Conifers of the Sierra
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pije 14 Jeffrey Pine-Incense
PIJE 14 JEFFREY PINE-INCENSE-CEDAR/HUCKLEBERRY OAK Pinus jeffreyi-Calocedrus decurrens/Quercus vaccinifolia PIJE-CADE27/QUVA (N=13; FS=13) Distribution. This Association occurs on the Applegate and Ashland Ranger Districts, Rogue River National Forest and the Galice and Illinois Valley Ranger Districts, Siskiyou National Forest. It may also occur on the Ashland and Grants Pass Resource Areas, Medford District, Bureau of Land Management. Distinguishing Characteristics. This is a relatively high elevation Jeffrey pine association and is the coolest of the Jeffrey pine associations. Huckleberry oak and incense-cedar are usually present. Soils. Parent material is serpentine, with one occurrence of peridotite. Surface gravel and rock content averages 26 and 36 percent cover, respectively, while exposed bedrock cover averages 5 percent. Based on two plots sampled, soils are deep (greater than 40 inches) and well drained. Surface texture is silty clay loam, with 8 to 25 percent gravel, 35 to 50 percent cobbles and stones, and 32 percent PIJE 15 clay. Subsurface texture is silty clay loam, with 5 percent gravel, 40 percent cobbles and stones, and 32 to 35 percent clay. The soil moisture regime is probably xeric and the soil temperature regime is probably frigid. Soils classify to the following subgroups: Dystric Xerochrept and Typic Xerochrept. Environment. Elevation averages 3990 feet. Aspect is variable, although generally not northerly. Slope averages 33 percent with a range of 5 to 68 percent. Slope position ranges from ridgetops down to the middle one-third of the slope. Vegetation Composition and Structure. Total species richness is low for the Series, averaging 27 species. -
Yellowstone National Park, Resources and Issues, Vegetation
VEGETATION More than 1,300 plant taxa occur in Yellowstone National Park. The whitebark pine, shown here and found in high elevations in the Greater Yellowstone Ecosystem, is an important native species in decline. Vegetation The vegetation communities of Yellowstone National major disturbances. Yellowstone is home to three Park include overlapping combinations of species endemic plant species, at least two of which depend typical of the Rocky Mountains as well as of the on the unusual habitat created by the park’s thermal Great Plains to the east and the Intermountain region features. Most vegetation management in the park to the west. The exact vegetation community pres- is focused on minimizing human-caused impacts on ent in any area of the park reflects the consequences their native plant communities to the extent feasible. of the underlying geology, ongoing climate change, substrates and soils, and disturbances created by fire, Vegetation Communities floods, landslides, blowdowns, insect infestations, There are several vegetation communities in and the arrival of nonnative plants. Yellowstone: higher- and lower-elevation forests Today, the roughly 1,386 native taxa in the park and the understory vegetation associated with them, represent the species able to either persist in the area sagebrush-steppe, wetlands, and hydrothermal. or recolonize after glaciers, lava flows, and other Quick Facts Number in Yellowstone • Three endemic species (found only Management Issues Native plant taxa: more than 1,300: in Yellowstone): Ross’s bentgrass, • Controlling nonnative species, • Hundreds of wildfowers. Yellowstone sand verbena, which threaten native species, Yellowstone sulfur wild buckwheat. especially near developed areas; • Trees: nine conifers (lodgepole some are spreading into the Nonnative plant species: 225. -
Pinus Sabiniana) in Oregon Frank Callahan PO Box 5531, Central Point, OR 97502
