Emergence and Reductionism: an Awkward Baconian Alliance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ALEXEI MIKHAIL TSVELIK Address
NAME: ALEXEI MIKHAIL TSVELIK Address: Brookhaven National Laboratory Division of Condensed Matter Physics and Materials Science, bldn. 734 Upton, NY 11973-5000, USA e-mail: [email protected] Nationality: USA, British. Fellowships and Awards: Alexander von Humboldt prize 2014 Brookhaven Science and Technology Award 2006 American Physical Society Fellow 2002 Education Sept 1971 June 1977 : Undergraduate, Moscow Physical-Technical Institute. July 1977 May 1980 : Postgraduate studies at Institute for High Pressure Physics of Academy of Sciences of USSR. March 1980 : Ph. D. in theoretical physics Professional Record Dec. 2014- June 2015, on leave at University of Dusseldorf and Ldwig Maximilan University (Munich). Feb.-March 2005, on leave at Princeton University. Since 4 April 2001 - Senior Research Staff member, Brookhaven National Laboratory, Upton. 1 March - June 2000, Visiting Fellow Commoner in Trinity College, Cambridge Since Sept. 1, 1992 till Apr. 4, 2001 - Lecturer (from July 28/97 - Professor) in Physics in Department of Physics, University of Oxford and a tutorial fellow in Brasenose College, Oxford. 1 March - August 30 1992 Department of Physics, Harvard University, visiting scholar, August 1991 - February 1992 Department of Physics, Princeton University, visiting research staff member. September 1989 - August 1991; Institute of Fundamental Theory fellow in University of Florida, Gainesville, FL. May 1982 - February 1996; Permanent scientific staff member, Landau Institute for Theoretical Physics, Moscow. May 1980 - May 1982 : Scientific staff member, Institute for High Pressure Physics, Moscow. 2 Carreers of Former Graduate Students 1. Paul de Sa - DPhil. 95, 1995-96 - Kennedy Scholar at MIT, then a postdoc at Harvard School for Goverment. Senior Analyst, Bernstein Research. -
Heavy Fermions: Electrons at the Edge of Magnetism
Heavy Fermions: Electrons at the Edge of Magnetism Piers Coleman Rutgers University, Piscataway, NJ, USA Mathur et al., 1998). The ‘quantum critical point’ (QCP) that 1 Introduction: ‘Asymptotic Freedom’ in a Cryostat 95 separates the heavy-electron ground state from the AFM rep- 2 Local Moments and the Kondo Lattice 105 resents a kind of singularity in the material phase diagram 3 Kondo Insulators 123 that profoundly modifies the metallic properties, giving them a a predisposition toward superconductivity and other novel 4 Heavy-fermion Superconductivity 126 states of matter. 5 Quantum Criticality 135 One of the goals of modern condensed matter research 6 Conclusions and Open Questions 142 is to couple magnetic and electronic properties to develop Notes 142 new classes of material behavior, such as high-temperature Acknowledgments 142 superconductivity or colossal magnetoresistance materials, References 143 spintronics, and the newly discovered multiferroic materials. Further Reading 148 Heavy-electron materials lie at the very brink of magnetic instability, in a regime where quantum fluctuations of the magnetic and electronic degrees are strongly coupled. As such, they are an important test bed for the development of 1 INTRODUCTION: ‘ASYMPTOTIC our understanding about the interaction between magnetic FREEDOM’ IN A CRYOSTAT and electronic quantum fluctuations. Heavy-fermion materials contain rare-earth or actinide The term heavy fermion was coined by Steglich et al. (1976) ions, forming a matrix of localized magnetic moments. The in the late 1970s to describe the electronic excitations in active physics of these materials results from the immersion a new class of intermetallic compound with an electronic of these magnetic moments in a quantum sea of mobile con- density of states as much as 1000 times larger than copper. -
Joaquin M. Luttinger 1923–1997
Joaquin M. Luttinger 1923–1997 A Biographical Memoir by Walter Kohn ©2014 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. JOAQUIN MAZDAK LUTTINGER December 2, 1923–April 6, 1997 Elected to the NAS, 1976 The brilliant mathematical and theoretical physicist Joaquin M. Luttinger died at the age of 73 years in the city of his birth, New York, which he deeply loved throughout his life. He had been in good spirits a few days earlier when he said to Walter Kohn (WK), his longtime collaborator and friend, that he was dying a happy man thanks to the loving care during his last illness by his former wife, Abigail Thomas, and by his stepdaughter, Jennifer Waddell. Luttinger’s work was marked by his exceptional ability to illuminate physical properties and phenomena through Visual Archives. Emilio Segrè Photograph courtesy the use of appropriate and beautiful mathematics. His writings and lectures were widely appreciated for their clarity and fine literary quality. With Luttinger’s death, an By Walter Kohn influential voice that helped shape the scientific discourse of his time, especially in condensed-matter physics, was stilled, but many of his ideas live on. For example, his famous 1963 paper on condensed one-dimensional fermion systems, now known as Tomonaga-Luttinger liquids,1, 2 or simply Luttinger liquids, continues to have a strong influence on research on 1-D electronic dynamics. In the 1950s and ’60s, Luttinger also was one of the great figures who helped construct the present canon of classic many-body theory while at the same time laying founda- tions for present-day revisions. -
