1 RNA-guided Retargeting of Sleeping Beauty Transposition in 2 Human Cells 3 4 Adrian Kovač1, Csaba Miskey1, Michael Menzel2, Esther Grueso1, Andreas Gogol- 5 Döring2 and Zoltán Ivics1,* 6 7 8 1 Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 9 Langen, Germany 10 2 University of Applied Sciences, 35390 Giessen, Germany 11 12 13 *For correspondence: 14 Zoltán Ivics 15 Paul Ehrlich Institute 16 Paul Ehrlich Str. 51-59 17 D-63225 Langen 18 Germany 19 Phone: +49 6103 77 6000 20 Fax: +49 6103 77 1280 21 Email:
[email protected] 22 23 Keywords: genetic engineering, CRISPR/Cas, gene targeting, DNA-binding, gene insertion 24 1 25 ABSTRACT 26 An ideal tool for gene therapy would enable efficient gene integration at predetermined sites in 27 the human genome. Here we demonstrate biased genome-wide integration of the Sleeping 28 Beauty (SB) transposon by combining it with components of the CRISPR/Cas9 system. We 29 provide proof-of-concept that it is possible to influence the target site selection of SB by fusing it 30 to a catalytically inactive Cas9 (dCas9) and by providing a single guide RNA (sgRNA) against 31 the human Alu retrotransposon. Enrichment of transposon integrations was dependent on the 32 sgRNA, and occurred in an asymmetric pattern with a bias towards sites in a relatively narrow, 33 300-bp window downstream of the sgRNA targets. Our data indicate that the targeting 34 mechanism specified by CRISPR/Cas9 forces integration into genomic regions that are 35 otherwise poor targets for SB transposition.