M1atewnjifuseum 1 Oxftates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2017 AAS Abstracts
2017 AAS Abstracts The American Arachnological Society 41st Annual Meeting July 24-28, 2017 Quéretaro, Juriquilla Fernando Álvarez Padilla Meeting Abstracts ( * denotes participation in student competition) Abstracts of keynote speakers are listed first in order of presentation, followed by other abstracts in alphabetical order by first author. Underlined indicates presenting author, *indicates presentation in student competition. Only students with an * are in the competition. MAPPING THE VARIATION IN SPIDER BODY COLOURATION FROM AN INSECT PERSPECTIVE Ajuria-Ibarra, H. 1 Tapia-McClung, H. 2 & D. Rao 1 1. INBIOTECA, Universidad Veracruzana, Xalapa, Veracruz, México. 2. Laboratorio Nacional de Informática Avanzada, A.C., Xalapa, Veracruz, México. Colour variation is frequently observed in orb web spiders. Such variation can impact fitness by affecting the way spiders are perceived by relevant observers such as prey (i.e. by resembling flower signals as visual lures) and predators (i.e. by disrupting search image formation). Verrucosa arenata is an orb-weaving spider that presents colour variation in a conspicuous triangular pattern on the dorsal part of the abdomen. This pattern has predominantly white or yellow colouration, but also reflects light in the UV part of the spectrum. We quantified colour variation in V. arenata from images obtained using a full spectrum digital camera. We obtained cone catch quanta and calculated chromatic and achromatic contrasts for the visual systems of Drosophila melanogaster and Apis mellifera. Cluster analyses of the colours of the triangular patch resulted in the formation of six and three statistically different groups in the colour space of D. melanogaster and A. mellifera, respectively. Thus, no continuous colour variation was found. -
Information to Users
INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9111799 Evolutionary morphology of the locomotor apparatus in Arachnida Shultz, Jeffrey Walden, Ph.D. -
Survs; “‘1’ 03‘ the of MECHEGAN
SURVs; “‘1’ 03‘ THE PSEUQOSCORPIONS OF MECHEGAN 1959 WI“NH“\llUllNHlH“llllH“|H21|1|NH||NL|W _ 3 1293 10402 LIB R A R Y Mi chig nState Uni! rsity SURVEY OF THE PSEUDOSCOFPIONS OF MICHIGAN By JOSEPH D. FFNSTWRMACHWR AN ABSTRACT Submitted to the School of Graduate Studies of Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Deoartment of Zoology 1959 Approvedjflw_ fizz ABSTRACT This study was conducted as a preliminary survey of the species of pseudoscornions found in Michigan end their habi- tat preferences. Apnroximately 1450 specimens were collected by the author. Around 500 additional snecimens were made available for this survey from institutional and nersonal collections. Records published prior to this study list four species of pseudoscorpions in the state. With the nresent survey the list has been increased to include twelve species, ten genera, five families, and three suborders. Three of the four previously recorded species were taken at new locali- ties. An accurate species determination could not be made for six specimens. They appear to demonstrate the presence of three or four additional genera and species. Pseudoscorpions have varied habitat preferences. Four species were found in the leaf litter and ground cover of deciduous forests: ghfhonius tetraghelgtus, pactvlocheljfer cooiosus, Microbisium confusum, and Fselanhochernes oarvus. The latter two were taken also in rotten loss and wood de- bris. Microbisium brunneum_was collected from Sphagnum moss ”no -—-—.—_ and bog debris. Several species were taken near the habits- tions of man: Ehelifer cancroides in an abandoned shack; Lamnrocherngs minor and Eaispghelifer callus in a grain bin. -
AMERICAN MUSEUM NOVITATES Published by Number 1271 the AMERICAN MUSEUM of NATURAL HISTORY December 26, 1944 New York City
AMERICAN MUSEUM NOVITATES PUblished by Number 1271 THE AMERICAN MUSEUM OF NATURAL HISTORY December 26, 1944 New York City NEW PSEUDOSCORPIONS OF THE SUBFAMILY LAMPROCHERNETINAE BY C. CLAYTON HOFF' Through the kindness of Dr. W. J. material was considered inadequate for de- Gertsch, the writer has been privileged to scription. study the pseudoscorpions in the collec- Measurements given in the text are, un- tion of the American Museum of Natural less otherwise indicated, of specimens History. In the present paper five new cleared in beechwood creosote and mounted species belonging to the subfamily Lampro- in Canada balsam. The body, but not the chernetinae are described from Mexico, appendages, of