Arxiv:Cond-Mat/0106256 V1 13 Jun 2001
Quantum Phenomena in Low-Dimensional Systems Michael R. Geller Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602-2451 (June 18, 2001) A brief summary of the physics of low-dimensional quantum systems is given. The material should be accessible to advanced physics undergraduate students. References to recent review articles and books are provided when possible. I. INTRODUCTION transverse eigenfunction and only the plane wave factor changes. This means that motion in those transverse di- A low-dimensional system is one where the motion rections is \frozen out," leaving only motion along the of microscopic degrees-of-freedom, such as electrons, wire. phonons, or photons, is restricted from exploring the full This article will provide a very brief introduction to three dimensions of our world. There has been tremen- the physics of low-dimensional quantum systems. The dous interest in low-dimensional quantum systems dur- material should be accessible to advanced physics under- ing the past twenty years, fueled by a constant stream graduate students. References to recent review articles of striking discoveries and also by the potential for, and and books are provided when possible. The fabrication of realization of, new state-of-the-art electronic device ar- low-dimensional structures is introduced in Section II. In chitectures. Section III some general features of quantum phenomena The paradigm and workhorse of low-dimensional sys- in low dimensions are discussed. The remainder of the tems is the nanometer-scale semiconductor structure, or article is devoted to particular low-dimensional quantum semiconductor \nanostructure," which consists of a com- systems, organized by their \dimension." positionally varying semiconductor alloy engineered at the atomic scale [1]. -
Chicago Physics One
CHICAGO PHYSICS ONE 3:25 P.M. December 02, 1942 “All of us... knew that with the advent of the chain reaction, the world would never be the same again.” former UChicago physicist Samuel K. Allison Physics at the University of Chicago has a remarkable history. From Albert Michelson, appointed by our first president William Rainey Harper as the founding head of the physics department and subsequently the first American to win a Nobel Prize in the sciences, through the mid-20th century work led by Enrico Fermi, and onto the extraordinary work being done in the department today, the department has been a constant source of imagination, discovery, and scientific transformation. In both its research and its education at all levels, the Department of Physics instantiates the highest aspirations and values of the University of Chicago. Robert J. Zimmer President, University of Chicago Welcome to the inaugural issue of Chicago Physics! We are proud to present the first issue of Chicago Physics – an annual newsletter that we hope will keep you connected with the Department of Physics at the University of Chicago. This newsletter will introduce to you some of our students, postdocs and staff as well as new members of our faculty. We will share with you good news about successes and recognition and also convey the sad news about the passing of members of our community. You will learn about the ongoing research activities in the Department and about events that took place in the previous year. We hope that you will become involved in the upcoming events that will be announced. -
Frontier at Your Fingertips Between the Nano and Micron Scales, The
Frontier at your fingertips Between the nano and micron scales, the collective behaviour of matter can give rise to startling emergent properties that hint at the nexus between biology and physics. Piers Coleman The Hitchhiker’s Guide to the Galaxy famously features a supercomputer, Deep Thought, that after millions of years spent calculating “the answer to the ultimate question of life and the universe”, reveals it to be 42. Douglas Adams’ cruel parody of reductionism holds a certain sway in physics today. Our 42 is Schroedinger’s many-body equation: a set of relations whose complexity balloons so rapidly that we can’t trace its full consequences to macroscopic scales. All is well with this equation, provided we want to understand the workings of isolated atoms or molecules up to sizes of about a nanometre. But between the nanometre and the micron, wonderful things start to occur that severely challenge our understanding. Physicists have borrowed the term “emergence” from evolutionary biology to describe these phenomena, which are driven by the collective behaviour of matter. Take, for instance, the pressure of a gas – a cooperative property of large numbers of particles that is not anticipated from the behaviour of one particle alone. Although Newton’s laws of motion account for it, it wasn’t until more than a century after Newton that James Clerk Maxwell developed the statistical description of atoms necessary for an understanding of pressure. The potential for quantum matter to develop emergent properties is far more startling. Atoms of niobium and gold, individually similar, combine to form crystals that kept cold, exhibit dramatically different properties. -
