Turboguard Brochure

Total Page:16

File Type:pdf, Size:1020Kb

Turboguard Brochure TDITURBOGUARD TM SMART START SYSTEM TDITURBOGUARD TM SMART START SYSTEM ANOTHER TDI TURBOTWIN TM RELIABILITY BREAKTHROUGH: A RELIABILITY BREAKTHROUGH TURBOGUARD TM AIR STARTERS PREVENTING ENGINE DAMAGE & DOWNTIME TDI engineers are constantly designing new features and functionality CAUSED BY HYDROLOCK to improve the reliability of engine operations and assure successful starting under the most challenging conditions. The problem of hydrolock has been vexing engine manufacturers for many years. After testing the TURBOGUARD system on their own laboratory engines and seeing its split second responsiveness,TURBOGUARD was tested at a number of engine manufacturer’s laboratories around the world. The test results proved 100% positive at every location. TURBOGUARD will be appearing on a number of OEM engines soon and is available immediately as a retrofit safeguard to any engines where the T100-V are installed. The TurboGuard This 3 min. informative video explains the cause of control box allows you to choose hydrolock and how TurboGuard prevents it.View the “ safe start mode” movie at www.Tdi-TurboTwin.com/Air-Starters/ with TurboGuard TurboGuard or on YouTube by searching TurboGuard. protection, or “ immediate start mode” for normal starting when you are doing multiple starts or testing. APPLICATIONS Workboats & Marine Power Generation/ Remote Starts Critical Engine Anything Less Than aTURBOTWIN Availability Sites Air Starter is a Compromise 6800 Poe Ave. • Dayton, OH 45414 Engines with Long Tel: 937-898-9600 • Fax: 937-898-8431 Periods Between Starts Anything Less Than aTURBOTWIN www.tdi-turbotwin.com Air Starter is a Compromise ©Copyright 2016 TDI AN16-177 8/1/2016 TURBOTWIN is a trademark of TDI TDITURBOGUARD TM FINALLY A PROTECTIVE SAFEGUARD AGAINST HYDROLOCK ENGINE DAMAGE 1. Coolant Leak 2. Compression Burst 3. Downtime & Damage 4. Prevention TURBOGUARD If coolant leaks Liquid in the The extent of the TURBOGUARD into the cylinder cylinder will not damage can vary, detects the while engine compress. With but the loss of presence of any is idle the nowhere to go, engine availability obstruction or engine becomes it will cause a and downtime fluid in the cylinder susceptible to a hydrolock burst can devastate during the start hydrolock incident. that damages a workboat or sequence and the engine. power generation aborts the process business operation. before damage can occur. TURBOGUARD’s Soft Start Reduces Wear on Ring Gear. The reduced impact will extend pinion and ring gear life up to three times. HOW HYDROLOCK HAPPENS & What Applications TurboGuard Assures a Have the Greatest Need HOW TURBOGUARD PREVENTS IT New Level of Engine Reliability for TURBOGUARD? What is Hydrolock? Introducing TDI’s Proprietary Your engine has many built-in safeguards, but protection against hydrolock is not one of them. HydroLock occurs when the engine is started Smart Starter Control With TURBOGUARD there is a new level of protection with coolant in a cylinder. The coolant is driven TDI’s innovative smart starter technology has against the threat of leaking head gaskets, oil from through the cylinder at very high pressures the ability to regulate air pressure, speed, and valves, or other obstructions that make their way during the compression cycle. Because liquids other variables in such a precise way it can into a cylinder. Being able to abort the start cycle do not compress, as the pressure builds, there determine if there are cylinder obstructions before damage is done delivers a new level of is no place for it to go causing an internal and abort before coolant is pushed through the engine reliability. collision known as hydrolock. system to cause damage. This is a significant engineering accomplishment because a typical TurboGuard is a Safeguard What Damage Does it Cause? for Your Business Workboats & Marine engines Engines with Long Periods engine start cycle may go from 0 to engine are susceptible to leaking Between Starts are candidates The high pressure mechanical collision can firing RPM in under 5 seconds. It’s estimated that one hydrolock incident can cost coolant or fluids after being for TURBOGUARD because cause bent connecting rods, broken pistons, How TurboGuard between $50,000-$1 million dollars in downtime in port for periods of time. during those times, the engine a cracked block, damaged cylinder head, and and replacement costs. TURBOGUARD isn’t just a is vulnerable to leaking coolant. broken crankshaft. The damage could require Smart Starting Works new reliability feature for your start system; it’s a a completely new engine. Perhaps the biggest TURBOGUARD ’s intelligent control system has quality process safeguard that minimizes the pos- problem is the cost of downtime to your extended the normal cycle ten seconds lon- sibility of a catastrophic loss of engine availability. operation as you wait for parts and repair, or ger using relay valves, solenoids, and precise For protecting your engines from