And Ruthenium-Catalyzed N-Alkylation of Amines with Alcohols and Amines
Total Page:16
File Type:pdf, Size:1020Kb
Downloaded from orbit.dtu.dk on: Oct 11, 2021 Iridium- and Ruthenium-Catalyzed N-alkylation of Amines with Alcohols and Amines Lorentz-Petersen, Linda Luise Reeh Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Lorentz-Petersen, L. L. R. (2012). Iridium- and Ruthenium-Catalyzed N-alkylation of Amines with Alcohols and Amines. DTU Chemistry. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Iridium- and Ruthenium-Catalyzed N-alkylation of Amines with Alcohols and Amines PhD thesis Linda Luise Reeh Lorentz-Petersen February 2012 Department of Chemistry Technical University of Denmark Preface Preface This thesis describes the work carried out at the Department of Chemistry at the Technical University of Denmark from January 2007 to February 2012 supervised by Professor Robert Madsen. In that period a 6 month external stay at The Scripps Research Institute, San Diego, California, USA, from September 2008 till the end of February 2009 was conducted under supervision by Professor Phillip E. Dawson. Firstly, I would like to thank Robert Madsen for always having time to discuss chemistry or personal issues during the five years I spent in his group. I am very grateful for his patience with me, as my studies have been interrupted twice due to maternity leaves. He has been a great mentor and has in particular taught me how to maintain focus and not to “run off track”. I am also very grateful to Philip E. Dawson for hosting my external stay and for introducing me to the field of peptide/protein synthesis. It opened my eyes to an area I was otherwise very skeptical at. Despite the many technical troubles I had with the machinery, the outcome of the project at a personal level was very fruitful. The whole Dawson group is thanked for teaching me the basics of peptide synthesis. Additionally, I thank Associate Professor Evan Powers from the Kelly Lab for conducting the computational fitting of my data. I have experience both good and bad years as a PhD student. The bad years were when chemistry did not act as I wanted and the number of fellow students was low. Obviously, the good years were when chemistry was successful, but also when the building was full of students and the frustrations over lack of good results drowned in great company. Luckily, the last year was a blast and in particular the “jyder” are major contributors. I have had the pleasure of sharing not only one lab but three different labs with many people. Thanks to Lars Linderoth, Ilya Markarov, Lasse B. Olsen, Caroline Møller, Rasmus Aniol and Esben Olsen for good company in the labs. Thanks to the rest of building 201 and in particular to former technicians Ulla Maxmiling for assistance with experiments during my first pregnancy and to Janne Borg Rasmussen for assistant with everything from finding a chemical to explanation of waste handling and many joyful chats. Signe Teuber Seger (previously Henriksen) is thanked for “girl support” when I started my PhD studies and the majority of the students were of the male gender. The relationship has continued after her departure from DTU and she is now a good friend and she is also thanked for proof reading this thesis. i Preface Finally, I express my deepest gratitude to my dear husband André for support and understanding during the years. My parents are greatly appreciated for babysitting my two adorable and very energetic boys for what seems like an uncountable number of hours. My dad is also thanked for allowing me to set up camp during the months of thesis writing and hereby interrupting his otherwise peaceful retirement. Funding of my PhD stipend from the Danish National Research Foundation is greatly appreciated as well as the following foundations for financial support of my external stay: Augustinus Fonden, Fabrikant P.A. Fiskers Fond, Idella Fonden, Ingeniør Alexandre Haynman og hustru Nina Haynmans Fond, Knud Højgårds Fond, Kemisk Forenings Rejsefond, Oticon Fonden, Otto Mønsteds Fond and Rudolph Als Fondet. Linda Luise Reeh Lorentz-Petersen Kgs. Lyngby, February 2012 ii Abstract Abstract Many biologically active molecules contain one or more nitrogen atoms. Consequently, C- N bond formation is a crucial area in the development of pharmaceuticals. The main part of this thesis is devoted to environmentally benign syntheses of different nitrogen