A DIALOGUE on the THEORY of HIGH Tc
A DIALOGUE ON THE THEORY OF HIGH Tc Superconducting Bi2Sr2CaCu2O,, as seen with reflected differential interference contrast microscopy. This view of the ab plane surface of a platelet of the ceramic material shows this high-temperature superconductor's strong planar structure. (Photomicrograph by Michael W. Davidson, W. Jack Rink and Joseph B. Schlenoff, Florida State University.) Figure 1 5 4 PHYSICS TODAY JUNE 1991 The give-and-take between two solid-state theorists offers insight into materials with high superconducting transition temperatures and illustrates the kind of thinking that goes into developing a new theory. Philip W. Anderson and Robert Schrieffer Although ideas that would explain the behavior of the formalism to do their calculations.' I believe they are high-temperature superconducting materials have been wrong. I'd like to hear your opinion, but first let me say a offered almost since their discovery, high-Tt. theory is still couple of things that bear on this question. In the first very much in flux. Two of the leading figures in condensed place, I think few people realize that we now know of at matter theory are Philip Anderson, the Joseph Henry least six different classes of electron superconductors, and Professor of Physics at Princeton University, and Robert two other BCS fluids as well. Out of these only one obeys Schrieffer, Chancellor's Professor at the University of the so-called conventional theory—that is, BCS with California, Santa Barbara. Anderson's ideas have fo- phonons that fit unmodified versions of Eliashberg's cused, in his own words, "on a non-Fermi-liquid normal equations. -
Arxiv:1811.11115V2 [Cond-Mat.Str-El] 14 Jan 2019 Symmetry and Fractionalized Excitations That Can Be Detected by Experiment
Order Fractionalization Yashar Komijani1, Anna Toth2, Premala Chandra1 and Piers Coleman1;3 1Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA 2 Bajza utca 50., H-1062 Budapest, Hungary and 3 Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK. (Dated: January 15, 2019) Abstract The confluence of quantum mechanics and complexity, which leads to the emergence of rich, exotic states of matter, motivates the extension of our concepts of quantum ordering. The twin concepts of spontaneously broken symmetry, described in terms of a Landau order parameter, and of off-diagonal long-range order (ODLRO), are fundamental to our understanding of phases of matter. In electronic matter it has long been assumed that Landau order parameters involve an even number of electron fields, with integer spin and even charge, that are bosons. On the other hand, in low-dimensional magnetism, operators are known to fractionalize so that the excita- tions carry spin-1/2. Motivated by experiment, mean-field theory and computational results, we extend the concept of ODLRO into the time domain, proposing that in a broken symmetry state, quantum operators can fractionalize into half-integer order parameters. Using numerical renormalization group studies we show how such frac- tionalized order can be induced in quantum impurity models. We then conjecture that such order develops spontaneously in lattice quantum systems, due to positive feedback, leading to a new family of phases, manifested by a coincidence of broken arXiv:1811.11115v2 [cond-mat.str-el] 14 Jan 2019 symmetry and fractionalized excitations that can be detected by experiment. -
Introduction to Many-Body Physics Piers Coleman Frontmatter More Information
Cambridge University Press 978-0-521-86488-6 - Introduction to Many-Body Physics Piers Coleman Frontmatter More information Introduction to Many-Body Physics A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many- body physics, this textbook presents the Feynman diagram approach, Green’s functions, and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Landau–Fermi- liquid theory, broken symmetry, conduction in disordered systems, superconductivity, local moments and the Kondo effect, and the physics of heavy-fermion metals and Kondo insulators. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic, and particle physics. Piers Coleman is a Professor at the Center for Materials Theory at the Serin Physics Labo- ratory at Rutgers, The State University of New Jersey. He also holds a part-time position as Professor of Theoretical Physics, Royal Holloway, University of London. He studied as an undergraduate at the University of Cambridge and later as a graduate student at Prince- ton University. He has held positions at Trinity College, University of Cambridge, and the Kavli Institute for Theoretical Physics, University of California, Santa Barbara. Professor Coleman is an active contributor to the theory of interacting electrons in condensed matter. -