hydrolock damage have to move the old engine out and wait for control of speed and air pressure. As the engine and assuring equipment availability in your opera- the replacement engine to arrive. is slowly rotated, the starter system monitors tions, TURBOGUARD is an essential option. for anomalies in the process indicating a hydro- How Does TDI TurboGuard lock condition. If an obstruction is identified, the The TurboGuard Start System Prevent Hydrolock? starter sequence is aborted. If no obstruction is Fits All Kinds of Engines Power Generation/Remote Remote Automatic Gas TDI’s TURBOGUARD Smart Starter detects the detected, the engine will be brought to normal Presently, TURBOGUARD is designed to fit on all Starts with no operator Compression Stations are often presence of leaking coolant, extraneous fluids, crank speed utilizing a “soft-start pressure ramp” large reciprocating engines from 70-300 liters. present to blow down the unmanned and have long or any other type of obstruction in the cylinders to minimize impact torque between starter pinion It fits the same engine market as TDI’s T100-V engine,T URBOGUARD is periods of time between starts during the start sequence. TURBOGUARD and engine ring gear. In cases where the engine models. It’s more than just a starter. TURBOGUARD a safeguard. — meaning coolant leaks can go unnoticed. automatically shuts the starting process down has been started recently (durations you can systems include a new TDI smart starter, valves, before damage occurs – preventing a preset), the protective safe start feature can be controls, and all the hardware required for a fast, hyrdolock incident. bypassed and the engine can start immediately. complete installation on your engines..
Recommended publications
  • Engine Components and Filters: Damage Profiles, Probable Causes and Prevention
    ENGINE COMPONENTS AND FILTERS: DAMAGE PROFILES, PROBABLE CAUSES AND PREVENTION Technical Information AFTERMARKET Contents 1 Introduction 5 2 General topics 6 2.1 Engine wear caused by contamination 6 2.2 Fuel flooding 8 2.3 Hydraulic lock 10 2.4 Increased oil consumption 12 3 Top of the piston and piston ring belt 14 3.1 Hole burned through the top of the piston in gasoline and diesel engines 14 3.2 Melting at the top of the piston and the top land of a gasoline engine 16 3.3 Melting at the top of the piston and the top land of a diesel engine 18 3.4 Broken piston ring lands 20 3.5 Valve impacts at the top of the piston and piston hammering at the cylinder head 22 3.6 Cracks in the top of the piston 24 4 Piston skirt 26 4.1 Piston seizure on the thrust and opposite side (piston skirt area only) 26 4.2 Piston seizure on one side of the piston skirt 27 4.3 Diagonal piston seizure next to the pin bore 28 4.4 Asymmetrical wear pattern on the piston skirt 30 4.5 Piston seizure in the lower piston skirt area only 31 4.6 Heavy wear at the piston skirt with a rough, matte surface 32 4.7 Wear marks on one side of the piston skirt 33 5 Support – piston pin bushing 34 5.1 Seizure in the pin bore 34 5.2 Cratered piston wall in the pin boss area 35 6 Piston rings 36 6.1 Piston rings with burn marks and seizure marks on the 36 piston skirt 6.2 Damage to the ring belt due to fractured piston rings 37 6.3 Heavy wear of the piston ring grooves and piston rings 38 6.4 Heavy radial wear of the piston rings 39 7 Cylinder liners 40 7.1 Pitting on the outer
    [Show full text]
  • Small Engine Parts and Operation
    1 Small Engine Parts and Operation INTRODUCTION The small engines used in lawn mowers, garden tractors, chain saws, and other such machines are called internal combustion engines. In an internal combustion engine, fuel is burned inside the engine to produce power. The internal combustion engine produces mechanical energy directly by burning fuel. In contrast, in an external combustion engine, fuel is burned outside the engine. A steam engine and boiler is an example of an external combustion engine. The boiler burns fuel to produce steam, and the steam is used to power the engine. An external combustion engine, therefore, gets its power indirectly from a burning fuel. In this course, you’ll only be learning about small internal combustion engines. A “small engine” is generally defined as an engine that pro- duces less than 25 horsepower. In this study unit, we’ll look at the parts of a small gasoline engine and learn how these parts contribute to overall engine operation. A small engine is a lot simpler in design and function than the larger automobile engine. However, there are still a number of parts and systems that you must know about in order to understand how a small engine works. The most important things to remember are the four stages of engine operation. Memorize these four stages well, and everything else we talk about will fall right into place. Therefore, because the four stages of operation are so important, we’ll start our discussion with a quick review of them. We’ll also talk about the parts of an engine and how they fit into the four stages of operation.
