Yellowstone National Park, Resources and Issues, Vegetation

Total Page:16

File Type:pdf, Size:1020Kb

Yellowstone National Park, Resources and Issues, Vegetation VEGETATION More than 1,300 plant taxa occur in Yellowstone National Park. The whitebark pine, shown here and found in high elevations in the Greater Yellowstone Ecosystem, is an important native species in decline. Vegetation The vegetation communities of Yellowstone National major disturbances. Yellowstone is home to three Park include overlapping combinations of species endemic plant species, at least two of which depend typical of the Rocky Mountains as well as of the on the unusual habitat created by the park’s thermal Great Plains to the east and the Intermountain region features. Most vegetation management in the park to the west. The exact vegetation community pres- is focused on minimizing human-caused impacts on ent in any area of the park reflects the consequences their native plant communities to the extent feasible. of the underlying geology, ongoing climate change, substrates and soils, and disturbances created by fire, Vegetation Communities floods, landslides, blowdowns, insect infestations, There are several vegetation communities in and the arrival of nonnative plants. Yellowstone: higher- and lower-elevation forests Today, the roughly 1,386 native taxa in the park and the understory vegetation associated with them, represent the species able to either persist in the area sagebrush-steppe, wetlands, and hydrothermal. or recolonize after glaciers, lava flows, and other Quick Facts Number in Yellowstone • Three endemic species (found only Management Issues Native plant taxa: more than 1,300: in Yellowstone): Ross’s bentgrass, • Controlling nonnative species, • Hundreds of wildfowers. Yellowstone sand verbena, which threaten native species, Yellowstone sulfur wild buckwheat. especially near developed areas; • Trees: nine conifers (lodgepole some are spreading into the Nonnative plant species: 225. pine, whitebark pine, Engelmann backcountry. spruce, white spruce, subalpine Characteristics • fr, Douglas-fr, Rocky Mountain • Vegetation in Yellowstone is typical Park partners are monitoring juniper, common juniper, limber of the Rocky Mountains. whitebark pine and forest insect pine) and some deciduous species, pests. • Elements of the Great Plains and • including quaking aspen and Great Basin foras mix with Rocky Biologists survey areas for sensitive cottonwood. Mountain vegetation in the vicinity or rare vegetation before a • Shrubs: include common juniper, of Gardiner and Stephen’s Creek. disturbance such as constructing a sagebrush (many species), Rocky new facility. • Hydrothermal areas support • Mountain maple. unique plant communities and rare Park managers are restoring areas species. of disturbance. Vegetation 151 Vegetation Communities in Yellowstone National Park VEGETATION □ Lodgepole pine forests Non-forest Dominate more than 80% of the total forested area. Includes grasslands, sagebrush, alpine meadows, talus, Can be seral (developing) or climax. and hydrothermal environments. Climax forests underlain by rhyolite. Encompasses the moisture spectrum from dry □ Spruce-fr forests sagebrush shrublands to wet alpine meadows. Engelmann spruce/subalpine fr dominate older forests. Provides the winter and summer forage base for Usually found on moist and/or fertile substrates. ungulates. Climax forests underlain by andesitic soils. □ Whitebark pine forests Other communities not shown on map Major overstory component above 8,400 feet. Aspen—found in small clones interspersed among the Major understory component of lodgepole-dominated sagebrush/forest ecotone (transition zone) along the forests from 7,000 to 8,400 feet. Yellowstone, Madison, and Snake river drainages. Seeds are ecologically important