Seasonal Patterns of Common Buzzard &Lpar;<I>Buteo Buteo</I

Total Page:16

File Type:pdf, Size:1020Kb

Seasonal Patterns of Common Buzzard &Lpar;<I>Buteo Buteo</I 466 SHORT COMMUNICATIONS VOL. 39, NO. 4 621 in I.G. Priede and S.M. Swift [EDS.], Wildlife te- MEYBURG, B.-U., X. EICHAKER, C. MEYBURG, AND P. PAI- lemetry: remote monitoring and trackingof animals. LLAT. 1995a. Migrations of an adult Spotted Eagle Ellis Horwood Ltd., New York, NY U.S.A. trackedby satellite.Brit. Birds88:357-361. BLOOM,P.H. 1987. Capturingand handling raptors.Pag- --, C. MEY•U}•G,AND J. M•HES. 2006. Annual cycle, es 99-123 in B.A.G. Pendleton, B.A. Millsap, K.W. timing and speed of migration of a pair of Lesser Cline, and D.M. Bird [EDS.], Raptor management SpottedEagles (Aquila pomarina) tracked by satellite. techniques manual. National Wildlife Federation, J. Ornithol.In press. Washington,DC U.S.A. MIZERA, T., G. MACIOROWSKI,AND B.-U. MEYBURG.2001. B}tOWN,L. )d,•DD. AMADON.1968. Eagles,hawks and Fal- [Aquila clanga(Pallas, 1811) Greater Spotted Eagle] cons of the world. Vol. 1. Country Life Books,Felt- Pages 145-148 in Z. Glowacinski [ED.], Polish red ham, England. data book on animals.Vertebrates. Panstwowe Wydaw- nictwo Rolnicze I Lesne, Warszawa, Poland. (In Polish BUST^M•NTE,J. 1995. The duration of the post-fledging with English summary). dependence period of Ospreys(Pandion haliaetus) at Mo}tvAN,R. and F. DOBCHIES.1990. D6pendance de jeu- Loch Garten, Scotland. Bird Study42:31-36. nes Aigles de Bonelli (Hieraaetusfasciatus)apres l'en- C•, W.S. 1981. A modified dho-gazatrap for use at a vol: variations individuelles. Alauda 58:150-162. raptor banding station.J. Wildl. Manage.45:1043- RAFANOMEZANTSOA,S.A. 2000. Behavior and range move- 1044. ments during the post-fledgingdependence period of DEMENTIEV,G.P. AND N.A. GL•d)KOV. 1951. Birds of the the Madagascar Fish-Eagle (Haliaeetusvociferoides). Soviet Union. Moscow, Russia. (In Russian). Pages113-119 in R.D. Chancellor and B.-U. Meyburg HAMERSTROM,F. 1963. The use of Great Horned Owls in [EDS.],Raptors at risk. Hancock House and WWGBP, catching Marsh Hawks. Proc.Int. Ornithol.Cong• 13: Berlin, Germany. 866-869. REAL,J., S. MA•OSA,AND J. CODINA.1998. Post-nestling IrANov, A.I., E.V. KozI•ov^ E.V., L.A. PORTENKO,AND A.Y. dependenceperiod in the Bonelli'sEagle (Hieraaetus TUG•mNOV. 1951. Birds of Soviet Union. Vol. 1. Iz- fasciams).Ornis Fennica 75:129-137. datelstvo Akademi Nauk SSSR, Moscow, Russia. (In Russian). Received24 November 2003; accepted5 September2005 J RaptorRes. 39(4):466-471 ¸ 2005 The Raptor ResearchFoundation, Inc. SEASONALP^TTEm'qS OF COMMONBUZZ•mD (BUTEO BUTEO) P•tATtV• ABUNDANCEAND BEH•VIO}•IN POLLINO NATIONAL PARK, ITALY MASSIMOPANDOLFI, ALESSANDRO TANFERNA, AND GIORGIAGAIBANI 1 Istitutodi Zoologia,Universitd di Urbino,via Oddi 21, 61029 Urbino,Italy KEY WORDS: CommonBuzzard; Buteo buteo; relative abun- though roadside surveyshave well-known limitations dance;roadside surveys. (e.g.,Andersen et al. 1985,Fuller and Mosher1987, Mill- sapand LeFranc1988, Vifiuela 1997), theyremain a use- Nest-site selection and habitat use have been described ful techniquefor monitoringlocal abundanceand distri- •n the Common Buzzard (Buteobuteo) by severalauthors bution of raptors (Fuller and Mosher 1987, Ellis et al. (e.g., Penterianiand Faivre 1997, Krfiger 2002, L6hmus 1990). Becauseroadside surveys are easyto conduct,they 2003, Bustamanteand Seoane 2004, Sergio et al. 2005), can be carried out at frequent intervals.Here, we present but few studies have documented annual variations in the resultsfrom monthly roadside surveysof Common Buz- abundance and habitat associationsof this species(Meu- zards.Using thesedata, we examine habitat associations, nier et al. 2000). describeseasonal patterns of Common Buzzardbehavior We conducted monthly roadside surveysof Common and abundance and, in particular, discussthe effective- Buzzards in a mountainous area of southern Italy. A1- ness of roadside surveysto monitor changes in abun- dance. 