    [Show full text]
  • Overview of Materials Used for the Basic Elements of Hydraulic Actuators and Sealing Systems and Their Surfaces Modification Methods
    materials Review Overview of Materials Used for the Basic Elements of Hydraulic Actuators and Sealing Systems and Their Surfaces Modification Methods Justyna Skowro ´nska* , Andrzej Kosucki and Łukasz Stawi ´nski Institute of Machine Tools and Production Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Lodz, Poland; [email protected] (A.K.); [email protected] (Ł.S.) * Correspondence: [email protected] Abstract: The article is an overview of various materials used in power hydraulics for basic hydraulic actuators components such as cylinders, cylinder caps, pistons, piston rods, glands, and sealing systems. The aim of this review is to systematize the state of the art in the field of materials and surface modification methods used in the production of actuators. The paper discusses the requirements for the elements of actuators and analyzes the existing literature in terms of appearing failures and damages. The most frequently applied materials used in power hydraulics are described, and various surface modifications of the discussed elements, which are aimed at improving the operating parameters of actuators, are presented. The most frequently used materials for actuators elements are iron alloys. However, due to rising ecological requirements, there is a tendency to looking for modern replacements to obtain the same or even better mechanical or tribological parameters. Sealing systems are manufactured mainly from thermoplastic or elastomeric polymers, which are characterized by Citation: Skowro´nska,J.; Kosucki, low friction and ensure the best possible interaction of seals with the cooperating element. In the A.; Stawi´nski,Ł. Overview of field of surface modification, among others, the issue of chromium plating of piston rods has been Materials Used for the Basic Elements discussed, which, due, to the toxicity of hexavalent chromium, should be replaced by other methods of Hydraulic Actuators and Sealing of improving surface properties.
    [Show full text]
  • Subject: Supplement to Upper Engine and Fuel Injector Cleaner Label Models: All GM Vehicles Equipped with a Gasoline Engine
    7/11/2018 #PIP4753: Supplement To Upper Engine And Fuel Injector Cleaner Label - (Dec 11, 2009) • 2003 GMC Truck Yukon 4WD • MotoLogic 2003 Yukon 4WD Report a problem with this article Subject: Supplement to Upper Engine and Fuel Injector Cleaner Label All GM Vehicles Models: Equipped with a Gasoline Engine The following diagnosis might be helpful if the vehicle exhibits the symptom(s) described in this PI. Condition/Concern: Some service procedures, service bulletins, or PIs may advise to decarbon the engine with GM Upper Engine and Fuel Injector Cleaner to remove valve deposits but the label that is on the back of the bottle does not include any instructions that explain how to use the cleaner. Recommendation/Instructions: If a service procedure, service bulletin, or PI does not include decarboning instructions and the GM Vehicle Care 3 Step Induction Cleaning Kit (E-957-001) is not available, the guidelines below supplement the label and explain how the cleaner can be used to clean the intake valves: Important: Extreme care must be taken not to hydrolock the engine when inducing the cleaner. If too much cleaner is induced at too low of a RPM, or if you force the engine to stall by inducing too much cleaner at once, the engine may hydrolock and bend a connecting rod(s). 1. In a well-ventillated area with the engine at operating temperature, slowly/carefully induce a bottle of GM Upper Engine and Fuel Injection Cleaner into the engine with RPM off of idle enough to prevent it from stalling (typically around 2,000 RPM or so).
