2012 Portfolio Analysis Projects: Question 2: How Can I Understand

Total Page:16

File Type:pdf, Size:1020Kb

2012 Portfolio Analysis Projects: Question 2: How Can I Understand 2012 Portfolio Analysis Projects Please note that data are not yet final; additional projects may be added. QUESTION 2: HOW CAN I UNDERSTAND WHAT IS HAPPENING? 2.S.A Support at least four research projects to identify mechanisms of fever, metabolic and/or immune system interactions with the central nervous system that may influence ASD during prenatal-postnatal life by 2010. IACC Recommended Budget: $9,800,000 over 4 years. (Fever studies to be started by 2012.) Principal Project Title Institution Funding Funder Investigator Systematic characterization of the Alaedini, Weill Cornell Medical $0.00 Department immune response to gluten and Armin College of Defense casein in autism spectrum disorders Autoimmunity against novel antigens Balice- University of $320,000. National in neuropsychiatric dysfunction Gordon, Pennsylvania 00 Institutes of Rita Health Convergence of immune and genetic Barrow, University of $0.00 Brain & signaling pathways in autism and Stephanie California, Davis Behavior schizophrenia Research Foundation Altered placental tryptophan Bonnin, University of $535,699. Department metabolism: A crucial molecular Alexandre Southern California 00 of Defense pathway for the fetal programming of neurodevelopmental disorders Brain mitochondrial abnormalities in Chauhan, New York State $20,000.0 Autism autism Abha Institute for Basic 0 Research Research in Institute Developmental Disabilities Mechanisms of synaptic alterations in Dunaevsky University of $579,882. Department a neuroinflammation model of autism , Anna Nebraska Medical 00 of Defense - Center Autism Research Program This document is for discussion purposes only and does not reflect the decisions of the IACC IL-1beta and IL1RAPL1: Gene- Estes, University of $28,600.0 Autism environment interactions regulating Myka California, Davis 0 Speaks synapse density and function in ASD Redox abnormalities as a vulnerability Hepel, State University of $0.00 Department phenotype for autism and related Maria New York at of Defense alterations in CNS development Potsdam Sensitive periods in cerebellar Hoffman, University of $32,941.0 National development Jessica Maryland, Baltimore 0 Institutes of Health Hyperthermia and the amelioration of Hollander, Montefiore Medical $66,153.0 Simons autism symptoms Eric Center 0 Foundation Exploring metabolic dysfunction in the Hu, Valerie George Washington $0.00 Simons brains of people with autism University Foundation Redox abnormalities as a vulnerability James, Arkansas Children's $0.00 Department phenotype for autism and related Sandra Hospital Research of Defense alterations in CNS development Institute Autism spectrum disorders – Jyonouchi, University of $30,000.0 Autism inflammatory subtype: Molecular Harumi Medicine & Dentistry 0 Research characterization of New Jersey Institute The Study of Toddlers with Autism Loh, Alvin Surrey Place Centre, $0.00 Health and Regression (STAR) Protocol – Toronto Resources Screening for treatable disorders and and Services biomarkers of inflammation and Administratio immune activation in the plasma and n CNS Prostaglandins and cerebellum McCarthy, University of $371,250. National development Margaret Maryland, Baltimore 00 Institutes of Health This document is for discussion purposes only and does not reflect the decisions of the IACC Redox abnormalities as a Noble, Mark University of $0.00 Department vulnerability phenotype for autism Rochester of Defense and related alterations in CNS development GABRB3 and placental vulnerability Palmer, Stanford University $642,258. National in ASD Theo 00 Institutes of Health GABA(A) and prenatal immune Palmer, Stanford University $125,000. Simons events leading to autism Theo 00 Foundation A non-human primate autism model Patterson, California Institute of $0.00 Simons based on maternal infection Paul Technology Foundation The mechanism of the maternal Patterson, California Institute of $150,000. Autism infection risk factor for autism Paul Technology 00 Speaks Influence of maternal cytokines Ponzio, University of $0.00 Autism during pregnancy on effector and Nicholas Medicine & Dentistry Speaks regulatory T helper cells as of New Jersey etiological factors in autism To study the relationship