Herpetological Conservation and Biology 5(3):395–402. Submitted: 28 July 2010; Accepted: 12 October 2010. PHYLOGENETIC ANALYSIS OF COMMON GARTER SNAKE (THAMNOPHIS SIRTALIS) STOMACH CONTENTS DETECTS CRYPTIC RANGE OF A SECRETIVE SALAMANDER (ENSATINA ESCHSCHOLTZII OREGONENSIS) 1,3 1,4 2 1,5 SEAN B. REILLY , ANDREW D. GOTTSCHO , JUSTIN M. GARWOOD , AND W. BRYAN JENNINGS 1Department of Biological Sciences, Humboldt State University, 1 Harpst St., Arcata, California 95521, USA 2Redwood Sciences Laboratory, Pacific Southwest Research Station, USDA Forest Service, 1700 Bayview Drive, Arcata, California 95521, USA 3Present Address: Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California, Berkeley, California 94704, USA, email:
[email protected] 4Present Address: Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA 5Present Address: Universidade Federal do Rio de Janeiro, Museu Nacional, Departamento de Vertebrados, Rio de Janeiro, RJ, 20940-040, Brazil Abstract. Given the current global amphibian decline, it is crucial to obtain accurate and current information regarding species distributions. Secretive amphibians such as plethodontid salamanders can be difficult to detect in many cases, especially in remote, high elevation areas. We used molecular phylogenetic analyses to identify three partially digested salamanders palped from the stomachs of three Common Garter Snakes (Thamnophis sirtalis) from the Klamath Mountains in northern California. Our results conclusively show that the salamanders were all individuals of Ensatina eschscholtzii oregonensis, revealing a substantial vertical range extension for this sub-species, and documenting the first terrestrial breeding salamander living in the sub-alpine zone of the Klamath Mountains. Key Words. Common Garter Snake, distribution, Ensatina, Ensatina eschscholtzii, Klamath Mountains, mitochondrial DNA, Thamnophis sirtalis INTRODUCTION breeders.