1 Present addressand correspondingauthor: Museo di METHODS Storia Naturale, Dipartimento di Biologia Evolutiva e Funzionale, Universit•t di Parma, Via Farini 90, 43100 The Common Buzzard (hereafter buzzard) surveyswere Parma, Italy; e-mail address:[email protected]. it conductedfrom October2000-September 2001 in Polhno DECEMBER2005 S•4ORT COMMUNICATIONS 467 transects Pollino National Park I ! % .,, J ß 1 I ! l* 0,0 4,0 km I I I Figure 1. Locationsof sevenroutes (thick dark lines) usedfor roadsidesurveys in PollinoNational Park, southern Italy, in 2000-01 (thin lines indicate the boundaries). National Park (39ø58'N, 16ø08'E), a 1821 km9 area located and only on calm and cleardays. We did not sampleon in the southernItalian Apennines(Fig. 1). The elevation dayswith snow,rain, fog, or strongwinds. Each month, rangesfrom 170-2266m. The land usesinclude farmlands the routeswere surveyedover 4 d by meansof two cars, and oak woods( Quercusilex, Q. pubescens,Q. cerris)in the each one with a driver and two observers.All surveys northern sectionof the park and grasslandand beech were conductedin the morning (0900-1200 H), typically woods (Fagussylvatica) in the southernportion. Over the the best time to count raptors (Robbins1981). We drove studyperiod, the mean monthly temperaturewas 14.5øC, at a speed of 40-45 km/hr and stopped the car to con- wtth a mean of 28.8øCduring July-September and 9.7øC firm each sighting. For each buzzard detected, we re- during October-February.The annual rainfall in the 12 corded if it was flying or perched and if it was alone or mo of the surveywas 841 mm. with other buzzards.Also, we discountedany buzzard that We surveyedbuzzards along seven paved roads (Fig. 1) may haverepresented a re-sightedbird. selectedrandomly with restrictions(Caughley and Sin- We calculated the relative abundance as the number clair 1994). Specifically,we rejected routes adjoining of buzzardsseen per 100 km sampled.For abundance thoseroads previously chosen. Each road wassurveyed computationswe excludedthe stretchesof roadslined by once each mo, during the third or fourth wk of the mo trees within tunnels, forests,or villages.Therefore, al- 468 SHORT COMMUNICATIONS VOL. 39, NO. 4 Table 1. Number of Common Buzzardsrecorded along seven routes in Pollino National Park (southern Italy, 2000-01). For computation of relative abundance, we used the surveylength obtained discountingthe stretch- es of roads lined by trees or passingthrough tunnels, forests, or villages. SURVEY LENGTH LENGTH MONTHLY MF&N (km) oF (km) OF -+SD OF ROUTES ROUTES ROUTES RELATIVE ABUNDANCE i 57.8 40.4 11.2 + 1.8 2 18.3 18.3 10.2 q- 2.0 3 44.4 28.9 6.7 q- 2.0 4 47.3 34.0 12.7 --+ 2.7 5 38.5 38.3 7.7 + 1.6 6 43.8 24.2 20.1 +-- 5.7 7 65.1 53.6 9.3 +---1.2 though the total road length was 315.2 km, we consid- ered for analysisonly 237.6 km (surveykm in Table 1). For the analysisof buzzard habitat associations,we re- ported the sightingsas presence/absencein a 1 X 1 km UTM grid. We created a 1 km buffer on both sides of each route and we considered only buzzards observed inside this buffer. We analyzed the habitat associations within this buffer using the Corine Land Cover 1:100000 digital map (Legend level 3, Ministero dell'Ambiente e del Territorio--Ente Parco), identifying 10 land cover typeswhich we then pooled into four general vegetation cover types: (1) arable land (cultivatedareas regularly plowed and generallyunder a rotation system),(2) het- erogeneousagricultural areas (areasprincipally occupied by agriculture, interspersedwith natural areas), (3) for- ests, and (4) shrub or herbaceous vegetation (Table 2). In each 1 X 1 km grid cellsor portions of a cell included inside the buffer, we calculated the surface of each cover type by means of a GeographicalInformation System (GIS) analysis (Geomedia Professional 2002). Buzzard habitat associationswere analyzedin four periods:Feb- ruary-April (courtship), May-July (incubation and nest- ing), August-September(post-fiedging), and October- January (winter). Although observers