each individual was treated Central America, and Dominica. New before mounting with potassium hydroxide records for a sixth species of the subfamily solution. All drawings were made with the are given. Other species, possibly new, of aid of a camera lucida. this subfamily were found in the collec- Type specimens are deposited in the tions examined, but in each instance the American Museum of Natural History. SUBORDER MONOSPHYRONIDA CHAMBERLIN SUPERFAMILY CHELIFEROIDEA taxy of each tergite consisting of a marginal CHAMBERLIN row, a single seta placed anteriorly and medially in each half tergite, and a seta FAMILY CHERNETIDAE CHAMBERLIN placed anteriorly and laterally in each half Subfamily Lamprochernetinae Beier tergite. Sternites except the last divided; usually 20 to 24 setae on the fifth to tenth Lamprochernes ellipticus, new species sternite; position of setae as on the tergites; Figures 1-4 all setae acuminate; fourth sternite with six FEMALE: Body elongate, elliptical, medially placed setae. -
Biodiversity from Caves and Other Subterranean Habitats of Georgia, USA
Kirk S. Zigler, Matthew L. Niemiller, Charles D.R. Stephen, Breanne N. Ayala, Marc A. Milne, Nicholas S. Gladstone, Annette S. Engel, John B. Jensen, Carlos D. Camp, James C. Ozier, and Alan Cressler. Biodiversity from caves and other subterranean habitats of Georgia, USA. Journal of Cave and Karst Studies, v. 82, no. 2, p. 125-167. DOI:10.4311/2019LSC0125 BIODIVERSITY FROM CAVES AND OTHER SUBTERRANEAN HABITATS OF GEORGIA, USA Kirk S. Zigler1C, Matthew L. Niemiller2, Charles D.R. Stephen3, Breanne N. Ayala1, Marc A. Milne4, Nicholas S. Gladstone5, Annette S. Engel6, John B. Jensen7, Carlos D. Camp8, James C. Ozier9, and Alan Cressler10 Abstract We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemism is high; of the troglobionts, 17 (33 % of those known from the state) are endemic to Georgia and seven (14 %) are known from a single cave. We identified three biogeographic clusters of troglobionts. Two clusters are located in the northwestern part of the state, west of Lookout Mountain in Lookout Valley and east of Lookout Mountain in the Valley and Ridge. In addition, there is a group of tro- globionts found only in the southwestern corner of the state and associated with the Upper Floridan Aquifer. At least two dozen potentially undescribed species have been collected from caves; clarifying the taxonomic status of these organisms would improve our understanding of cave biodiversity in the state. -
Pseudoscorpionida: Chernetidae), Two Remarkable Sexually Dimorphic Pseudoscorpions from Australasia
Records of the Western Australian Museum Supplement No. 52: 199-208 (1995). Barbaraella gen. novo and Cacoxylus Beier (Pseudoscorpionida: Chernetidae), two remarkable sexually dimorphic pseudoscorpions from Australasia Mark S. Harvey Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia Abstract -A new genus, Barbaraella, with the new species, B. mainae, is described from northwestern Australia, in which males possess greatly elongate pedipalps. The possible relationships of the genus are discussed and a close affinity with Teratochemes is suggested. Cacoxylus echinatlls Beier is redescribed, and the unusual sexual dimorphism of the body is highlighted. The composition of the Lamprochernetinae is discussed and 7 genera are included: Lamprochernes Tomosvary, Allochernes Beier, Wyochemes Hoff, Pselaphochemes Beier, NlIdochernes Beier, Lasiochernes Beier and Megachernes Beier. INTRODUCTION in the Eucla Caravan Park for a series of Sexual dimorphism in pseudoscorpions is pseudoscorpions collected over many years generally restricted to the genital region, although sampling the varied habitats in Western Australia. differences may be observed in other areas of the body (Chamberlin 1931) such as the abdomen (e.g. Syarinidae, Cheliferidae, Withiidae, Atemnidae), MATERIALS AND METHODS chela (e.g. Chernetidae), coxae (e.g. Feaellidae, The specimens that form the basis of this study Pseudochiridiidae, Cheliferidae), cheliceral galea, are lodged in the American Museum of Natural and tarsal claws (some Cheliferidae). Of the chelal History, New York (AMNH), Natural History modifications, size differences skewed in favour of Museum, London (BMNH), the Smithsonian females (Zeh 1987) are the most apparent, although Institution, Washington D.e. (USNM) and the the males of some species, especially chernetids, Western Australian Museum, Perth (WAM). -
Fossils – Adriano Kury’S Harvestman Overviews and the Third Edition of the Manual of Acarology for Mites