Discovering Gray Pine (Pinus sabiniana) in Oregon Frank Callahan PO Box 5531, Central Point, OR 97502 “Th e tree is remarkable for its airy, widespread tropical appearance, which suggest a region of palms rather than cool pine woods. Th e sunbeams sift through even the leafi est trees with scarcely any interruption, and the weary, heated traveler fi nds little protection in their shade.” –John Muir (1894) ntil fairly recently, gray pine was believed to be restricted to UCalifornia, where John Muir encountered it. But the fi rst report of it in Oregon dates back to 1831, when David Douglas wrote to the Linnaean Society of his rediscovery of Pinus sabiniana in California. In his letter from San Juan Bautista, Douglas claimed to have collected this pine in 1826 in Oregon while looking for sugar pine (Pinus lambertiana) between the Columbia and Umpqua rivers (Griffin 1962). Unfortunately, Douglas lost most of his fi eld notes and specimens when his canoe overturned in the Santiam River (Harvey 1947). Lacking notes and specimens, he was reluctant to report his original discovery of the new pine in Oregon until he found it again in California (Griffin 1962). Despite the delay in reporting it, Douglas clearly indicated that he had seen this pine before he found it in California, and the Umpqua region has suitable habitat for gray pine. John Strong Newberry1 (1857), naturalist on the 1855 Pacifi c Railroad Survey, described an Oregon distribution for Pinus sabiniana: “It was found by our party in the valleys of the coast ranges as far north as Fort Lane in Oregon.” Fort Lane was on the eastern fl ank of Blackwell Hill (between Central Point and Gold Hill in Jackson County), so his description may also include the Th e lone gray pine at Tolo, near the old Fort Lane site, displays the characteristic architecture of multiple Applegate Valley. -
The Introduction of Pinus Contorta in Sweden
The Introduction of Pinus contorta in Sweden Implications for forest diversity Sofia Bäcklund Faculty of Forest Sciences Department of Ecology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2016 Acta Universitatis Agriculturae Sueciae 2016:30 Cover: A 15-year old Pinus contorta stand. Dorotea, Sweden (photo: S. Bäcklund) ISSN 1652-6880 ISBN (print version) 978-91-576-8562-9 ISBN (electronic version) 978-91-576-8563-6 © 2016 Sofia Bäcklund, Uppsala Print: SLU Service/Repro, Uppsala 2016 The introduction of Pinus contorta in Sweden. Implications for forest diversity Abstract An increasing demand for forest-based products calls for further development and intensification of forest management. The use of non-native tree species in forestry is a common and expanding silvicultural practice worldwide but the effect of non-native trees on native biodiversity and ecosystem functioning is still poorly understood. The general aim of this thesis is to increase our knowledge about what effects large-scale introduction of a non-native tree species have on forest biodiversity over a chronosequence of forest stand ages. The non-native Pinus contorta and the two native tree species Pinus sylvestris and Picea abies were studied over three age classes (15, 30, 85 years old) of managed forests in northern Sweden to compare the stand- and tree structures, the cover and composition of functional groups of ground vegetation, and the species- and functional diversity of epiphytic lichens. Differences in ground vegetation cover were linked to both tree species and different stand and tree characteristics, but the differences were not consistent over the age classes. -
GRAY PINE Gray Squirrels
GRAY PINE gray squirrels. Mule and white-tailed deer browse Pinus sabiniana Dougl. ex the foliage and twigs. Dougl. Status plant symbol = PISA2 Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s Contributed By: USDA, NRCS, National Plant Data current status, such as, state noxious status, and Center wetland indicator values. Alternative Names Description General: Pine Family (Pinaceae). This native tree reaches 38 m in height with a trunk less than 2 m wide. The gray-green foliage is sparse and it has three needles per bundle. Each needle reaches 9-38 cm in length. The trunk often grows in a crooked fashion and is deeply grooved when mature. The seed cone of gray pine is pendent, 10-28 cm, and opens slowly during the second season, dispersing winged seeds. Distribution Charles Webber © California Academy of Sciences It ranges in parts of the California Floristic Province, @CalPhotos the western Great Basin and western deserts. For foothill pine, bull pine, digger pine, California current distribution, please consult the Plant Profile foothill pine page for this species on the PLANTS Web site. Uses Establishment Ethnobotanic: The seeds of gray pine were eaten by Adaptation: This tree is found in the foothill many California Indian tribes and are still served in woodland, northern oak woodland, chaparral, mixed Native American homes today. They can be eaten conifer forests and hardwood forests from 150- fresh and whole in the raw state, roasted, or pounded 1500m. into flour and mixed with other types of seeds. The seeds were eaten by the Pomo, Sierra Miwok, Extract seeds from the cones and gently rub the Western Mono, Wappo, Salinan, Southern Maidu, wings off, and soak them in water for 48 hours, drain Lassik, Costanoan, and Kato, among others. -
