engineering is one of the skills for which the Romans are most renowned. Some of their works, such as bridges carrying roads or water, are visually spectacular because of their sheer scale and daring. Others are equally impressive for the less obvious reason that they required very precise surveying. Examples which leap to mind are roads which cut across country as straight as an arrow, kilometre-long tunnels whose headings met deep underground without significant error, and aqueducts on gradients that can average in for twenty-five kilometres or in , for eight. Such feats of engineer- ing would have been impossible without good surveying techniques and good instruments. That these existed has of course long been rec- ognised, and many historians of technology have commented on them, although there has been no fundamental discussion of the evidence for many years. The regular conclusion has been that the standard instru- ment for laying out straight lines and right angles was the groma, that the standard instrument for levelling was the chorobates, and that Hero’s dioptra was a non-starter. Constant repetition has almost sanc- tified this opinion into a dogma. But while it is partly true, it is also partly wrong, and it is very incomplete in that it is biased towards the Romans and ignores much of the evidence available in Greek. One of my aims is to remedy the deficiency, and in the process to restore to the Greeks their rightful share of the credit.
    [Show full text]
  • A History of Star Catalogues
    A History of Star Catalogues © Rick Thurmond 2003 Abstract Throughout the history of astronomy there have been a large number of catalogues of stars. The different catalogues reflect different interests in the sky throughout history, as well as changes in technology. A star catalogue is a major undertaking, and likely needs strong justification as well as the latest instrumentation. In this paper I will describe a representative sample of star catalogues through history and try to explain the reasons for conducting them and the technology used. Along the way I explain some relevent terms in italicized sections. While the story of any one catalogue can be the subject of a whole book (and several are) it is interesting to survey the history and note the trends in star catalogues. 1 Contents Abstract 1 1. Origin of Star Names 4 2. Hipparchus 4 • Precession 4 3. Almagest 5 4. Ulugh Beg 6 5. Brahe and Kepler 8 6. Bayer 9 7. Hevelius 9 • Coordinate Systems 14 8. Flamsteed 15 • Mural Arc 17 9. Lacaille 18 10. Piazzi 18 11. Baily 19 12. Fundamental Catalogues 19 12.1. FK3-FK5 20 13. Berliner Durchmusterung 20 • Meridian Telescopes 21 13.1. Sudlich Durchmusterung 21 13.2. Cordoba Durchmusterung 22 13.3. Cape Photographic Durchmusterung 22 14. Carte du Ciel 23 2 15. Greenwich Catalogues 24 16. AGK 25 16.1. AGK3 26 17. Yale Bright Star Catalog 27 18. Preliminary General Catalogue 28 18.1. Albany Zone Catalogues 30 18.2. San Luis Catalogue 31 18.3. Albany Catalogue 33 19. Henry Draper Catalogue 33 19.1.
    [Show full text]
  • The Two Earths of Eratosthenes Author(S): Christián Carlos Carman and James Evans Source: Isis, Vol
    University of Puget Sound Sound Ideas All Faculty Scholarship Faculty Scholarship 3-2015 The woT Earths of Eratosthenes James Evans University of Puget Sound, [email protected] Christián Carlos Carman Buenos Aires, Argentina Follow this and additional works at: http://soundideas.pugetsound.edu/faculty_pubs Citation Christián C. Carman and James Evans, “The wT o Earths of Eratosthenes,” Isis 106 (2015), 1-16. This Article is brought to you for free and open access by the Faculty Scholarship at Sound Ideas. It has been accepted for inclusion in All Faculty Scholarship by an authorized administrator of Sound Ideas. For more information, please contact [email protected]. The Two Earths of Eratosthenes Author(s): Christián Carlos Carman and James Evans Source: Isis, Vol. 106, No. 1 (March 2015), pp. 1-16 Published by: The University of Chicago Press on behalf of The History of Science Society Stable URL: http://www.jstor.org/stable/10.1086/681034 . Accessed: 08/12/2015 15:41 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and The History of Science Society are collaborating with JSTOR to digitize, preserve and extend access to Isis.