between Russo, A.J. Hartwick College $7,260.00 Autism low GAD2 levels and anti-GAD Research antibodies in autistic children Institute Mechanisms of mitochondrial Shoffner, Georgia State $0.00 Department dysfunction in autism John University of Defense Role of microglial activation in the Takei, Nori Hamamatsu $50,000.0 Brain and serotonergic and neuroimmune University School of 0 Behavior disturbances underlying autism Medicine Research Foundation Project 2: Immunological Van de University of $30,784.0 National susceptibility of autism (supplement) Water, Judy California, Davis 0 Institutes of This document is for discussion purposes only and does not reflect the decisions of the IACC Health 2.S.B Launch three studies that specifically focus on the neurodevelopment of females with ASD, spanning basic to clinical research on sex differences by 2011. IACC Recommended Budget: $8,900,000 over 5 years. Principal Project Title Institution Funding Funder Investigator Behavioral and cognitive Frazier, Cleveland Clinic $60,000.0 Simons characteristics of females and males Thomas Foundation 0 Foundation with autism ACE Network: Multimodal Pelphrey, Yale University $3,118,98 National developmental neurogenetics of Kevin 5.00 Institutes of females with ASD Health Why are autistic females rare and Turner, Johns Hopkins $28,600.0 Autism severe? An approach to autism gene Tychele University 0 Speaks identification. A sex-specific dissection of autism Weiss, University of $150,000. National genetics Lauren California, San 00 Institutes of Francisco Health Investigation of sex differences Werling, University of $32,413.0 National associated with autism candidate Donna California, Los 0 Institutes of gene, Cyfip1 Angeles Health 2.S.C Identify ways to increase awareness among the autism spectrum community of the potential value of brain and tissue donation to further basic research by 2011. IACC Recommended Budget: $1,400,000 over 2 years Principal Project Title Institution Funding Funder Investigator Building awareness of the value of Singer, Autism Science $90,120.0 Simons brain tissue donation for autism Alison Foundation 0 Foundation research This document is for discussion purposes only and does not reflect the decisions of the IACC 2.S.D Launch three studies that target improved understanding of the underlying biological pathways of genetic conditions related to autism (e.g. Fragile X, Rett syndrome, tuberous sclerosis complex) and how these conditions inform risk assessment and individualized intervention by 2012. IACC Recommended Budget: $9,000,000 over 5 years. Principal Project Title Institution Funding Funder Investigator Language development in fragile X Abbeduto, University of $584,381. National syndrome Leonard California, Davis 00 Institutes of Health Neurobiological mechanism of Anderson, Beth Israel $380,625. National 15q11-13 duplication autism spectrum Matthew Deaconess Medical 00 Institutes of disorder Center Health In-vivo imaging of neuronal structure Ash, Ryan Baylor College of $0.00 Autism and function in a reversible mouse Medicine Speaks model for autism. Beaudet, Baylor College of $60,000.0 Autism TMLHE deficiency and a carnitine Arthur Medicine 0 Speaks hypothesis for autism Role of Sema7A in functional Benson, Mount Sinai School $423,750. National organization of neocortex Deanna of Medicine 00 Institutes of Health Autism phenotypes in Tuberous Bolton, King's College $149,881. Autism Sclerosis: Risk factors, features & Patrick London 00 Speaks architecture Genetic and developmental analyses Broadie, Vanderbilt University $438,391. National of fragile X mental retardation protein Kendal Medical Center 00 Institutes of Health Abnormal network dynamics and Buonoman University of $192,500. National "learning" in neural circuits from o, Dean California, Los 00 Institutes of Fmr1-/- mice Angeles Health Functional circuit disorders of sensory Carlson, University of $254,976. National cortex in ASD and RTT Gregory Pennsylvania 00 Institutes of Health Neural mechanisms underlying autism Catterall, University of $94,903.0 Simons behaviors in SCN1A mutant mice William Washington 0 Foundation Nav1.1 channels, neural circuits, and Catterall, University of $10,213.0 Simons autism William Washington 0 Foundation This document is for discussion purposes only and does not reflect the decisions of the IACC Regulation of cortical critical