recorded the number of individual buzzardssighted, we only consid- ered their presence/absencein each grid cell. We used the Friedman repeated measuresanalysis of variance (F,.)to detectany difference in the relativeabun- dance among months and among periods. Using the same test, we evaluated if the number of flying or perched buzzardsvaried among months or periods. We used the Kruskal-Wallistest to detect any difference in the relative abundance among routes and the Mann- Whitney U test to ascertainwhether flying buzzardswere observed more frequently than perched buzzards.We used the arcsin-transfor•nationto convertthe proportion of sightingscomposed of buzzard groups. The Kolmo- gorov-Smirnovone-sample test (Z) was used to examine if the distribution of relative frequencieswas uniform. Finally, we used a stepwiselogistic regressionto deter- DECEMBER 2005 SHORT COMMUNICATIONS 469 4O ß Groupedand SingleBuzzards [] SingleBuzzards -•. 30 o• 25 • 20 •: •5 T • • • T • 10 • 5 o Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Figure 2. Monthly mean _+SDof the relative abundanceof Common Buzzardsrecorded along sevenroutes in Pollino National Park, southern Italy (2000-01). The dark columns show the relative abundancecalculated consid- ering both groupedand singleindividuals; the white columnsare the relativeabundance calculated based on single individualsonly. mine whether the probability of detecting buzzardsvar- Most buzzardsdetected (67.4%, N = 221) were alone, ied among the four cover typesin each of the periods. while 23.2% (N = 76) were paired and 9.4% (N = 31) Means are presented +SD. The nonparametric testswere were in larger groups, with a mean group size of 3.9 __+ from Siegel and Castellan (1988), and the logistic re- 0.6 individuals.The proportion of sightingscomposed of gressionanalysis followed Field (2000). All of the statis- tical testswere performed with SPSS10.0 (SPSS2000). a group of buzzards showed a uniform distribution throughout the year, ranging from 0.4 in July to 0.0 in RESULTS January (z = 1.5; N = 12; P > 0.05).
Recommended publications
  • Application for Non-Resident Raptor Trapping Permit
    Application for Non-Resident Raptor Trapping Permit Please complete this form and return it, along with the permit fee and requested attachments, to: Texas Parks and Wildlife Department, Wildlife Diversity Permits, 4200 Smith School Road, Austin, TX 78744. All applicants for a Non-Resident Raptor Trapping Permit must possess a permit from their home state equivalent to a Texas Apprentice, General or Master Falconer permit. A non-resident shall not st th trap more than one raptor per year in this state (July 1 – June 30 ). Applicant Name: Home Phone: Office Phone: Street Address: Cell Phone: Driver's License No.: City: State: Zip: Date of Birth: 1 Social Security E-mail Address: Number: 1. This application is for a Non-Resident Raptor Trapping Permit to allow a permitted non-resident apprentice, general or master falconer to take, from the wild in Texas with a valid non-resident hunting license, one of the following species of raptors within the permit year (July 1st – June 30th): Sharp-shinned hawk (Accipiter striatus), Cooper’s hawk (Accipiter cooperii), Harris’s Hawk (Parabuteo unicinctus), Red-shouldered hawk (Buteo lineatus), Red-tailed hawk (Buteo jamaicensis), Ferruginous hawk (Buteo regalis), American kestrel (Falco sparverius), Merlin (Falco columbarius), Prairie falcon (Falco mexicanus), Gyrfalcon (Falco rusticolus), or Caracara (Caracara cheriway). 2. Please attach a copy of your current state falconry permit. 3. Please enclose the $378.00 application and permit fee. (Make checks or money order payable to Texas Parks and Wildlife Department) The Texas Administrative Code Raptor Proclamation can be found online at: http://texreg.sos.state.tx.us/public/readtac$ext.ViewTAC?tac_view=5&ti=31&pt=2&ch=65&sch=K&rl=Y I have read and understand the state regulations titled “Raptor Proclamation” and I will comply with all state and federal laws pertaining to falconry.