food for a variety of Wetland—Wetlands include wet meadows, forested wildlife species. wetlands, springs, and seeps comprised of woody □ Douglas-fr forests vegetation, forbs, rushes, sedges, and grasses. Some Associated with the Lamar, Yellowstone, and Madison are thermally infuenced. river drainages below 7,600 feet. Riparian—typically streamside vegetation includes Often fewer than 20 inches annual precipitation. cottonwoods, willows, and various deciduous shrubs. More frequent historic fre interval (25–60 year) than other forest communities in the park. 152 Yellowstone Resources and Issues Handbook, 2020 Kershaw et al. 1998. Plants of the Rocky Mountains. Lone More Information Pine Publishing. Craighead, J.J. et al. 1963. A Field Guide to Rocky Mountain Preston, R.J. 1968. Rocky Mountain Trees: A Handbook of Wildflowers from Northern Arizona and New Mexico to the Native Species with Plates and Distribution Maps. British Colombia. Boston: Houghton Mifflin. New York: Dover. Cronquist et al. (ongoing, currently 6 volumes) Romme, W.H. and D.H. Knight. 1982. Landscape diversity: Intermountain Flora. New York Botanical Garden. The concept applied to Yellowstone National Park. VEGETATION Despain, D. 1990. Yellowstone Vegetation: Consequences of Bioscience. 32:8. Environment and History in a Natural Setting. Boulder: Shaw, R.J. 1964. Trees and Flowering Shrubs of Yellowstone Roberts Rinehart. and Grand Teton national parks. Salt Lake City: Dorn, B. 2001. Vascular Plants of Wyoming. 3rd edition. Wheelwright Press. Elliot, C.R. and M.M. Hektner. 2000. Wetland Resources of Shaw, R.J. 1992. Wildflowers of Yellowstone and Grand Yellowstone National Park. YNP: Wyoming. Out of print, Teton national parks. Salt Lake City: Wheelwright Press. available at www.nps.gov/yell Hitchcock and Cronquist. 1974. Flora of the Pacific Staff Reviewers Northwest. Seattle: UWashington Press. Stefanie Waker, Vegetation Ecologist Hitchcock et al. Vascular Plants of the Northwest (5 vol- Heidi Anderson, Botanist and Wetland Ecologist umes). Seattle: UWashington Press. Vegetation 153 VEGETATION Douglas-fr forests occur at lower elevations and are associated with the Lamar, Yellowstone, and Madison river drainages in Yellowstone National Park. Forests fire, Engelmann spruce and subalpine fir were able to Forests cover roughly 80% of the park. Lodgepole dominate and thrive. In forests dominated by lodge- pine, Engelmann spruce, subalpine fir, whitebark pole pine, Engelmann spruce and subalpine fir can be pine, and limber pine are found at higher elevations. a common a forest understory component. Though ubiquitous throughout the park, Douglas- Lodgepole is dominant on rhyolitic soils which fir is particularly abundant in the northern region. are poor in nutrients essential for fir and spruce. At Their thick bark enable them to tolerate low-intensity higher elevations such as the Absaroka Mountains fire. Some of the trees in these forests are estimated and the Washburn Range, whitebark pine is a signifi- to be several hundred years old and display fire scars cant forest component. In the upper subalpine zone, from a past history of low-intensity ground fires. In whitebark pine, Engelmann spruce, and subalpine fir contrast, lodgepole pine trees have very thin bark often co-occur in island stands of timber separated which makes this species more susceptible to mortal- by subalpine meadows. In treeline environments ity from ground fires. where conditions are extreme, whitebark pine take In high elevation areas where andesite, a type of on a stunted growth form known as krumholtz where volcanic rock, is prevalent, older forests are domi- most of the “tree” is protected below the snow from nated by Engelmann spruce and subalpine fir. In the winter’s wind and dessicating effects. past, these current spruce/fir