A summary list of fossil spiders and their relatives compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) with additional contributions from Lyall I. Anderson, Simon J. Braddy, James C. Lamsdell, Paul A. Selden & O. Erik Tetlie 1 A summary list of fossil spiders and their relatives compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) with additional contributions from Lyall I. Anderson, Christian Bartel, Simon J. Braddy, James C. Lamsdell, Paul A. Selden & O. Erik Tetlie Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2019. A summary list of fossil spiders and their relatives. In World Spider Catalog. Natural History Museum Bern, online at http://wsc.nmbe.ch, version 19.5, accessed on {date of access}. Last updated: 02.01.2019 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current World Spider Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the fossil record of spiders – and other arachnids – and numerous new taxa have been described. For an overview see Dunlop & Penney (2012). Spiders remain the single largest fossil group, but our aim here is to offer a summary list of all fossil Chelicerata in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list for Araneae follows the names and sequence of families adopted in the previous Platnick Catalog. -
Pseudoscorpions of the Family Chernetidae Newly Identifie D from Oregon (Pseudoscorpionida, Cheliferoidea)
Benedict, E . M . and D . R . Malcolm . 1982 . Pseudoscorpions of the family Chernetidae newly identifie d from Oregon (Pseudoscorpionida, Cheliferoidea) . J. Aranchol ., 10 :97-109 . PSEUDOSCORPIONS OF THE FAMILY CHERNETIDAE NEWLY IDENTIFIED FROM OREGON (PSEUDOSCORPIONIDA, CHELIFEROIDEA ) Ellen M. Benedict and David R. Malcolm College of Arts and Science s Pacific University Forest Grove, Oregon 9711 6 ABSTRAC T The diagnosis of the genus Illinichernes Hoff is revised and a new species, Illinichernes stephensi, is described from tree hollows in western Oregon ; the first Oregon state records are reported fo r Acuminochernes crassopalpus (Hoff), Dendrochernes crassus Hoff, Dinocheirus sicarius Chamberlin , D. validus (Banks), Hesperochernes utahensis Hoff and Clawson, and Lustrochernes grossus (Banks) , and Lamprochernes sp. These are the first published records from Oregon for the chernetid family. INTRODUCTION Chernetid pseudoscorpions have not been reported previously from Oregon eve n though approximately 80 species of the family are known from other parts of the Unite d States. A recent study of Oregon pseudoscorpions (Benedict 1978), based on newl y collected specimens and on specimens accumulated in various older collections, indicate s that chernetids are fairly common in Oregon habitats . Some of the specimens were readily identifiable as: Acuminochernes crassopalpus (Hoff), Dendrochernes crassus Hoff, Dinocheirus sicarius Chamberlin, D. validus (Banks), Hesperochernes utahensis Hoff and Clawson, and Lustrochernes grossus (Banks). Follow- ing examination of the type series of Illinichernes distinctus Hoff, the type species of the genus, Oregon specimens of Illinichernes were determined to represent a new species which is described in this paper . However, other specimens were more difficult to identify because many of the genera and species of this family are poorly defined . -
71-31,269 University Microfilms, a XEROX Company, Ann Arbor
71-31,269 NELSON, Jr., Sigurd Oscar, 1937- A SYSTEMATIC STUDY OF MICHIGAN CHELONETHIDA (ARACHNIDA), AND THE POPULATION STRUCTURE OF MICROBISIUM CONFUSUM HOFF IN A BEECH- MAPLE WOODLOT. Michigan State University, Ph.D., 1971 Zoology University Microfilms, A XEROX Company, Ann Arbor, Michigan A SYSTEMATIC STUDY OP MICHIGAN CHELONETHIDA (ARACHNIDA) AND THE POPULATION STRUCTURE OP MICROBISIUM CONFUSUM HOPP IN A BEECH-MAPLE WOODLOT By Sigurd Oscar Nelson, Jr. A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Zoology 1971 PLEASE NOTE: Some Pages have indistinct print. F! tmed as received. UNIVERSITY MICROFILMS ABSTRACT A SYSTEMATIC STUDY OF MICHIGAN CHELONETHIDA (ARACHNIDA), AND THE POPULATION STRUCTURE OF MICROBISIUM CONFUSUM HOFF IN A BEECH-MAPLE WOODLOT By Sigurd Oscar Nelson, Jr. The systematics of Michigan Chelonethida (Pseudoscor- pionida) and the population structure analysis of Micro- bisium confusum Hoff in a beech-maple woodlot are given. Twenty-nine species of pseudoscorpions are reported from Michigan, including two new species, Dinocheirus horricus and Parachelifer monroensis. and an undetermined species of Pseudogarypus. Disjunct distributions are discussed. Indirect evi dence of phoresy is presented. A key to Michigan pseudoscorpions, and an account of each species including data related to identification, dis tribution and habitat preference are included. Data concerning life stages, number of generations per year, and density are presented in the population analysis of M. confusum in beech-maple litter. The maxi mum density of all life stages reached 154.9 per square Sigurd Oscar Nelson, Jr. meter and dropped below 20, except for winter months, on a single occasion. -