    [Show full text]
  • From Crank to Click the Evolution of the Car Key in 1769, the French
    Car Key Origins: From Crank to Click The Evolution of the Car Key In 1769, the French inventor, Nicolas-Joseph Cugnot, introduced the first automobile to the world. Ever since then, cars have continued to evolve at a remarkable rate. You might think that car keys have accompanied cars all along, but that's a little inaccurate. Car keys, along with auto locksmith services, only saw the light of day in the late 1940's. So what's the story of cars and keys? Read on to find out. Early Cars Had no Keys This might come as a shock, but older cars had no keys to speak of. In the early years of the last century, many used to chain their vehicles to lampposts in order to secure them. Back in the day as well, to start your car's engine, you needed to manually crank up the engine. But this had its drawbacks. With engines getting bigger and more powerful, rotating a lever to start your car proved inconvenient, even dangerous. In turn, this made way for the electric starter, a small motor driven with a high enough voltage to start the engine. A Step closer to a Car Key In addition to the electric starter, the early decades of the twentieth century featured others types of starters, such as spring motors and air starter motors. The driver was able to operate those starters by pressing a button on the dashboard or the floor. Alternatively, a few cars had pedals to engage the starter by foot. The advent of button-operated starters meant an easier, safer way of starting your car.
    [Show full text]
  • Swampʼs Diesel Performance Tips to Help Remove and Install Power
    Injectors-Chips-Clutches-Transmissions-Turbos-Engines-Fuel Systems Swampʼs Diesel Performance Competition Parts For Your Diesel 304-A Sand Hill Rd. La Vergne, TN 37086 Tel 615-793-5573 or (866) 595-8724/ Fax 615-793-5572 Email: [email protected] Tips to help remove and install Power Stroke injectors. Removal: After removing the valve covers and the valve cover gaskets, but before removing any injectors, drain the oil rails by removing the drain plugs inside the valve cover. On 94-97 trucks theyʼre just under where the electrical connectors are on the gasket. These plugs are very tight; give them a sharp blow with a hammer and punch to help break them loose, then use a 1/8" Allen wrench. The oil will drain out into the valve train area and from there into the crankcase. Donʼt drop the plugs down the push rod holes! Also remove one of the plugs on top of each oil rail, (beside where the lines from the High Pressure Oil Pump enter) for a vent to allow air to enter so the oil can drain. The plugs are 5/8”. Inspect the plug O-rings and replace if necessary. If the plugs under the covers leak, it will cause a substantial loss of performance. When removing the injectors, oil and fuel from the passages in the cylinder head drains down through the injector bore into the cylinders. If not removed, this can hydro-lock the engine when cranking. There is a ~40cc dish in the center of each piston. Fluid accumulates in it, as well as in the corner on the outside of the piston between the piston top and the cylinder wall, due to the 45* slope of the cylinder bank.
    [Show full text]
  • Development of Predictive Gasoline Direct Fuel Injector Model for Improved
    Development of Predictive Gasoline Direct Fuel Injector Model for Improved In-cylinder Combustion Characterization Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Mohit Atul Mandokhot Graduate Program in Mechanical Engineering The Ohio State University 2018 Thesis Committee Prof. Shawn Midlam-Mohler, Advisor Prof. Giorgio Rizzoni 1 Copyrighted by Mohit Atul Mandokhot 2018 2 Abstract Gasoline direct fuel injection systems have gained importance due to the increasing level of emissions regulation on SI combustion systems. Direct fuel injection delivery to cylinder provides better atomization and fuel mixing performance, enabling homogenous mixture and better in-cylinder combustion. Increasing focus over the last few decades has been on better characterization of such gasoline direct fuel injection systems. Solenoid powered injectors act as actuators and enable accurate fuel delivery into the cylinder for a combustion event. Characterization of injector’s fuel delivery performance is an important aspect of achieving improved in-cylinder combustion performance. The objective of the current thesis is to develop a numerical physics based fuel injector model that provides a reliable prediction of flow rate and needle lift, in order to be used to improve in-cylinder combustion performance using 3D CFD model methodology. The developed model provides a reliable estimate of flow rate of developed injector, which is experimentally verified against instantaneous flow rate data provided by typical suppliers. In cases where inadequate prediction performance was noted, the errors arise out of lack of high fidelity electromagnetic modeling data, damping characteristics inside model and lack of geometry data to capture performance of highest accuracy.