forests may have been dominated by lodgepole pine but in the absence of Common Conifers Higher-Elevation Species Subalpine Fir (Abies lasiocarpa) Lower-Elevation Species Lodgepole Pine (Pinus contorta) • Only true fr in the park Douglas-Fir (Pseudotsuga menziesii) • Most common tree in park, 80% • Blunt, fat needles • Resembles the fr and the of canopy hemlock, hence its generic name • Cones grow upright, disintegrate Pseudotsuga, which means “false • Needles in groups of twos on tree hemlock” • Up to 75 feet tall • Up to 100 feet tall • Cones hang down and remain Engelmann Spruce (Picea Limber Pine (Pinus fexilis) intact, with three-pronged bract engelmannii) • Needles in groups of fve between scales • Often along creeks, or around wet • Young branches are fexible • Up to 100 feet tall areas • Up to 75 feet tall • Sharp, square needles grow singly Rocky Mountain Juniper • Often on calcium-rich soil (Juniperus scopulorum) • Cones hang down and remain • Needles scale-like intact, with no bract between Whitebark Pine (Pinus albicaulis) • Cones are small and feshy scales • Grows above 7,000 feet • Up to 30 feet tall • Up to 100 feet tall • Needles in groups of fve • Up to 75 feet tall 154 Yellowstone Resources and Issues Handbook, 2020 Lodgepole Pine The lodgepole pine (Pinus contorta) is by far the most common tree in Yellowstone. Early botanical ex- plorers first encountered the species along the West Coast where its wind-contorted growth form earned VEGETATION it the name Pinus contorta. The Rocky Mountain va- riety, which grows very straight, is Pinus contorta var. latifolia. Some American Indian tribes used this tree to make the frames of their tipis or lodges, hence the name “lodgepole” pine. Description Lodgepoles are the only pine in Yellowstone whose Lodgepole pine forests are the most common in Yellowstone. A lodgepole’s serotinous cones need to needles grow in groups of two. The bark is typically be exposed to the high heat of a forest fre for the somewhat brown to yellowish, but a grayish-black seeds to be released. Cones that do not disperse
Recommended publications
  • The Introduction of Pinus Contorta in Sweden
    The Introduction of Pinus contorta in Sweden Implications for forest diversity Sofia Bäcklund Faculty of Forest Sciences Department of Ecology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2016 Acta Universitatis Agriculturae Sueciae 2016:30 Cover: A 15-year old Pinus contorta stand. Dorotea, Sweden (photo: S. Bäcklund) ISSN 1652-6880 ISBN (print version) 978-91-576-8562-9 ISBN (electronic version) 978-91-576-8563-6 © 2016 Sofia Bäcklund, Uppsala Print: SLU Service/Repro, Uppsala 2016 The introduction of Pinus contorta in Sweden. Implications for forest diversity Abstract An increasing demand for forest-based products calls for further development and intensification of forest management. The use of non-native tree species in forestry is a common and expanding silvicultural practice worldwide but the effect of non-native trees on native biodiversity and ecosystem functioning is still poorly understood. The general aim of this thesis is to increase our knowledge about what effects large-scale introduction of a non-native tree species have on forest biodiversity over a chronosequence of forest stand ages. The non-native Pinus contorta and the two native tree species Pinus sylvestris and Picea abies were studied over three age classes (15, 30, 85 years old) of managed forests in northern Sweden to compare the stand- and tree structures, the cover and composition of functional groups of ground vegetation, and the species- and functional diversity of epiphytic lichens. Differences in ground vegetation cover were linked to both tree species and different stand and tree characteristics, but the differences were not consistent over the age classes.