scaffolds. Iridium and ruthenium catalysts have been employed for the N-alkylation of amines with either alcohols or amines. Synthesis of secondary amines Self-condensation of primary amines afforded secondary amines in good to high yields. The reaction is catalyzed by the commercially available [Cp*IrCl 2]2 complex. The procedure is environmentally benign as it is performed in the absence of both solvent and additives and the only by-product is ammonia. Additionally, the work-up procedure is a simple distillation of the product directly from the reaction mixture. Synthesis of piperazines In the Madsen group it has previously been demonstrated that condensation of diamines and diols catalyzed by [Cp*IrCl 2]2 furnishes the piperazine skeleton. The only by-product of the reaction is water. The substrate scope was extended and the limitations of the reaction were studied. It was established that the Thorpe-Ingold effect plays a central role in the reaction, as ethyleneglycol and 1,2-ethylenediamine failed to produce piperazine. Introduction of a C-substituent on one or both of the starting materials gave C- substituted piperazines in high yields. Synthesis of N-benzylpiperazine from ethyleneglycol and N-benzylethylenediamine was also successful. Self-condensation of ethanolamine was unsuccessful due to polymerization of the starting material. o- Phenylenediamine was a difficult substrate as it furnished an equimolar mixture of 1,2,3,4-tetrahydroquinoxaline and 2-benzimidazolemethanol in the reaction with ethylene glycol. Ammonium tetrafluoroborate as the nitrogen source in reaction with 1,2- cyclohexanediol afforded the morpholine derivative. Finally, attempts to switch to ruthenium catalysis were unsuccessful since neither a RuCl 3-PPh 3 complex nor a RuCl 3- xantphos complex was able to catalyze the reaction between 1,2-diaminocyclohexane iii Abstract and ethylene glycol. Mechanistic experiments of the iridium catalyzed reactions revealed that the Voigt isomerization of the α-imino alcohol intermediate to the corresponding α- imino ketone plays a significant role. Synthesis of indoles Anilines and vicinal diols were reacted in the presence of a ruthenium complex (RuCl 3 with PPh 3 or xantphos) to give indoles in good yields. In this case water and dihydrogen are the only by-products. When unsymmetrical diols were employed the corresponding indole with the largest substituent in the 2-position was favoured. It is believed to proceed through a Bischler-like reaction pathway. Mechanistic experiments were conducted and emphasized the importance of the Voigt reaction in the formation of the product. Protein folding During an external stay at The Scripps Research Institute, San Diego, California, USA, folding of the well-known protein CI2 was studied. Several mutants were synthetically prepared via folding assisted ligation. One segment was synthesised as the C-terminal thioester by Boc-SPPS and the other segment as a C-terminal acid by Fmoc-SPPS. The sites of mutation were all in the α-helical region of the protein and the mutation choices were alanine and Aib, which both posses a high α-helical propensity. Hereby, it was believed that more stable proteins would be obtained. Folding of the mutants was studied in terms of thermodynamics and kinetics by guanidine hydrochloride denaturation monitored by fluorescence. The results were unfortunately unreliable due to errors in the spectrofluorometer. iv Resumé Resumé Mange biologisk aktive molekyler indeholder et eller flere nitrogen atomer. Derfor er dannelse af C-N bindinger et yderst vigtigt felt indenfor udvikling af medicin. Hoveddelen af denne afhandling omhandler miljøvenlige synteser af forskellige nitrogenindeholdende byggeblokke. Iridium og ruthenium katalysatorer er blevet anvendt til N-alkylering af aminer med enten alkoholer eller aminer. Syntese af sekundære aminer Selvkondensation af primære aminer gav sekundære aminer in gode eller høje udbytter. Reaktionen er katalyseret af det kommercielt tilgængelige [Cp*IrCl 2]2 kompleks. Proceduren er miljøvenlig, da den udføres uden tilstedeværelse af solvent eller additiver, og det eneste biprodukt er ammoniak. Ydermere er oparbejdningsmetoden en simpel destillation af produktet direkte fra reaktionsblandingen. Syntese af piperaziner I Madsen-gruppen er det tidligere blevet påvist, at kondensation af diaminer og dioler katalyseret af [Cp*IrCl 2]2 giver piperaziner, og det eneste biprodukt