    [Show full text]
  • Reproduction and Behaviour of the Long-Legged Buzzard (.Buteo Rufinus) in North-Eastern Greece
    © Deutschen Ornithologen-Gesellschaft und Partner; download www.do-g.de; www.zobodat.at Die Vogelwarte 39, 1998: 176-182 Reproduction and behaviour of the Long-legged Buzzard (.Buteo rufinus) in North-eastern Greece By Haralambos Alivizatos, Vassilis Goutner and Michael G. Karandinos Abstract: Alivizatos , H., V. Goutner & M. G. Karandinos (1998): Reproduction and behaviour of the Long- legged Buzzard ( Buteo rufinus) in North-eastern Greece. Vogelwarte 39: 176-182. The breeding biology of the Long-legged Buzzard ( Buteo rufinus) was studied in the Evros area, north-eastern Greece in 1989, 1990, 1992 and 1993. The mean number of young fledged per pair per year was similar between years with an overall average of 0.93 (1.58 per successful pair). Of ten home range variables examined, the num­ ber of alternative nest sites and the extent of forest free areas in home ranges were significant predictors of nest­ ling productivity. Aggressive interactions were observed with 18 bird species (of which 12 were raptors), most commonly with the Buzzard {Buteo buteo). Such interactions declined during the course of the season. Prey pro­ visioning to nestlings was greatest in the morning and late in the afternoon declining in the intermediate period. Key words: Buteo rufinus, reproduction, behaviour, Greece. Addresses: Zaliki 4, GR-115 24 Athens, Greece (H. A.); Department of Zoology, Aristotelian University of Thessaloniki, GR-54006, Thessaloniki, Macedonia, Greece (V. G.); Laboratory of Ecology and Environmental Sciences, Agricultural University of Athens 75 Iera Odos 1 1855 Athens, Greece (M. G. K.). 1. Introduction The Long-legged Buzzard (Buteo rufinus) is a little known raptor of Europe.
    [Show full text]
  • Regional Specialties Western
    REGIONAL SPECIALTIES WESTERN OSPREY 21 - 26” length SOUTHERN . FERRUGINOUS . Eagle sized; clean, white body. HAWK Black wrist marks. 20 - 26” length . Glides with kink (M) in long, narrow wings. MISSISSIPPI . Largest buteo; eagle-like. KITE . Pale below with dark leggings. 13 - 15” length . Mostly white tail; 3 color morphs. Long, pointed wings; slim body. Light body; dark wings; narrow, black tail. Not to scale. Buoyant, acrobatic flight. NORTHERN HARRIER 16 - 20” length PRAIRIE FALCON 14 - 18” length . Long, narrow wings and tail; sharp dihedral. Size of Peregrine; much paler plumage. Brown above, streaked brown below – female. Narrow moustache; spotted breast; long tail. Gray above, pale below with black wing tips – male. Dark armpits and partial wing linings. WING PROFILE IMMATURE BALD EAGLE BALD EAGLE GOLDEN EAGLE . Immature birds vary GOLDEN EAGLE greatly in the amount 27 to 35” length of white spotting on body and wings. White showing on wing linings is surely a Bald Eagle. BALD EAGLE . Like large buteo, curvy wings. Head protrudes much less than tail. Slight dihedral to wing profile. NOTE: Some hawks soar and glide with their wings raised above the horizontal, called a dihedral. 27 to 35” length . Head and tail length similar. Long, flat wings. Straight leading edge to wings. 24 to 28” length This guide developed by Paul Carrier is the property of the Hawk Migration Association of North America (HMANA). HMANA is TURKey VUltUre a membership-based, non-profit organization committed to the . Dark wing linings with light flight feathers. conservation of raptors through the scientific study, enjoyment, and . Small head; long tail; sharp dihedral.