periods in Contractor, Northwestern $60,000.0 Simons a mouse model of autism Anis University 0 Foundation Elucidation and rescue of amygdala Corbin, George Washington $150,000. Autism abnormalities in the Fmr1 mutant Joshua University 00 Speaks mouse model of fragile X syndrome Synaptic phenotype, development, Cox, University of Illinois $395,134. National and plasticity in the fragile X mouse Charles at Urbana 00 Institutes of Champaign Health The functional link between DISC1 DiDonato, Children's Memorial $0.00 Department and neuroligins: Two genetic factors Christine Hospital, Chicago of Defense in the etiology of autism Allelic choice in Rett syndrome Donohoe, Winifred Masterson $390,481. National Mary Burke Medical 00 Institutes of Research Institute Health Mechanisms of motor skill learning in Dunaevsky, University of $308,138. National the fragile X mouse model Anna Nebraska Medical 00 Institutes of Center Health Predicting
Recommended publications
  • A Common X-Linked Inborn Error of Carnitine Biosynthesis May Be a Risk Factor for Nondysmorphic Autism
    A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism Patrícia B. S. Celestino-Sopera,1, Sara Violanteb,c,1, Emily L. Crawfordd, Rui Luoe, Anath C. Lionelf, Elsa Delabyg, Guiqing Caih, Bekim Sadikovica, Kwanghyuk Leea, Charlene Loa, Kun Gaoe, Richard E. Persona, Timothy J. Mossa, Jennifer R. Germana, Ni Huangi, Marwan Shinawia,j,2, Diane Treadwell-Deeringj,k, Peter Szatmaril, Wendy Robertsm, Bridget Fernandezn, Richard J. Schroero, Roger E. Stevensono, Joseph D. Buxbaumh, Catalina Betancurg, Stephen W. Schererf,m, Stephan J. Sandersp, Daniel H. Geschwinde, James S. Sutcliffed, Matthew E. Hurlesi, Ronald J. A. Wandersb, Chad A. Shawa, Suzanne M. Leala, Edwin H. Cook, Jr.q, Robin P. Goin-Kochela,j,r, Frédéric M. Vazb,1, and Arthur L. Beaudeta,j,r,1,3 Departments of aMolecular and Human Genetics, kPsychiatry, and rPediatrics, Baylor College of Medicine, Houston, TX 77030; jTexas Children’s Hospital, Houston, TX 77030; bLaboratory Genetic Metabolic Disease, Departments of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; cMetabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; dDepartment of Molecular Physiology and Biophysics, Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232; eDepartment of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles,
    [Show full text]
  • The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
    The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d.
    [Show full text]
  • Downloaded from the App Store and Nucleobase, Nucleotide and Nucleic Acid Metabolism 7 Google Play
    Hoytema van Konijnenburg et al. Orphanet J Rare Dis (2021) 16:170 https://doi.org/10.1186/s13023-021-01727-2 REVIEW Open Access Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app Eva M. M. Hoytema van Konijnenburg1†, Saskia B. Wortmann2,3,4†, Marina J. Koelewijn2, Laura A. Tseng1,4, Roderick Houben6, Sylvia Stöckler‑Ipsiroglu5, Carlos R. Ferreira7 and Clara D. M. van Karnebeek1,2,4,8* Abstract Background: The Treatable ID App was created in 2012 as digital tool to improve early recognition and intervention for treatable inherited metabolic disorders (IMDs) presenting with global developmental delay and intellectual disabil‑ ity (collectively ‘treatable IDs’). Our aim is to update the 2012 review on treatable IDs and App to capture the advances made in the identifcation of new IMDs along with increased pathophysiological insights catalyzing therapeutic development and implementation. Methods: Two independent reviewers queried PubMed, OMIM and Orphanet databases to reassess all previously included disorders and therapies and to identify all reports on Treatable IDs published between 2012 and 2021. These were included if listed in the International Classifcation of IMDs (ICIMD) and presenting with ID as a major feature, and if published evidence for a therapeutic intervention improving ID primary and/or secondary outcomes is avail‑ able. Data on clinical symptoms, diagnostic testing, treatment strategies, efects on outcomes, and evidence levels were extracted and evaluated by the reviewers and external experts. The generated knowledge was translated into a diagnostic algorithm and updated version of the App with novel features. Results: Our review identifed 116 treatable IDs (139 genes), of which 44 newly identifed, belonging to 17 ICIMD categories.