Dendrochronology, Fire Regimes
Encyclopedia of Scientific Dating Methods DOI 10.1007/978-94-007-6326-5_76-4 # Springer Science+Business Media Dordrecht 2013 Dendrochronology, Fire Regimes Peter M. Brown* Rocky Mountain Tree-Ring Research, Inc., Fort Collins, CO, USA Definition Use of tree-ring data and methods to reconstruct past fire timing, fire regimes, and fire effects on individuals, communities, and ecosystems. Introduction Fire directly or indirectly affects woody plants in many ways, some of which will leave evidence in age or growth patterns in individual trees or community structure that can be cross-dated using dendrochronological methods. This evidence can be used to reconstruct past fire dates, fire regimes, and fire effects on individuals, communities, and ecosystems (“pyrodendroecology”). Fire regimes are defined as the combination of fire frequency, severity, size, seasonality, and relationships with forcing factors such as climate or changes in human land use. Fire Evidence in Trees and Community Structure A common type of fire evidence is from severe fire that kills all or most trees in an area which opens up space for new trees to establish. Even-aged forest structure is often used as evidence of past lethal fire, also referred to as “stand-replacing” fire. Such evidence provides a minimum date for the fire (i.e., the fire occurred sometime before the innermost dates of the oldest trees), and, by sampling multiple stands in an area, estimates of the fire size can be made based on broader- scale patterns of tree ages. Conversely, multiaged structure is considered to be evidence of less severe fires or other patchy mortality and recruitment events. -
Connon Nurseries Taylor's Sunburst Lodgepole Pine
Taylor's Sunburst Lodgepole Pine Pinus contorta 'Taylor's Sunburst' Height: 15 feet Spread: 10 feet Sunlight: Hardiness Zone: 4a Description: Wow! When you see this pine tree, you want it - the bright yellow-gold new growth contrasts stunningly with the older green needles for nearly two months in spring, then come the bright red cones; this plant is certain to turn heads in your landscape Ornamental Features Taylor's Sunburst Lodgepole Pine foliage Taylor's Sunburst Lodgepole Pine has attractive green foliage which Photo courtesy of NetPS Plant Finder emerges yellow in spring. The needles are highly ornamental and remain green throughout the winter. The red fruits are held in cones in mid summer. The flowers are not ornamentally significant. The shaggy brick red bark adds an interesting dimension to the landscape. Landscape Attributes Taylor's Sunburst Lodgepole Pine is a multi-stemmed evergreen shrub with an upright spreading habit of growth. Its average texture blends into the landscape, but can be balanced by one or two finer or coarser trees or shrubs for an effective composition. This is a relatively low maintenance shrub. When pruning is necessary, it is recommended to only trim back the new growth of the current season, other than to remove any dieback. It has no significant negative characteristics. Taylor's Sunburst Lodgepole Pine is recommended for the following landscape applications; - Accent - Vertical Accent - General Garden Use Planting & Growing Taylor's Sunburst Lodgepole Pine will grow to be about 15 feet tall at maturity, with a spread of 10 feet. It has a low canopy, and is suitable for planting under power lines. -
Arctostaphylos Hispidula, Gasquet Manzanita