    [Show full text]
  • The Use of Green Plant Material in Bird Nests to Avoid Ectoparasites
    July1984] ShortCommunications 615 the Spot-wingedFalconet may not benefitthe Monk HoY, G. 1980. Notas nidobio16gicasdel noroestear- Parakeet in such a manner. gentino. II. Physis (Buenos Aires), Secc. C, 39 We are grateful to A. G6mez Dur&n and J. C. Vera (96): 63-66. (INTA) for grantingus the useof the fieldwork areas, MACLEAN,G.L. 1973. The SociableWeaver, part 4: to N. Arguello and M. Nores for their assistancein predators, parasites and symbionts. Ostrich 44: the identification of food remains, and to J. Navarro 241-253. for his help in the field. This work wassupported by STRANECK,R., & G. VASINA. 1982. Unusual behav- a grant from the Subsecretariade Ciencia y Tecno- iour of the Spot-winged Falconet (Spiziapteryx logla (SUBCYT) of Argentina. circumcinctus).Raptor Res. 16: 25-26. LITERATURE CITED Received7 July 1983, accepted21 February1984. DEAN, A. 1971. Notes on Spiziapteryxcircumcinctus. Ibis 113: 101-102. The Use of Green Plant Material in Bird Nests to Avoid Ectoparasites PETER H. WIMBERGER 1 ZoologyDivision, Washington State Museum DB-10, Universityof Washington, Seattle,Washington 98105 USA Certain birds characteristicallyplace green plant causesnestling mortality in and nest desertion by material in their nests.This greenery is not part of birds (Webster 1944, Neff 1945, Fitch et al. 1946, Moss the nest structureproper but is placed haphazardly and Camin 1970, Feare 1976,Wheelwright and Boers- around the edges or inside the nest. The birds re- ma 1979).In general,the increasedmortality due to plenishthe spraysof greenmaterial, often daily, dur- ectoparasitesis causedby the loss of blood, which ing incubation and the nestling period (Brown and weakens the host, by viral disease, or by disease Amadon 1968, Beebe1976, pers.
    [Show full text]
  • Hawks & Falcons
    [}{]&W[\~ ~ ~&[L©@ ~ ~ --- VERY SPECIAL BIRDS By Jer ry D. McG owan Game Biologist Fai rb an ks HAWKS ARE BIRDS OF PRE Y an d like other pred at o rs have long been persecuted be cau se t h ey fee ,, on other .',:" animals. But predators play an important ro le in the scheme of natu re and research is now begin nin g to reveal th e relat ion shi p of the se very specialized birds to t he environment . Most hawks fall int o o ne of th e three major groups t hat a year-round resident of Inte rior Alaska th at is most can be easily iden t ified wh en a bird is in flight. The buteos commonly fo un d in birch and aspen wo od s thro ughout the are soaring hawks wit h chu nky bo dies, b ro ad round ed state. wings, and fan -shaped tails . But eos found in Alaska are : Two other hawks nest in Alaska whic h are not membe rs the rough-legged hawk (Bute o lagopus), the red-tailed h awk of thes e three groups. They are the h arrier , or marsh hawk (Bu teo jamaic ensis] , -the Swainso n' s hawk (Buteo (Circus cyan eus) , and the ospre y (Pandion haliaetus) . The swainsoni) , the Harlans's hawk (Bueto harlan i) , the gold en marsh hawk is a slim bird with a white patch at the base eagle (Aquila chrysaeto s) , and th e bald eagle (Haliaeetus of the t ail, often seen flyi ng low with deliber ate wing b eat s.