    [Show full text]
  • Scientific Name Species Common Name Abies Lasiocarpa FIR Subalpine Acacia Macracantha ACACIA Long-Spine
    Scientific Name Species Common Name Abies lasiocarpa FIR Subalpine Acacia macracantha ACACIA Long-spine Acacia roemeriana CATCLAW Roemer Acer grandidentatum MAPLE Canyon Acer nigrum MAPLE Black Acer platanoides MAPLE Norway Acer saccharinum MAPLE Silver Aesculus pavia BUCKEYE Red Aesculus sylvatica BUCKEYE Painted Ailanthus altissima AILANTHUS Tree-of-heaven Albizia julibrissin SILKTREE Mimosa Albizia lebbek LEBBEK Lebbek Alnus iridis ssp. sinuata ALDER Sitka Alnus maritima ALDER Seaside Alvaradoa amorphoides ALVARADOA Mexican Amelanchier laevis SERVICEBERRY Allegheny Amyris balsamifera TORCHWOOD Balsam Annona squamosa SUGAR-APPLE NA Araucaria cunninghamii ARAUCARIA Cunningham Arctostaphylos glauca MANZANITA Bigberry Asimina obovata PAWPAW Bigflower Bourreria radula STRONGBACK Rough Brasiliopuntia brasiliensis PRICKLY-PEAR Brazilian Bursera simaruba GUMBO-LIMBO NA Caesalpinia pulcherrima FLOWERFENCE NA Capparis flexuosa CAPERTREE Limber CRUCIFIXION- Castela emoryi THORN NA Casuarina equisetifolia CASUARINA Horsetail Ceanothus arboreus CEANOTHUS Feltleaf Ceanothus spinosus CEANOTHUS Greenbark Celtis lindheimeri HACKBERRY Lindheimer Celtis occidentalis HACKBERRY Common Cephalanthus occidentalis BUTTONBUSH Common Cercis canadensis REDBUD Eastern Cercocarpus traskiae CERCOCARPUS Catalina Chrysophyllum oliviforme SATINLEAF NA Citharexylum berlandieri FIDDLEWOOD Berlandier Citrus aurantifolia LIME NA Citrus sinensis ORANGE Orange Coccoloba uvifera SEAGRAPE NA Colubrina arborescens COLUBRINA Coffee Colubrina cubensis COLUBRINA Cuba Condalia globosa
    [Show full text]
  • Guide Alaska Trees
    x5 Aá24ftL GUIDE TO ALASKA TREES %r\ UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE Agriculture Handbook No. 472 GUIDE TO ALASKA TREES by Leslie A. Viereck, Principal Plant Ecologist Institute of Northern Forestry Pacific Northwest Forest and Range Experiment Station ÜSDA Forest Service, Fairbanks, Alaska and Elbert L. Little, Jr., Chief Dendrologist Timber Management Research USD A Forest Service, Washington, D.C. Agriculture Handbook No. 472 Supersedes Agriculture Handbook No. 5 Pocket Guide to Alaska Trees United States Department of Agriculture Forest Service Washington, D.C. December 1974 VIERECK, LESLIE A., and LITTLE, ELBERT L., JR. 1974. Guide to Alaska trees. U.S. Dep. Agrie., Agrie. Handb. 472, 98 p. Alaska's native trees, 32 species, are described in nontechnical terms and illustrated by drawings for identification. Six species of shrubs rarely reaching tree size are mentioned briefly. There are notes on occurrence and uses, also small maps showing distribution within the State. Keys are provided for both summer and winter, and the sum- mary of the vegetation has a map. This new Guide supersedes *Tocket Guide to Alaska Trees'' (1950) and is condensed and slightly revised from ''Alaska Trees and Shrubs" (1972) by the same authors. OXFORD: 174 (798). KEY WORDS: trees (Alaska) ; Alaska (trees). Library of Congress Catalog Card Number î 74—600104 Cover: Sitka Spruce (Picea sitchensis)., the State tree and largest in Alaska, also one of the most valuable. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402—Price $1.35 Stock Number 0100-03308 11 CONTENTS Page List of species iii Introduction 1 Studies of Alaska trees 2 Plan 2 Acknowledgments [ 3 Statistical summary .