Conservation Assessment for Gasquet Manzanita (Arctostaphylos hispidula) Within the State of Oregon Photo by Clint Emerson March 2010 U.S.D.A. Forest Service Region 6 and U.S.D.I. Bureau of Land Management Interagency Special Status and Sensitive Species Program Author CLINT EMERSON is a botanist, USDA Forest Service, Rogue River-Siskiyou National Forest, Gold Beach and Powers Ranger District, Gold Beach, OR 97465 TABLE OF CONTENTS Disclaimer 3 Executive Summary 3 List of Tables and Figures 5 I. Introduction 6 A. Goal 6 B. Scope 6 C. Management Status 7 II. Classification and Description 8 A. Nomenclature and Taxonomy 8 B. Species Description 9 C. Regional Differences 9 D. Similar Species 10 III. Biology and Ecology 14 A. Life History and Reproductive Biology 14 B. Range, Distribution, and Abundance 16 C. Population Trends and Demography 19 D. Habitat 21 E. Ecological Considerations 25 IV. Conservation 26 A. Conservation Threats 26 B. Conservation Status 28 C. Known Management Approaches 32 D. Management Considerations 33 V. Research, Inventory, and Monitoring Opportunities 35 Definitions of Terms Used (Glossary) 39 Acknowledgements 41 References 42 Appendix A. Table of Known Sites in Oregon 45 2 Disclaimer This Conservation Assessment was prepared to compile existing published and unpublished information for the rare vascular plant Gasquet manzanita (Arctostaphylos hispidula) as well as include observational field data gathered during the 2008 field season. This Assessment does not represent a management decision by the U.S. Forest Service (Region 6) or Oregon/Washington BLM. Although the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. -
An Experimental Evaluation of Fire History Reconstruction Using Dendrochronology in White Oak (Quercus Alba)
1 An experimental evaluation of fire history reconstruction using dendrochronology in white oak (Quercus alba) Ryan W. McEwan, Todd F. Hutchinson, Robert D. Ford, and Brian C. McCarthy Abstract: Dendrochronological analysis of fire scars on tree cross sections has been critically important for understanding historical fire regimes and has influenced forest management practices. Despite its value as a tool for understanding histor- ical ecosystems, tree-ring-based fire history reconstruction has rarely been experimentally evaluated. To examine the effi- cacy of dendrochronological analysis for detecting fire occurrence in oak forests, we analyzed tree cross sections from sites in which prescribed fires had been recently conducted. The first fire in each treatment unit created a scar in at least one sample, but the overall percentage of samples containing scars in fire years was low (12%). We found that scars were cre- ated by 10 of the 15 prescribed fires, and the five undetected fires all occurred in sites where fire had occurred the previous year. Notably, several samples contained scars from known fire-free periods. In summary, our data suggest that tree-ring analysis is a generally effective tool for reconstructing historical fire regimes, although the following points of uncertainty were highlighted: (i) consecutive annual burns may not create fire scars and (ii) wounds that are morphologically indistin- guishable from fire scars may originate from nonfire sources. R6um6 : L'analyse dendrochronologique des cicatrices de feu sur des sections radiales de tronc d'arbre a it6 d'une im- portance cruciale pour comprendre les regimes des feux pass& et a influenck les pratiques d'amtnagement forestier. -
Influence of Fire Interval and Serotiny on Postfire Lodgepole Pine Density in Yellowstone National Park
Utah State University DigitalCommons@USU Quinney Natural Resources Research Library, The Bark Beetles, Fuels, and Fire Bibliography S.J. and Jessie E. 2003 Influence of Fire Interval and Serotiny on Postfire Lodgepole Pine Density in Yellowstone National Park Tania Schoennagel Monica G. Turner William H. Romme Follow this and additional works at: https://digitalcommons.usu.edu/barkbeetles Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, Forest Biology Commons, Forest Management Commons, and the Wood Science and Pulp, Paper Technology Commons Recommended Citation Schoennagel, T., Turner, M. and Romme, W. (2003). Influence of fire interval and serotiny on postfire lodgepole pine density in Yellowstone National Park. Ecology, 84(11): 2967—2978. This Article is brought to you for free and open access by the Quinney Natural Resources Research Library, S.J. and Jessie E. at DigitalCommons@USU. It has been accepted for inclusion in The Bark Beetles, Fuels, and Fire Bibliography by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Ecology, 84(11), 2003, pp. 2967±2978 q 2003 by the Ecological Society of America THE INFLUENCE OF FIRE INTERVAL AND SEROTINY ON POSTFIRE LODGEPOLE PINE DENSITY IN YELLOWSTONE NATIONAL PARK TANIA SCHOENNAGEL,1,3 MONICA G. TURNER,1 AND WILLIAM H. ROMME2 1Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706 USA 2Department of Forest Sciences, Colorado State University, Fort Collins, Colorado 80523 USA Abstract. The time interval between stand-replacing ®res can in¯uence patterns of initial post®re succession if the abundance of post®re propagules varies with pre®re stand age. -