    [Show full text]
  • Migration Strategies of Common Buzzard (Buteo Buteo Linnaeus
    Travaux du Muséum National d’Histoire Naturelle «Grigore Antipa» Vol. 60 (2) pp. 537–545 DOI: 10.1515/travmu-2017-0008 Research Paper Migration Strategies of Common Buzzard (Buteo buteo Linnaeus, 1758) in Dobruja Cătălin-Răzvan STANCIU1, Răzvan ZAHARIA2, Gabriel-Bogdan CHIȘAMERA4, Ioana COBZARU3, *, Viorel-Dumitru GAVRIL3, 1, Dumitru MURARIU3 1Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței, 5050095 Bucharest, Romania 2Oceanographic Research and Marine Environment Protection Society Oceanic-Club, Constanța, Romania 3Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independenței, 060031 Bucharest, Romania 4“Grigore Antipa” National Museum of Natural History, 1 Kiseleff Blvd., 011341, Bucharest, Romania *corresponding author, email: [email protected] Received: August 2, 2017; Accepted: August 31, 2017; Available online: August 31, 2017; Printed: December 31, 2017 Abstract. We studied various aspects regarding migration behavior of the Common Buzzard for two subspecies (B. b. buteo and B. b. vulpinus) transiting the region which overlaps with the Western Black Sea Corridor. Using vantage points set across Dobruja we managed to count 2,662 individuals. We highlighted the seasonal and diurnal peak passage, flight directions and height of flight for each season. Our results suggest that 57% of the counted individuals belongs to long-distance migrant Steppe Buzzard - B. b. vulpinus. The peek passage period in autumn migration was reached between the 26th of September to the 6th of October, while for the spring migration peek passage remained uncertain. The main autumn passage direction was from N to S, and NNW to SSE but also from NE to SW. For spring passage the main direction was from S to N but also from ESE to WNW.
    [Show full text]
  • Timing and Abundance of Grey-Faced Buzzards Butastur Indicus and Other Raptors on Northbound Migration in Southern Thailand, Spring 2007–2008
    FORKTAIL 25 (2009): 90–95 Timing and abundance of Grey-faced Buzzards Butastur indicus and other raptors on northbound migration in southern Thailand, spring 2007–2008 ROBERT DeCANDIDO and CHUKIAT NUALSRI We provide the first extensive migration data about northbound migrant raptors in Indochina. Daily counts were made at one site (Promsri Hill) in southern Thailand near the city of Chumphon, from late February through early April 2007–08. We identified 19 raptor species as migrants, and counted 43,451 individuals in 2007 (112.0 migrants/hr) and 55,088 in 2008 (160.6 migrants/hr), the highest number of species and seasonal totals for any spring raptor watch site in the region. In both years, large numbers of raptors were first seen beginning at 12h00, and more than 70% of the migration was observed between 14h00 and 17h00 with the onset of strong thermals and an onshore sea breeze from the nearby Gulf of Thailand. Two raptor species, Jerdon’s Baza Aviceda jerdoni and Crested Serpent Eagle Spilornis cheela, were recorded as northbound migrants for the first time in Asia. Four species composed more than 95% of the migration: Black Baza Aviceda leuphotes (mean 50.8 migrants/hr in 2007–08), Grey-faced Buzzard Butastur indicus (47.5/hr in 2007–08), Chinese Sparrowhawk Accipiter soloensis (22.3/hr in 2007–08), and Oriental Honey-buzzard Pernis ptilorhynchus (7.5/hr in 2007–08). Most (>95%) Black Bazas, Chinese Sparrowhawks and Grey-faced Buzzards were observed migrating in flocks. Grey-faced Buzzard flocks averaged 25–30 birds/ flock. Seasonally, our counts indicate that the peak of the Grey-faced Buzzard migration occurs in early to mid-March, while Black Baza and Chinese Sparrowhawk peak in late March through early April.