2016 Annual Report Vision
“Perimeter Institute is now one of the world’s leading centres in theoretical physics, if not the leading centre.” – Stephen Hawking, Emeritus Lucasian Professor, University of Cambridge 2016 ANNUAL REPORT VISION To create the world's foremostcentre for foundational theoretlcal physics, uniting publlc and private partners, and the world's best scientific minds, in a shared enterprise to achieve breakthroughs that will transform ourfuture CONTENTS Welcome . .2 Message from the Board Chair . 4 Message from the Institute Director . 6 Research . .8 At the Quantum Frontier . 10 Exploring Exotic Matter . .12 A New Window to the Cosmos . .14 A Holographic Revolution . .16 Honours, Awards, and Major Grants . .18 Recruitment . 20 Research Training . .24 Research Events . 26 Linkages . 28 Educational Outreach and Public Engagement . 30 Advancing Perimeter’s Mission . .36 Blazing New Paths . 38 Thanks to Our Supporters . .40 Governance . 42 Facility . 46 Financials . .48 Looking Ahead: Priorities and Objectives for the Future . 53 Appendices . 54 This report covers the activities and finances of Perimeter Institute for Theoretical Physics from August 1, 2015, to July 31, 2016 . Photo credits The Royal Society: Page 5 Istock by Getty Images: 11, 13, 17, 18 Adobe Stock: 23, 28 NASA: 14, 36 WELCOME Just one breakthrough in theoretical physics can change the world. Perimeter Institute is an independent research centre located in Waterloo, Ontario, Canada, which was created to accelerate breakthroughs in our understanding of the cosmos. Here, scientists seek to discover how the universe works at all scales – from the smallest particle to the entire cosmos. Their ideas are unveiling our remote past and enabling the technologies that will shape our future. -
Popular Science Background
THE NOBEL PRIZE IN PHYSICS 2016 POPULAR SCIENCE BACKGROUND Strange phenomena in matter’s fatlands This year’s Laureates opened the door on an unknown world where matter exists in strange states. The Nobel Prize in Physics 2016 is awarded with one half to David J. Thouless, University of Washington, Seattle, and the other half to F. Duncan M. Haldane, Princeton University, and J. Michael Kosterlitz, Brown Univer- sity, Providence. Their discoveries have brought about breakthroughs in the theoretical understanding of matter’s mysteries and created new perspectives on the development of innovative materials. David Thouless, Duncan Haldane, and Michael Kosterlitz have used advanced mathematical methods to explain strange phenomena in unusual phases (or states) of matter, such as superconductors, super- fuids or thin magnetic flms. Kosterlitz and Thouless have studied phenomena that arise in a fat world – on surfaces or inside extremely thin layers that can be considered two-dimensional, compared to the three dimensions (length, width and height) with which reality is usually described. Haldane has also studied matter that forms threads so thin they can be considered one-dimensional. The physics that takes place in the fatlands is very dif- ferent to that we recognise in the world around us. Even if very thinly distributed matter consists of millions of atoms, and even if each atom’s behaviour can be explai- Plasma ned using quantum physics, atoms display completely diferent properties when lots of them come together. New collective phenomena are being continually disco- vered in these fatlands, and condensed matter physics is now one of the most vibrant felds in physics. -
Contributions of Civilizations to International Prizes
CONTRIBUTIONS OF CIVILIZATIONS TO INTERNATIONAL PRIZES Split of Nobel prizes and Fields medals by civilization : PHYSICS .......................................................................................................................................................................... 1 CHEMISTRY .................................................................................................................................................................... 2 PHYSIOLOGY / MEDECINE .............................................................................................................................................. 3 LITERATURE ................................................................................................................................................................... 4 ECONOMY ...................................................................................................................................................................... 5 MATHEMATICS (Fields) .................................................................................................................................................. 5 PHYSICS Occidental / Judeo-christian (198) Alekseï Abrikossov / Zhores Alferov / Hannes Alfvén / Eric Allin Cornell / Luis Walter Alvarez / Carl David Anderson / Philip Warren Anderson / EdWard Victor Appleton / ArthUr Ashkin / John Bardeen / Barry C. Barish / Nikolay Basov / Henri BecqUerel / Johannes Georg Bednorz / Hans Bethe / Gerd Binnig / Patrick Blackett / Felix Bloch / Nicolaas Bloembergen