    [Show full text]
  • Site Basic Report 7/11/2006
    Site Basic Report 7/11/2006 Site Code BCD S.USIDHP*688 Site Class Standard site Name DOME LAKE Defining Managed Area DOME LAKE RNA State/Province Idaho Directions Dome Lake RNA lies at the northern end of the Bighorn Crags in the Salmon River Mountains, about 3 miles (4.8 km) south of the Salmon River, at a point about 17 miles (27.5 km) southwest of Shoup. | Access to the RNA is possible via several routes, none of which are quick and easy. One route follows: From the town of North Fork, head west on the Salmon River Road 033 for about 36 miles (58 km). The western trailhead for FS Trail 172 is on the south side of the Salmon River between river miles 201 and 202 (opposite of Colson Creek RNA), just west of the junction with FS Road 123 (Colson Creek Road). From the trailhead, FS Trail 172 heads south, switchbacking up the ridge west of Shell Creek and gaining about 5000 feet (1524 m) in elevation over about three air miles (4.8 km) as it climbs to an area just below the Horse Heaven Lookout. Just southeast of the lookout, FS Trail 172 joins the ridgeline that defines the western boundary of the RNA. Other routes include FS Trail 021 from Crags Campground, approximately a 10 mile hike (16 km), and the eastern trailhead of 172 which leaves from near the junction of the Salmon River Road 033 and Panther Creek Road 055. Minimum Elevation: 4,700 Feet 1,433 Meters Maximum Elevation: 9,316 Feet 2,840 Meters Site Description Dome Lake RNA contains the entire upper portion of the Lake Creek watershed.
    [Show full text]
  • Connon Nurseries Taylor's Sunburst Lodgepole Pine
    Taylor's Sunburst Lodgepole Pine Pinus contorta 'Taylor's Sunburst' Height: 15 feet Spread: 10 feet Sunlight: Hardiness Zone: 4a Description: Wow! When you see this pine tree, you want it - the bright yellow-gold new growth contrasts stunningly with the older green needles for nearly two months in spring, then come the bright red cones; this plant is certain to turn heads in your landscape Ornamental Features Taylor's Sunburst Lodgepole Pine foliage Taylor's Sunburst Lodgepole Pine has attractive green foliage which Photo courtesy of NetPS Plant Finder emerges yellow in spring. The needles are highly ornamental and remain green throughout the winter. The red fruits are held in cones in mid summer. The flowers are not ornamentally significant. The shaggy brick red bark adds an interesting dimension to the landscape. Landscape Attributes Taylor's Sunburst Lodgepole Pine is a multi-stemmed evergreen shrub with an upright spreading habit of growth. Its average texture blends into the landscape, but can be balanced by one or two finer or coarser trees or shrubs for an effective composition. This is a relatively low maintenance shrub. When pruning is necessary, it is recommended to only trim back the new growth of the current season, other than to remove any dieback. It has no significant negative characteristics. Taylor's Sunburst Lodgepole Pine is recommended for the following landscape applications; - Accent - Vertical Accent - General Garden Use Planting & Growing Taylor's Sunburst Lodgepole Pine will grow to be about 15 feet tall at maturity, with a spread of 10 feet. It has a low canopy, and is suitable for planting under power lines.