Basic Tree-Ring Sample Preparation Techniques for Aging Aspen
Utah State University DigitalCommons@USU Aspen Bibliography Aspen Research 2001 Basic tree-ring sample preparation techniques for aging aspen L.A. Asherin S.A. Mata Follow this and additional works at: https://digitalcommons.usu.edu/aspen_bib Part of the Forest Sciences Commons Recommended Citation Asherin, LA and Mata, SA. 2001. Basic tree-ring sample preparation techniques for aging aspen. Shepperd, WD; Binkley, D; Bartos, DL; Stohlgren, TJ; and Eskew, LG, compilers. Sustaining Aspen in Western Landscapes: Symposium Proceedings. Proceedings RMRS-P-18. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Fort Collins, CO. This Contribution to Book is brought to you for free and open access by the Aspen Research at DigitalCommons@USU. It has been accepted for inclusion in Aspen Bibliography by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Basic Tree-Ring Sample Preparation Techniques for Aging Aspen Lance A. Asherin1 and Stephen A. Mata1 Abstract—Aspen is notoriously difficult to age because of its light-colored wood and faint annual growth rings. Careful preparation and processing of aspen ring samples can overcome these problems, yield accurate age and growth estimates, and concisely date disturbance events present in the tree-ring record. Proper collection of aspen wood is essential in obtaining usable ring data. Mounting of increment cores and sawn disk samples to wood backings holds samples rigid for easy surfacing. Sequential use of planers, belt sanders, and an assortment of sanding material on the surface of aspen core and disk samples can enhance visibility of tree rings. Application of stain on samples will color the late wood a dark brown and enhance the rings’ visibility. -
Conifer Communities of the Santa Cruz Mountains and Interpretive
UNIVERSITY OF CALIFORNIA, SANTA CRUZ CALIFORNIA CONIFERS: CONIFER COMMUNITIES OF THE SANTA CRUZ MOUNTAINS AND INTERPRETIVE SIGNAGE FOR THE UCSC ARBORETUM AND BOTANIC GARDEN A senior internship project in partial satisfaction of the requirements for the degree of BACHELOR OF ARTS in ENVIRONMENTAL STUDIES by Erika Lougee December 2019 ADVISOR(S): Karen Holl, Environmental Studies; Brett Hall, UCSC Arboretum ABSTRACT: There are 52 species of conifers native to the state of California, 14 of which are endemic to the state, far more than any other state or region of its size. There are eight species of coniferous trees native to the Santa Cruz Mountains, but most people can only name a few. For my senior internship I made a set of ten interpretive signs to be installed in front of California native conifers at the UCSC Arboretum and wrote an associated paper describing the coniferous forests of the Santa Cruz Mountains. Signs were made using the Arboretum’s laser engraver and contain identification and collection information, habitat, associated species, where to see local stands, and a fun fact or two. While the physical signs remain a more accessible, kid-friendly format, the paper, which will be available on the Arboretum website, will be more scientific with more detailed information. The paper will summarize information on each of the eight conifers native to the Santa Cruz Mountains including localized range, ecology, associated species, and topics pertaining to the species in current literature. KEYWORDS: Santa Cruz, California native plants, plant communities, vegetation types, conifers, gymnosperms, environmental interpretation, UCSC Arboretum and Botanic Garden I claim the copyright to this document but give permission for the Environmental Studies department at UCSC to share it with the UCSC community.