    [Show full text]
  • LEGGED BUZZARD &Lpar
    ]. RaptorRes. 21(1):8-13 ¸ 1987 The Raptor ResearchFoundation, Inc. NOTES ON THE BREEDING BIOLOGY OF THE LONG-LEGGED BUZZARD (Buteorufinus) IN BULGARIA ILIYA Ts. VATEV ABSTRACT.--Observationswere madeon Long-leggedBuzzard (Buteorufinus) nests in Bulgariabetween 1978-83. Egg hatchinginterval was 29-44 hr. First nestlingplumage color was dirty-white tingedbeige, cere and legs yellow; iris color changedfrom sepia at hatchingto brownish yellow-greyat fiedging. Featherswere visibleby two wk. Until two wk old, nestlingsassumed a "frozen" postureon their bellies when alarmed. Nestlingsfed unaided by the fourth wk. Fledging beganby d 49. Adults were aggressive towards humanswhile young were downy, but aggressionlessened as young got older. The Long-leggedBuzzard (Buteorufinus) is one openplains beyond. The area is grazedby sheepand cattle of Europe'sleast studiedraptors. Little detailedin- attendedby herdsmen.The landscapeis variedby scattered thorn scrub,streamside willows (Salix sp.), Carpinusorz- formation on the breeding cycle of the speciesis entalisand a smallconifer plantation (Pinus nigra). Nearest availablein the literature, especiallywith regard to arable groundis one km away. Climate is temperatecon- its nestlings(Dementiev and Gladkov 1954; Brown tinental; av. rainfall = 592.1 liter/m 2 (1981-84); alti- and Amadon 1968; Glutz et al. 1971; Harrison 1975; tude -- 7-800 m. Cramp and Simmons1980). Recently,Michev et al. RESULTS (1984) reported14 definitebreeding records for Bul- The Nest. Long-leggedBuzzards used the same garia and estimatedthe country'spopulation to be nest at Pekliuka in 1981, 1983, and (T. Michev, around 50 pairs. Also reported were noteson nest pers. comm.) 1984. A new nest, relatively slight in sites,egg size, breeding season and foodof the species.
    [Show full text]
  • Winter Presence of Long-Legged Buzzard (Buteo Rufinus) in Moldova (Romania)
    Travaux du Muséum National d’Histoire Naturelle © 28 décembre «Grigore Antipa» Vol. LV (2) pp. 285–290 2012 DOI: 10.2478/v10191-012-0018-6 WINTER PRESENCE OF LONG-LEGGED BUZZARD (BUTEO RUFINUS) IN MOLDOVA (ROMANIA) EMANUEL ȘTEFAN BALTAG, VIOREL POCORA, CONSTANTIN ION, LUCIAN SFÎCĂ Abstract. Long-legged Buzzard (Buteo rufinus) is a medium sized bird of prey which is known as a breeding species for Romania. In the last years it started to become a common wintering presence in the south-eastern part of Romania (Dobrogea) but it was also recorded in the more northern areas (Moldova) during the cold season. Its presence in Moldova, during the winter period, was recorded in large river valleys, with agricultural lands or grasslands and with trees or timber poles, which are used for perching. Long-legged Buzzard is a new presence for Moldavian winter seasons and it could be observed only in warm periods of winter, when the daily mean temperature is above 0°C. The wintering places are maintained not only for all winter period, but also for the next years. This behaviour could be explained by its territorial fidelity, which was recorded also in other European buzzard species during the winter period. Résumé. Buse féroce (Buteo rufinus) est un oiseau de taille moyenne de proie qui est connu comme une espèce nicheuse pour la Roumanie. Dans les dernières années, il est devenu une présence commune au cours de l’hiver au sud-est de la Roumanie (Dobroudja), mais il était également enregistré dans les régions du Nord (Moldavie) pendant la saison froide.
    [Show full text]
  • Bald Eagles Rear Red&Hyphen;Tailed Hawks
    126 LETTERS VOL. 27, NO. 2 We surmisedthat the passerincnestling was a kingbird (Tyrannidae), sparrow(Emberizidae), or a Horned Lark (Eremophilaalpestris), presumably brought to the nestby one of the adult hawksas a prey item. The nestlingwas not featheredenough to have flown to the nest;there were no other nest structureson the power tower, and no nearby trees. This nestwas occupiedby a six-year-oldcolor-banded male for at leastthree yearsand an unbandedfemale (J.K. Schmutzpers. comm.).An experiencedhunter may have easilycaptured the nestlingfrom a tree or groundnest. We hypothesizethat the nestling'ssmall size, or the lack of a struggle,may have inhibited the adult hawk from tightly graspingand engagingthe digital tendonlocking mechanism during captureand transport.Nonlethal predationappears to be the best explanation for our observation.Other nonlethal predation by raptors has been reported recently •n theliterature (P.R. Stefaneket al. 1992,J. RaptorR•s. 26:40-41), and we feelthat these events may occur more frequently than the literature suggests.We considerbrood parasitismunlikely, due to the disparity betweenthe age of the nestlinghawks and the passerinc. We wishto thankJ.K. Schmutzfor encouragingus to reportthis observation.--Daniel N. Gossett,Raptor Research and Technical AssistanceCenter, Department of Biology, BoiseState University, 1910 University Drive, Boise, ID 83725 U.S.A.; Jeffrey D. Smith, Department of Biology, University of Saskatchewan,Saskatoon, SK S7N 0W0 Canada. f RaptorRes. 27(2):126-127 ¸ 1993 The Raptor ResearchFoundation, Inc. BALD EAGLES REAR RED-TAILED HAWKS Recently,Stefanek et al. (1992, J. RaptorRes. 26:40-41) reportedan unusualincident of a nestlingRed-tailed hawk (Buteojamaicensis) and two nestlingBald Eagles(Haliaeetus leucocephalus) in an eagle'snest in Michigan.