    [Show full text]
  • Mcgrath State Beach Plants 2/14/2005 7:53 PM Vascular Plants of Mcgrath State Beach, Ventura County, California by David L
    Vascular Plants of McGrath State Beach, Ventura County, California By David L. Magney Scientific Name Common Name Habit Family Abronia maritima Red Sand-verbena PH Nyctaginaceae Abronia umbellata Beach Sand-verbena PH Nyctaginaceae Allenrolfea occidentalis Iodinebush S Chenopodiaceae Amaranthus albus * Prostrate Pigweed AH Amaranthaceae Amblyopappus pusillus Dwarf Coastweed PH Asteraceae Ambrosia chamissonis Beach-bur S Asteraceae Ambrosia psilostachya Western Ragweed PH Asteraceae Amsinckia spectabilis var. spectabilis Seaside Fiddleneck AH Boraginaceae Anagallis arvensis * Scarlet Pimpernel AH Primulaceae Anemopsis californica Yerba Mansa PH Saururaceae Apium graveolens * Wild Celery PH Apiaceae Artemisia biennis Biennial Wormwood BH Asteraceae Artemisia californica California Sagebrush S Asteraceae Artemisia douglasiana Douglas' Sagewort PH Asteraceae Artemisia dracunculus Wormwood PH Asteraceae Artemisia tridentata ssp. tridentata Big Sagebrush S Asteraceae Arundo donax * Giant Reed PG Poaceae Aster subulatus var. ligulatus Annual Water Aster AH Asteraceae Astragalus pycnostachyus ssp. lanosissimus Ventura Marsh Milkvetch PH Fabaceae Atriplex californica California Saltbush PH Chenopodiaceae Atriplex lentiformis ssp. breweri Big Saltbush S Chenopodiaceae Atriplex patula ssp. hastata Arrowleaf Saltbush AH Chenopodiaceae Atriplex patula Spear Saltbush AH Chenopodiaceae Atriplex semibaccata Australian Saltbush PH Chenopodiaceae Atriplex triangularis Spearscale AH Chenopodiaceae Avena barbata * Slender Oat AG Poaceae Avena fatua * Wild
    [Show full text]
  • Verdura® Native Planting
    Abronia maritime Abronia maritima is a species of sand verbena known by the common name red (Coastal) sand verbena. This is a beach-adapted perennial plant native to the coastlines of southern California, including the Channel Islands, and northern Baja California. Abronia villosa Abronia villosa is a species of sand-verbena known by the common name desert (Inland) sand-verbena. It is native to the deserts of the southwestern United States and northern Mexico and the southern California and Baja coast. Adenostoma Adenostoma fasciculatum (chamise or greasewood) is a flowering plant native to fasciculatum California and northern Baja California. This shrub is one of the most widespread (Coastal/Inland) plants of the chaparral biome. Adenostoma fasciculatum is an evergreen shrub growing to 4m tall, with dry-looking stick-like branches. The leaves are small, 4– 10 mm long and 1mm broad with a pointed apex, and sprout in clusters from the branches. Arctostaphylos Arctostaphylos uva-ursi is a plant species of the genus Arctostaphylos (manzanita). uva-ursi Its common names include kinnikinnick and pinemat manzanita, and it is one of (Coastal/Inland) several related species referred to as bearberry. Arctostaphylos Arctostaphylos edmundsii, with the common name Little Sur manzanita, is a edmundsii species of manzanita. This shrub is endemic to California where it grows on the (Coastal/Inland) coastal bluffs of Monterey County. Arctostaphylos Arctostaphylos hookeri is a species of manzanita known by the common name hookeri Hooker's manzanita. Arctostaphylos hookeri is a low shrub which is variable in (Coastal/Inland) appearance and has several subspecies. The Arctostaphylos hookeri shrub is endemic to California where its native range extends from the coastal San Francisco Bay Area to the Central Coast.