    [Show full text]
  • Land Surveys, Instruments, and Practitioners in the Renaissance Uta Lindgren
    19 • Land Surveys, Instruments, and Practitioners in the Renaissance Uta Lindgren Introduction: The Situation in 1450 for the use of merchants (arithmetic), for architects and the building industry (geometry), and for navigators (as- In the period around 1450 there were neither models nor tronomy). The demand for these practical manuals came methods for the complete cartographic depiction of the from various sources: rich citizens and rich churchmen in landscape. Scholars who lived in southern German mon- growing towns such as Florence, Cologne, London, Paris, asteries and at the University of Vienna during the first and Brugge; merchants; and also sovereigns, who hoped half of the fifteenth century were involved in intensive to use them to secure seafaring. These groups of people work on Ptolemy’s Geography, especially the calculating wanted to embellish their towns with great church build- and collecting of coordinates.1 The scholars’ diverse ac- ings and teach their sons the known calculation methods tivities, methods, and instruments were highlighted in useful for the exchange of merchandise and the art of two astonishing Munich codices by Fridericus.2 But one navigation. cannot produce a large-scale map using coordinates Another impetus for the increase of such knowledge alone. Even though the maps of the Geography came to was strong in all social ranks: the desire to know the fu- fascinate the humanists, they were disappointed when ture by means of astrology. Horoscopes required a good they could find neither their place of birth nor their sur- knowledge of the star constellations and the exact time rounding areas on the maps of ancient Germany.
    [Show full text]
  • Hipparchus's Table of Chords
    ApPENDIX 1 Hipparchus's Table of Chords The construction of this table is based on the facts that the chords of 60° and 90° are known, that starting from chd 8 we can calculate chd(180° - 8) as shown by Figure Al.1, and that from chd S we can calculate chd ~8. The calculation of chd is goes as follows; see Figure Al.2. Let the angle AOB be 8. Place F so that CF = CB, place D so that DOA = i8, and place E so that DE is perpendicular to AC. Then ACD = iAOD = iBOD = DCB making the triangles BCD and DCF congruent. Therefore DF = BD = DA, and so EA = iAF. But CF = CB = chd(180° - 8), so we can calculate CF, which gives us AF and EA. Triangles AED and ADC are similar; therefore ADIAE = ACIDA, which implies that AD2 = AE·AC and enables us to calculate AD. AD is chd i8. We can now find the chords of 30°, 15°, 7~0, 45°, and 22~0. This gives us the chords of 150°, 165°, etc., and eventually we have the chords of all R P chord 8 = PQ, C chord (180 - 8) = QR, QR2 = PR2 _ PQ2. FIGURE A1.l. 235 236 Appendix 1. Hipparchus's Table of Chords Ci"=:...-----""----...........~A FIGURE A1.2. multiples of 71°. The table starts: 2210 10 8 2 30° 45° 522 chd 8 1,341 1,779 2,631 3,041 We find the chords of angles not listed and angles whose chords are not listed by linear interpolation. For example, the angle whose chord is 2,852 is ( 2,852 - 2,631 1)0 .
    [Show full text]
  • Theory and Practice in Heron's Mechanics
    Theory and Practice in Heron's Mechanics The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Schiefsky, Mark J. 2007. Theory and practice in Heron's Mechanics. In Mechanics and Natural Philosophy before the Scientific Revolution, ed. W. R. Laird and S. Roux. Boston Studies in the Philosophy of Science 254. New York: Springer. Published Version doi:10.1007/978-1-4020-5967-4_1 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3708561 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Theory and practice in Heron’s Mechanics Mark J. Schiefsky July 2005 1 Introduction In Greco-Roman antiquity, the art or science of mechanics (μηχανικὴ τέχνη or ἐπιστήμη) encompassed a wide range of manual and intellectual activities, from the building of precision devices such as artillery and automata to the sophisticated theoretical analysis of machines in terms of concepts such as force and weight. As such, mechanics involved many different kinds of knowledge. Two key categories of mechanical knowledge may be distinguished: (1) theoretical knowledge, a set of relations between abstract concepts such as force and weight, sometimes couched in deductive form, and transmitted largely in written texts; and (2) practitioners’ knowledge, arising in connection with the productive use of technology and acquired by practitioners in the course of their professional activity.
    [Show full text]