    [Show full text]
  • Potential Role of L-Carnitine in Autism Spectrum Disorder
    Journal of Clinical Medicine Review Potential Role of L-Carnitine in Autism Spectrum Disorder Alina K˛epka 1,† , Agnieszka Ochoci ´nska 1,*,† , Sylwia Chojnowska 2 , Małgorzata Borzym-Kluczyk 3, Ewa Skorupa 1, Małgorzata Kna´s 2 and Napoleon Waszkiewicz 4 1 Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; [email protected] (A.K.); [email protected] (E.S.) 2 Faculty of Health Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland; [email protected] (S.C.); [email protected] (M.K.) 3 Department of Pharmaceutical Biochemistry, Medical University of Bialystok, 15-089 Bialystok, Poland; [email protected] 4 Department of Psychiatry, Medical University of Bialystok, 15-089 Bialystok, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-22-815-73-01 † These authors are sharing the first place. Both contributed equally to this work. Abstract: L-carnitine plays an important role in the functioning of the central nervous system, and especially in the mitochondrial metabolism of fatty acids. Altered carnitine metabolism, abnormal fatty acid metabolism in patients with autism spectrum disorder (ASD) has been documented. ASD is a complex heterogeneous neurodevelopmental condition that is usually diagnosed in early child- hood. Patients with ASD require careful classification as this heterogeneous clinical category may include patients with an intellectual disability or high functioning, epilepsy, language impairments, or associated Mendelian genetic conditions. L-carnitine participates in the long-chain oxidation of fatty acids in the brain, stimulates acetylcholine synthesis (donor of the acyl groups), stimulates ex- pression of growth-associated protein-43, prevents cell apoptosis and neuron damage and stimulates Citation: K˛epka,A.; Ochoci´nska,A.; neurotransmission.
    [Show full text]
  • Non-Recurrent MECP2 Duplications Mediated by Genomic Architecture-Driven
    Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Non-recurrent MECP2 duplications mediated by genomic architecture-driven DNA breaks and break-induced replication repair Running title: Genomics of MECP2 duplications Marijke Bauters,1,2,1 Hilde Van Esch,3,1 Michael %. Frie(,4 Odile Boespflug- ,anguy,5 Martin .enker,6 Angela M. Vianna-Morgante,0 1arla 2osenberg,0 %aakko Ignatius,8 Martine 2aynaud,5 6aren Hollanders,1,2 6aren 7ovaerts,1,2 6ris Vandenreijt,1,2 Florence Niel,5 8ierre Blanc,5 2oger E. Stevenson,4 %ean-8ierre Fryns,3 8eter Marynen,1,2 1harles E. Schwart(,4 and 7uy Froyen1,2,11 1Human Genome Laboratory, Dept. for Molecular and Developmental Genetics, IB, Leuven, Belgium$ 2Human Genome Laboratory, Dept. of Human Genetics, %.U.Leuven, Leuven, Belgium$ 3Dept. of Human Genetics, University Hospital Gasthuisberg, Leuven, Belgium$ 4JC Self ,esearch Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC$ .Centre Hospitalier Universitaire, Clermont-0D, G1n1ti2ue Humaine, Clermont-0errand, 0rance$ 3Institute of Human Genetics, University of Erlangen- Nuremberg, Erlangen, Germany$ 7Dept. Genetics and Evolutionary Biology, Institute of Biosciences, University of S6o Paulo, Bra7il$ 8Dept. Clinical Genetics, Oulu University Hospital and Oulu University, 0inland$ 9Centre Hospitalier Universitaire de Tours, Service de G1n1ti2ue, Tours, 0rance Ke words: MECP2, duplication, recombination model, breakpoint anal sis 1 ,hese two authors contributed equally to this work. Bauters_ms4.doc 14-3-2008 Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press 2 111orresponding author. E-mail guy.froyen@ med.kuleuven.be; fax: +32-16-340166 Address for correspondence: Dr.