    [Show full text]
  • SC Trees & Shrubs
    Alaska Department of Natural Resources / Division of Forestry / Community Forestry Program 550 W. 7th Ave., Ste. 1450 / Anchorage, AK 99501 / 269-8466 / http://forestry.alaska.gov/community Trees & Shrubs for South Central Alaska The following trees and shrubs are growing successfully in south central Alaska. Each has specific requirements and should be planted where conditions and space allow it to be healthy and safe. For a complete list of plants, descriptions, limitations, requirements, and hardiness, see www.alaskaplants.org. For information on selecting and planting trees, see http://forestry.alaska.gov/community/publications.htm. Deciduous Trees Acer glabrum var. douglasii – Douglas maple Acer negundo – Boxelder Acer platanoides – Norway maple Acer rubrum – Red maple Acer tataricum var. ginnala – Amur maple Betula papyrifera – Paper birch Betula pendula – European white birch Crataegus – Hawthorn Fraxinus manshurica – Manchurian ash Fraxinus nigra – Black ash Fraxinus pennsylvanica – Green ash Larix – Larch, tamarack Malus – Apple, crabapple Populus balsamifera – Balsam poplar Populus tremula – Swedish columnar aspen Populus tremuloides, Aspen Populus trichocarpa – Cottonwood Prunus cerasus ‘Evans’ – Cherry Prunus maackii – Amur chokecherry Prunus pennsylvanica – Pin cherry Pyrus ussuriensis – Ussurian pear Quercus macrocarpa – Bur oak Sorbus aucuparia – Mountainash Syringa reticulata – Japanese tree lilac Tilia Americana – American linden, basswood Tilia cordata - Littleleaf linden Evergreen Tree Abies concolor – White fir Abies
    [Show full text]
  • Influence of Fire Interval and Serotiny on Postfire Lodgepole Pine Density in Yellowstone National Park
    Utah State University DigitalCommons@USU Quinney Natural Resources Research Library, The Bark Beetles, Fuels, and Fire Bibliography S.J. and Jessie E. 2003 Influence of Fire Interval and Serotiny on Postfire Lodgepole Pine Density in Yellowstone National Park Tania Schoennagel Monica G. Turner William H. Romme Follow this and additional works at: https://digitalcommons.usu.edu/barkbeetles Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, Forest Biology Commons, Forest Management Commons, and the Wood Science and Pulp, Paper Technology Commons Recommended Citation Schoennagel, T., Turner, M. and Romme, W. (2003). Influence of fire interval and serotiny on postfire lodgepole pine density in Yellowstone National Park. Ecology, 84(11): 2967—2978. This Article is brought to you for free and open access by the Quinney Natural Resources Research Library, S.J. and Jessie E. at DigitalCommons@USU. It has been accepted for inclusion in The Bark Beetles, Fuels, and Fire Bibliography by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Ecology, 84(11), 2003, pp. 2967±2978 q 2003 by the Ecological Society of America THE INFLUENCE OF FIRE INTERVAL AND SEROTINY ON POSTFIRE LODGEPOLE PINE DENSITY IN YELLOWSTONE NATIONAL PARK TANIA SCHOENNAGEL,1,3 MONICA G. TURNER,1 AND WILLIAM H. ROMME2 1Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706 USA 2Department of Forest Sciences, Colorado State University, Fort Collins, Colorado 80523 USA Abstract. The time interval between stand-replacing ®res can in¯uence patterns of initial post®re succession if the abundance of post®re propagules varies with pre®re stand age.
    [Show full text]
  • TREES AS CROPS in ALASKA PROFILE with an EMPHASIS on SPRUCE Revised 2009
    TREES AS CROPS IN ALASKA PROFILE WITH AN EMPHASIS ON SPRUCE Revised 2009 Robert A. Wheeler Thomas R. Jahns Janice I. Chumley PRODUCTION FACTS Growing trees in Alaska can be difficult. This document addresses basic questions regarding growing tree seedlings as an agricultural crop. Whether growing a few seedlings or thousands, many of the basic production questions are the same. From the standpoint of tree seedling production there are three basic regions in Alaska: Southeast, South Central, and the Interior. Producing high quality tree seedlings is 4-H Tree Sale in Soldotna, AK May 2003 achievable in all three regions however care must (photo/Bob Wheeler). be taken to match tree species requirements with local environmental conditions. Through the efforts of the University of Alaska Fairbanks and the Agriculture and Forestry Experiment Station, many tree species have been evaluated over the past 100 years for their performance. Results from these species trials have led to the listing of tree species, growth characteristics, and site requirements found in Table 1. DEMAND Interest in tree production can vary from growing trees for your yard or property to full scale outdoor or greenhouse, bareroot, or container nurseries. Tree planting and tree sales continue to be of considerable interest to the public although there are no large-scale commercial tree nurseries currently operating in Alaska. A state tree nursery was once operated in the Matanuska Valley area, but it has been closed. Reasons for the closure were based upon the high cost of producing seedlings in Alaska versus what it would cost to import them from nurseries outside the state and also, the overall operational difficulties and risks associated with an Alaska nursery program.