    [Show full text]
  • SB-10052498-5734.Pdf
    SB-10052498-5734 ATTENTION: IMPORTANT - All GENERAL MANAGER q Service Personnel PARTS MANAGER q Should Read and CLAIMS PERSONNEL q Initial in the boxes SERVICE MANAGER q provided, right. SERVICE BULLETIN APPLICABILITY: 2013MY Legacy and Outback 2.5L Models NUMBER: 11-130-13R 2012-13MY Impreza 2.0L Models DATE: 04/05/13 2013MY XV Crosstrek REVISED: 06/19/13 2011-2014MY Forester 2013MY BRZ SUBJECT: Difficulty Starting, Rough Idle, Cam Position or Misfire DTCs P0340, P0341, P0345, P0346, P0365, P0366, P0390, P0391, P0301, P0302, P0303 or P0304 INTRODUCTION This Bulletin provides inspection and repair procedures for intake and exhaust camshaft position-related and/or engine misfire DTCs for the FA and FB engine-equipped models listed above. The camshaft position sensor (CPS) clearance may be out of specification causing these condition(s) and one or more of the DTCs listed above to set. In addition to a Check Engine light coming on, there may or may not be customer concerns of rough idle, extended cranking or no start. NOTES: • This Service Bulletin will replace Bulletin numbers 11-100-11R, 11-122-12, 11-124-12R and 11-125-12. • Read this Bulletin completely before starting any repairs as service procedures have changed. • An exhaust cam position sensor clearance out of specification willNOT cause a startability issue. COUNTERMEASURE IN PRODUCTION MODEL STARTING VIN Legacy D*038918 Outback D*295279 Impreza 4-Door D*020700 Impreza 5-Door D*835681 XV Crosstrek Forester E*410570 BRZ D*607924 NOTE: These VINs are for reference only. There may be a small number of vehicles after the starting VINs listed above which do not have the countermeasure due to production sequence changes.
    [Show full text]
  • Lean's Engine Reporter and the Development of The
    Trans. Newcomen Soc., 77 (2007), 167–189 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Papers in Economics Lean’s Engine Reporter and the Development of the Cornish Engine: A Reappraisal by Alessandro NUVOLARI and Bart VERSPAGEN THE ORIGINS OF LEAN’S ENGINE REPORTER A Boulton and Watt engine was first installed in Cornwall in 1776 and, from that year, Cornwall progressively became one of the British counties making the most intensive use of steam power.1 In Cornwall, steam engines were mostly employed for draining water from copper and tin mines (smaller engines, called ‘whim engines’ were also employed to draw ore to the surface). In comparison with other counties, Cornwall was characterized by a relative high price for coal which was imported from Wales by sea.2 It is not surprising then that, due to their superior fuel efficiency, Watt engines were immediately regarded as a particularly attractive proposition by Cornish mining entrepreneurs (commonly termed ‘adventurers’ in the local parlance).3 Under a typical agreement between Boulton and Watt and the Cornish mining entre- preneurs, the two partners would provide the drawings and supervise the works of erection of the engine; they would also supply some particularly important components of the engine (such as some of the valves). These expenditures would have been charged to the mine adventurers at cost (i.e. not including any profit for Boulton and Watt). In addition, the mine adventurer had to buy the other components of the engine not directly supplied by the Published by & (c) The Newcomen Society two partners and to build the engine house.