    [Show full text]
  • Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham a Thesis Submitted in Conformity
    Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Molecular Genetics University of Toronto © Copyright by Edward James Higginbotham 2020 i Abstract Characterizing Genomic Duplication in Autism Spectrum Disorder Edward James Higginbotham Master of Science Graduate Department of Molecular Genetics University of Toronto 2020 Duplication, the gain of additional copies of genomic material relative to its ancestral diploid state is yet to achieve full appreciation for its role in human traits and disease. Challenges include accurately genotyping, annotating, and characterizing the properties of duplications, and resolving duplication mechanisms. Whole genome sequencing, in principle, should enable accurate detection of duplications in a single experiment. This thesis makes use of the technology to catalogue disease relevant duplications in the genomes of 2,739 individuals with Autism Spectrum Disorder (ASD) who enrolled in the Autism Speaks MSSNG Project. Fine-mapping the breakpoint junctions of 259 ASD-relevant duplications identified 34 (13.1%) variants with complex genomic structures as well as tandem (193/259, 74.5%) and NAHR- mediated (6/259, 2.3%) duplications. As whole genome sequencing-based studies expand in scale and reach, a continued focus on generating high-quality, standardized duplication data will be prerequisite to addressing their associated biological mechanisms. ii Acknowledgements I thank Dr. Stephen Scherer for his leadership par excellence, his generosity, and for giving me a chance. I am grateful for his investment and the opportunities afforded me, from which I have learned and benefited. I would next thank Drs.
    [Show full text]
  • C6orf203 Controls OXPHOS Function Through Modulation of Mitochondrial Protein Biosynthesis
    bioRxiv preprint doi: https://doi.org/10.1101/704403; this version posted July 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. C6orf203 controls OXPHOS function through modulation of mitochondrial protein biosynthesis number of characters excluding Materials and Methods: 40,651 Sara Palacios-Zambrano1,2, Luis Vázquez-Fonseca1,2, Cristina González-Páramos1,2, Laura Mamblona1,2, Laura Sánchez-Caballero3, Leo Nijtmans3, Rafael Garesse1,2 and Miguel Angel Fernández-Moreno1,2,* 1 Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER). Facultad de Medicina, Universidad Autónoma de Madrid. Madrid 28029, Spain. 2 Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid 28041, Spain. 3 Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands. * To whom correspondence should be addressed. Tel:+34 91 497 31 29; Email: [email protected] Running title “C6orf203 controls mt-proteins synthesis” bioRxiv preprint doi: https://doi.org/10.1101/704403; this version posted July 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Mitochondria are essential organelles present in the vast majority of eukaryotic cells. Their central function is to produce cellular energy through the OXPHOS system, and functional alterations provoke so-called mitochondrial OXPHOS diseases. It is estimated that several hundred mitochondrial proteins have unknown functions. Very recently, C6orf203 was described to participate in mitochondrial transcription under induced mitochondrial DNA depletion stress conditions.
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information Flow
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]
  • Effects of L-Carnitine in Patients with Autism Spectrum Disorders
    molecules Review Effects of l-Carnitine in Patients with Autism Spectrum Disorders: Review of Clinical Studies Michele Malaguarnera 1,2 and Omar Cauli 2,3,* 1 Research Center “The Great Senescence”, University of Catania, 95100 Catania, Italy; [email protected] 2 Department of Nursing, University of Valencia, 46010 Valencia, Spain 3 Frailty and Cognitive Impairment Group (FROG), University of Valencia, 46010 Valencia, Spain * Correspondence: [email protected] Academic Editors: Cesare Indiveri and Lara Console Received: 30 October 2019; Accepted: 21 November 2019; Published: 22 November 2019 Abstract: Carnitine is an amino acid derivative, which plays several important roles in human physiology, in the central nervous system, and for mitochondrial metabolism, in particular. Altered carnitine metabolic routes have been associated with a subgroup of patients with autism spectrum disorders (ASD) and could add to the pathophysiology associated with these disorders. We review the current evidence about the clinical effects of carnitine administration in ASD in both non-syndromic forms and ASD associated with genetic disorders. Two randomized clinical trials and one open-label prospective trial suggest that carnitine administration could be useful for treating symptoms in non-syndromic ASD. The effect of carnitine administration in ASD associated with genetic disorders is not conclusive because of a lack of clinical trials and objectives in ASD evaluation, but beneficial effects have also been reported for other comorbid disorders, such as intellectual disability and muscular strength. Side effects observed with a dose of 200 mg/kg/day consisted of gastro-intestinal symptoms and a strong, heavy skin odor. Doses of about 50–100 mg/kg/day are generally well tolerated.