    [Show full text]
  • Breeding Biology and Nestling Diet of the Great Black&Hyphen;Hawk
    SHORT COMMUNICATIONS j. RaptorRes. 32(2):175-177 ¸ 1998 The Raptor Research Foundation, Inc. BREEDING BIOLOGY AND NESTLING DIET OF THE GREAT BLACK-HAWK NATHANIEL E. SEAVY 17142 LemoloShr. Dr. N.E., Poulsbo, WA 98370 U.S.A. RtCH?d•D P. GERHARDT 341 N.E. Chestnut St., Madras, OR 97741 U.S.A. KEY WORDS: GreatBlack-Hawk; Buteogallus urubitinga; Observationsof courtship behavior or of hawkscarry- breedingbiology; diet;, Petgn; Guatemala. ing nest material or prey led to the eventual location of nests.After they were found, nests were checked every 2-3 d to record nesting phenology.During all yearswe The Great Black-Hawk (Buteogallusurubitinga) rang- recorded nest size (diameter and depth) and situation, es from Mexico south to eastern Bolivia, Paraguayand and described nest trees. Observationsof prey deliveries to nests were made with binoculars from observation northern Argentina, inhabiting coastal lowlands and foothills (Brown and Amadon 1968). The few accounts platforms constructed in trees about 35 m from nests. We climbed to nestsweekly to weigh and measure nest- describing its breeding biology have been brief and at lings in 1991; in 1993 and 1994 we avoided climbing to times contradictory(Grossman and Hamlet 1964, Smithe nests,except to verify someclutch sizes,until after fledg- 1966, Brown and Amadon 1968, ffrench 1976, Mader ing. Additional information on clutch size, nesting phe- 1981). Based primarily on isolated observationsof hunt- nology and nestswas obtained from egg-setdata records ing and prey remains collected beneath roosts, a wide from published accounts,the Western Foundation of Ver- variety of prey items has been recorded, including inver- tebrate Zoology (WFVZ), and the Delaware Museum of tebrates,fish, frogs, reptiles,birds, mammalsand carrion Natural History (DMNH).
    [Show full text]
  • Field Guide to RAPTORS of the Northwest Territories 2 |
    A Field Guide to RAPTORS of the Northwest Territories 2 | This identification guide includes all species of raptors known to be present in the Northwest Territories. © 2019 Government of the Northwest Territories Recommended citation: Environment and Natural Resources. 2019. A Field Guide to Raptors of the Northwest Territories. Environment and Natural Resources, Government of the Northwest Territories. Yellowknife, NT 39pp. Government of the Northwest Territories (GNWT) would like to acknowledge Gordon Court and Kim Poole for their contribution to this field guide. Funding for this booklet was provided by the GNWT. We would like to acknowledge all those who supported and donated their energy to this project. Maps were created for this project by GNWT ENR based on data from GBIF downloaded in December 2018. See back cover for GBIF resource. The raptor diagram was created for this project by S Carrière (GNWT), based on a photograph by B Turner, used with permission. All photos used with permission. COVER PHOTO: American Kestrel by Gordon Court | 3 Table of Contents 4 NWT Raptor Species Checklist ....................................................................................5 Raptors in the NWT ...........................................................................................................5 Where to Find Them..........................................................................................................5 How to Become a Better Birder ...................................................................................6
    [Show full text]