    [Show full text]
  • Considerations About “Dead Centre” in Cycling. in Bicycle Pedalling, The
    Project 003: Considerations about “Dead Centre” in cycling. In bicycle pedalling, the pedal crank cycle is characterized by a power phase (pedal down-stroke) followed by a recovery phase (pedal up-stroke). Scientific and other publications introduce the notion of “Dead Centre” (or “Dead Spot” or “Dead Point”), separating the “power phase” from the “recovery phase” and being arbitrary located at 0° (Top-Dead-Centre or TDC) respectively at 180° (Bottom-Dead-Centre or BDC). In this position the cranks are vertically positioned. Many authors try to explain possible biomechanical advantages of the non- circular chainring by the effect of the reduced immediate gear ratio making the crank arm pass through these “idle zones” faster (what happens when the crank arm is oriented roughly in line with the minor axis of the oval). The question is: -what is the exact meaning of the “Dead Centre” in the bicycle pedalling cycle? -where is or are the “Dead Centre(s)” located? 1. Definition of “Dead Centre” In mechanical engineering, by describing a crank-conrod-rod mechanism (see a 2-stroke engine) the notion of “Dead Centre” is meaningful and is perfectly defined. See picture 1. Picture 1: Crank-conrod-rod 1 In the crank - conrod - rod mechanism, the rod is the driving element. The force F in the direction of the rod is transferred to the crank by means of the connecting rod (conrod). The joints of the bars are perfect pivot points. The crank will rotate when the pivot point of the joint “crank-conrod” is not positioned in a “dead centre”.
    [Show full text]
  • TECH GUIDE 1 1-5 Gaskets/Decks 4/15/09 10:51 AM Page 2
    2009 APRIL Pg 1 Head & Block Decks & Gaskets Pg 6 Cylinder Bores & Piston Rings Pg 12 Valves & Valve Seats Pg 16 Cam Bores, Bearings & Camshafts Circle 101 or more information 1-5 Gaskets/Decks 4/15/09 10:51 AM Page 1 ince the days of sealing Smooth Operation or chatter when it makes an interrupt- engines with asbestos, cork, How smooth is smooth enough? You ed cut. S rope and paper are, for the used to be able to tell by dragging For example, a converted grinder most part, ancient history, your fingernail across the surface of a may be able to mill heads and blocks. new-age materials and designs have cylinder head or engine block. And But the spindles and table drives in elevated the critical role gaskets and besides, it didn’t really matter because many of these older machines cannot seals play in the longevity of an the composite head gasket would fill hold close enough tolerances to engine. Finding the optimum sealing any gaps that your equipment or tech- achieve a really smooth, flat finish. material and design remain a chal- nique left behind. One equipment manufacturer said lenge many gasket manufacturers face But with MLS gaskets the require- grinding and milling machines that as engines are asked to do more. ments have changed. To seal properly, are more than five years old are prob- Gaskets that combine high per- a head gasket requires a surface finish ably incapable of producing consistent formance polymers with metal or that is within a recommended range. results and should be replaced.
    [Show full text]
  • Instructions Pro-Stage Ii ™ Throttle Control System
    K+R Performance Engineering, Inc. INSTRUCTIONS PRO-STAGE II ä THROTTLE CONTROL SYSTEM Congratulations on your selection of the Pro-Stage II ä Throttle Control System. This top quality unit utilizes twin precision pneumatic actuators for smooth, consistent throttle control, round after round. The use of two actuators allows you to set two different throttle settings, one near idle setting for staging with the Pro-Stage ä system, and another partial throttle setting for down-track E.T. control. Speed controls on the solenoid/valve body assembly give you precise control of throttle opening and closing rates to solve engine stumble and tire spin problems. All components of the system have been carefully selected for corrosion-resistance and long service life with very little maintenance. The Pro-Stage ä system1 is designed to improve driver concentration and reaction time consistency on both Pro and Full (bracket) trees. Control for this system is included in our complete line of Pro-Cubeâ delay box/timer units. BEFORE YOU BEGIN 1. Read all instructions and make sure you understand the operation of the control before you modify your throttle linkage or change any settings or adjustments on the control. 2. Your car MUST have a positive throttle pedal stop such as a bolt or tubular brace fastened to the chassis. Lack of a solid pedal stop could result in consistency problems. 3. SPECIAL NOTE: Factory type throttle cables will NOT work. These cables were not designed for race applications. This system requires a quality after-market “Morse” style cable or solid “rod type” linkage.
    [Show full text]