    [Show full text]
  • High Functioning Autism with Missense
    International Journal of Molecular Sciences Article High Functioning Autism with Missense Mutations in Synaptotagmin-Like Protein 4 (SYTL4) and Transmembrane Protein 187 (TMEM187) Genes: SYTL4- Protein Modeling, Protein-Protein Interaction, Expression Profiling and MicroRNA Studies Syed K. Rafi 1,* , Alberto Fernández-Jaén 2 , Sara Álvarez 3, Owen W. Nadeau 4 and Merlin G. Butler 1,* 1 Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA 2 Department of Pediatric Neurology, Hospital Universitario Quirón, 28223 Madrid, Spain 3 Genomics and Medicine, NIM Genetics, 28108 Madrid, Spain 4 Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA * Correspondence: rafi[email protected] (S.K.R.); [email protected] (M.G.B.); Tel.: +816-787-4366 (S.K.R.); +913-588-1800 (M.G.B.) Received: 25 March 2019; Accepted: 17 June 2019; Published: 9 July 2019 Abstract: We describe a 7-year-old male with high functioning autism spectrum disorder (ASD) and maternally-inherited rare missense variant of Synaptotagmin-like protein 4 (SYTL4) gene (Xq22.1; c.835C>T; p.Arg279Cys) and an unknown missense variant of Transmembrane protein 187 (TMEM187) gene (Xq28; c.708G>T; p. Gln236His). Multiple in-silico predictions described in our study indicate a potentially damaging status for both X-linked genes. Analysis of predicted atomic threading models of the mutant and the native SYTL4 proteins suggest a potential structural change induced by the R279C variant which eliminates the stabilizing Arg279-Asp60 salt bridge in the N-terminal half of the SYTL4, affecting the functionality of the protein’s critical RAB-Binding Domain.
    [Show full text]
  • Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing
    ARTICLE Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing Yong-hui Jiang,1,18 Ryan K.C. Yuen,2,18 Xin Jin,3,4,5,18 Mingbang Wang,3,18 Nong Chen,3 Xueli Wu,3 Jia Ju,3 Junpu Mei,3 Yujian Shi,3 Mingze He,3 Guangbiao Wang,3 Jieqin Liang,3 Zhe Wang,3 Dandan Cao,3 Melissa T. Carter,6 Christina Chrysler,7 Irene E. Drmic,7 Jennifer L. Howe,2 Lynette Lau,2 Christian R. Marshall,2,8 Daniele Merico,2 Thomas Nalpathamkalam,2 Bhooma Thiruvahindrapuram,2 Ann Thompson,7 Mohammed Uddin,2 Susan Walker,2 Jun Luo,9 Evdokia Anagnostou,10 Lonnie Zwaigenbaum,11 Robert H. Ring,12 Jian Wang,3 Clara Lajonchere,12 Jun Wang,3,13,14,15,16 Andy Shih,12 Peter Szatmari,7 Huanming Yang,3 Geraldine Dawson,12,17 Yingrui Li,3,* and Stephen W. Scherer2,8,* Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo muta- tions in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations).
    [Show full text]
  • Identification of Potential Genetic Variants Associated with Longevity
    Identification of potential genetic variants associated with longevity and lifetime production traits in a Thai Landrace pig population using weighted single-step genome-wide association methods S. Plaengkaeo1, M. Duangjinda1 and K.J. Stalder2 1 Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand 2 Department of Animal Science, Iowa State University, Ames, IA, United States Corresponding author: M. Duangjinda E-mail: [email protected] Genet. Mol. Res. 19 (3): gmr18465 Received August 16, 2019 Accepted May 23, 2020 Published July 31, 2020 DOI http://dx.doi.org/10.4238/gmr18465 ABSTRACT. Longevity and lifetime production traits are of increasing importance in swine breeding schemes worldwide because these traits influence sow productivity and welfare, as well as affecting farm profitability. The Landrace breed makes up one-half of the F1 Large White x Landrace female, which is the most popular maternal line in the breeding herd of commercial pork production systems in Thailand and throughout the world. The objective of this study was to estimate genetic parameters and detect potential genetic variants associated with age at first farrowing (AFF), length of productive life (LPL), lifetime number of piglets born alive (LNBA), lifetime number of piglets weaned (LNW), lifetime wean to first service interval (LW2S) and lifetime pig efficiency (LTP365) in a Thai Landrace pig population. dData were analyzed for 82,346 litters from 12,843 Landrace pigs housed in three farms; all farms were a part of a large commercial production system. Genetic parameters were estimated using a single-step, genomic-BLUP (ssGBLUP) that utilizes general pedigree and genomic relationships.
    [Show full text]