    [Show full text]
  • Abronia Umbellata Var. Breviflora)
    Pink sandverbena (Abronia umbellata var. breviflora) ENDANGERED Flowers (left), habit (center), and habitat (right) of pink sandverbena. Photos by ODA staff (left and center) and Thomas Kaye (right). If downloading images from this website, please credit the photographer. Family Nyctaginaceae Taxonomic notes Synonyms: Abronia umbellata ssp. breviflora, Abronia umbellata ssp. acutalata, Abronia umbellata var. acutalata, Abronia breviflora, Abronia acutalata The number of taxa included within the Abronia umbellata complex has varied with different treatments of the group. Based on genetic and morphometric studies of A. umbellata populations, we consider A. umbellata var. acutalata to be included within var. breviflora. Plant description Pink sandverbena can be either an annual or occasionally a short-lived perennial. It is a tap-rooted glandular-puberulent forb with few to several prostrate branches up to 1 m (-1.5) long. Leaf blades are fleshy, light green, oval to oblong-ovate with somewhat irregular margins, 2-6 cm long, with slender petioles about as long as the blades. Flowers are grouped in ball-like clusters of 8-20 (average 14-15) subtended by 5 (4) lanceolate involucral bracts, with clusters born at the ends of stalks growing out from the stems. Individual plants produce from one to thousands of flower clusters, depending on conditions. The perianth is glandular-puberulent, the perianth tube greenish or yellowish to pink and 0.6-0.8 cm long. The corolla limbs are pinkish-purple to deep reddish-magenta, 0.5-0.8 cm broad. Flowers have a yellowish-white eyespot 0.25-0.3 cm in diameter surrounding the throat.
    [Show full text]
  • Douglas- Fir Limber Pine Lodgepole Pine Ponderosa Pine Blue Spruce
    NAME ORIGIN BARK FEMALE CONES NEEDLES WHERE USES TRIVIA Named by Smooth gray bark To 4ÂÂ long, Soft, flat, 2-sided, Found on north or Railroad crossties, State tree of Scottish botanist on young trees yellowish to light 1¼″ long and south-facing slopes, mine timbers, for Oregon. David Douglas. with numerous brown hanging cones rounded at the tip. in shady ravines and building ships and The Latin name DOUGLAS- Fir is from the resin scars. with uniquely 3- Dark yellow green or on rocky slopes boats, construction psuedotsuga Middle English pointed bracts blue green. Shortly where the soil is lumber, plywood, means FIR firre and Old protruding from cone stalked spreading fairly deep. telephone poles, ÂÂfalse Psuedotsuga English fyrh. scales like a snakes- mostly in two rows. fencing, railroad-car fir.ÂÂ menziesii tongue. Single small groove construction, boxes Can drop 2 on topside of needles and crates, flooring, million seeds in and single white line furniture, ladders a good year. on underside of and pulpwood. needles. Pine is from the Light gray to Big (to 9ÂÂ long) Stout in clusters of 5 Found on rocky, Lumber, railroad Cones start to LIMBER Latin pinus and blackish brown. cylindrical, greenish needles, to 3″ long. gravelly slopes, cross ties, poles, appear after the the Old English Smooth and silvery brown, with thick, Straight or slightly ridges and peaks. turpentine, tar and tree reaches 20 PINE pin. gray on young broad scales. Cone curved, not sticky to fuel. years of age. Pinus flexilis trees. scales lack prickles. the touch. Dark green. Pine is from the Bark is grayish or Light yellow brown, Stout, twisted Found in well Lumber, knotty Many Plains Latin pinus and light brown, thin reddish or dark green, needles, mostly in drained soils, dry pine paneling, Indian tribes the Old English and with many lopsided cones to pairs, to 2½″ long.
    [Show full text]