Mammoth Cave: a Hotspot of Subterranean Biodiversity in the United States
diversity Article Mammoth Cave: A Hotspot of Subterranean Biodiversity in the United States Matthew L. Niemiller 1,*, Kurt Helf 2 and Rickard S. Toomey 3 1 Department of Biological Sciences, The University of Alabama in Huntsville, 301 Sparkman Dr NW, Huntsville, AL 35899, USA 2 Cumberland Piedmont Network, National Park Service, Mammoth Cave National Park, 61 Maintenance Rd., Mammoth Cave, KY 42259, USA; [email protected] 3 Division of Science and Resources Management, Mammoth Cave National Park, P.O. Box 7, Mammoth Cave, KY 42259, USA; [email protected] * Correspondence: [email protected] or [email protected] Abstract: The Mammoth Cave System in the Interior Low Plateau karst region in central Kentucky, USA is a global hotspot of cave-limited biodiversity, particularly terrestrial species. We searched the literature, museum accessions, and database records to compile an updated list of troglobiotic and stygobiotic species for the Mammoth Cave System and compare our list with previously published checklists. Our list of cave-limited fauna totals 49 species, with 32 troglobionts and 17 stygobionts. Seven species are endemic to the Mammoth Cave System and other small caves in Mammoth Cave National Park. The Mammoth Cave System is the type locality for 33 cave-limited species. The exceptional diversity at Mammoth Cave is likely related to several factors, such as the high dispersal potential of cave fauna associated with expansive karst exposures, high surface productivity, and a long history of exploration and study. Nearly 80% of the cave-limited fauna is of conservation concern, many of which are at an elevated risk of extinction because of small ranges, few occurrences, Citation: Niemiller, M.L.; Helf, K.; and several potential threats. -
The Pseudoscorpion of Illinois
BULLETIN of the ILLINOIS NATURAL HISTORY SURVEl HARLOW B. MILLS, Chief The Pseudoscorpion of Illinois C. CLAYTON HOFF ""''^^^m, ^/% Printed by Authority of the STATE OF ILLINOIS ADLAI E. STEVENSON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION NOBLE J. PUFFER, Director STATE OF ILLINOIS Adlai E. Stevenson", Governor DEPARTMENT OF REGISTRATION AND EDUCATION Noble J. Puffer, Director NATURAL HISTORY SURVEY DIVISION Harlow B. Mills, Chief \'oliime 24 BULLETIN Article 4 The Pseudoscorpions of Illinois C. CLAYTON HOFF Printed by Authority of the State of Illinois URBAN A, ILLINOIS June 1949 STATE OF ILLINOIS Adlai E. Stevenson, Governor DEPARTMENT OF REGISTRATION AND EDUCATION Noble J. Puffer, Director BOARD OF NATURAL RESOURCES AND CONSERVATION Noble J. Piffer, Chairman A. E. Emerson, Ph.D., Biology George D. Stodrard, Ph.D., Litt.D., L.H.D., L. H. Tiffany, Ph.D., Forestry LL.D., President of the University oj Illinois L R. HowsoN, B.S.C.E., C.E., Walter H. Newhouse, Ph.D., Geology Engineering Roger Adams, Ph.D., D.Sc, Chemistry NATURAL HISTORY SURVEY DIVISION Urbana, Illinois Scientific and Technical Staff Harlow B. Mills, Ph.D., Chief Bessie B. Henderson, M.S., Assistant to the Chief Section of Economic Entomology Section of Applied Botany and Plant Pa thology George C. Decker, Ph.D., Entomologist and Head Leo R. Tehon, Ph.D., Botanist and Head Cedric Carter, Ph.D., Plant Pathologist J. H. Bigger, M.S., Entomologist J. L. L. English, Ph.D., Entomologist J. L. FoRSBERG, M.S., Associate Plant Patholo gist C. J. Weinman, Ph.D., Entomologist S. C. Chandler, B.S., Associate Entomologist G. -
Information to Users
ECOLOGICAL FACTORS, PLEIOTROPY, AND THE EVOLUTION OF SEXUAL DIMORPHISM IN CHERNETID PSEUDOSCORPIONS (PHORESY, QUANTITATIVE GENETICS, SEXUAL SELECTION). Item Type text; Dissertation-Reproduction (electronic) Authors ZEH, DAVID WAYNE. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 01/10/2021 14:50:45 Link to Item http://hdl.handle.net/10150/183995 INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted nlaterial may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17"x 23" black and white photographic print. Most photographs reproduce acceptably on positive microfilm or microfiche but lack the clarity on xerographic copies made from the microfilm.