Research Priorities for Robust and Beneficial Artificial Intelligence

Total Page:16

File Type:pdf, Size:1020Kb

Research Priorities for Robust and Beneficial Artificial Intelligence Articles Research Priorities for Robust and Benefcial Artifcial Intelligence Stuart Russell, Daniel Dewey, Max Tegmark ■ Success in the quest for artifcial rtificial intelligence (AI) research has explored a variety intelligence has the potential to bring of problems and approaches since its inception, but for unprecedented benefts to humanity, Athe last 20 years or so has been focused on the prob- and it is therefore worthwhile to inves- lems surrounding the construction of intelligent agents — tigate how to maximize these benefts systems that perceive and act in some environment. In this while avoiding potential pitfalls. This article gives numerous examples (which context, the criterion for intelligence is related to statistical should by no means be construed as an and economic notions of rationality — colloquially, the abil- exhaustive list) of such worthwhile ity to make good decisions, plans, or inferences. The adop- research aimed at ensuring that AI tion of probabilistic representations and statistical learning remains robust and benefcial. methods has led to a large degree of integration and cross- fertilization between AI, machine learning, statistics, control theory, neuroscience, and other fields. The establishment of shared theoretical frameworks, combined with the availabil- ity of data and processing power, has yielded remarkable suc- cesses in various component tasks such as speech recogni- tion, image classification, autonomous vehicles, machine translation, legged locomotion, and question-answering sys- tems. Copyright © 2015, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602 WINTER 2015 105 Articles As capabilities in these areas and others cross the economists and computer scientists agree that there threshold from laboratory research to economically is valuable research to be done on how to maximize valuable technologies, a virtuous cycle takes hold the economic benefits of AI while mitigating adverse whereby even small improvements in performance effects, which could include increased inequality and have significant economic value, prompting greater unemployment (Mokyr 2014; Brynjolfsson and investments in research. There is now a broad con- McAfee 2014; Frey and Osborne 2013; Glaeser 2014; sensus that AI research is progressing steadily, and Shanahan 2015; Nilsson 1984; Manyika et al. 2013). that its impact on society is likely to increase. The Such considerations motivate a range of research potential benefits are huge, since everything that civ- directions, spanning areas from economics to psy- ilization has to offer is a product of human intelli- chology. Examples include the following. gence; we cannot predict what we might achieve Labor Market Forecasting: when this intelligence is magnified by the tools AI When and in what order should we expect various may provide, but the eradication of disease and jobs to become automated (Frey and Osborne 2013)? poverty is not unfathomable. Because of the great How will this affect the wages of less skilled workers, potential of AI, it is valuable to investigate how to the creative professions, and various kinds of infor- reap its benefits while avoiding potential pitfalls. mation workers? Some have have argued that AI is Progress in AI research makes it timely to focus likely to greatly increase the overall wealth of research not only on making AI more capable, but humanity as a whole (Brynjolfsson and McAfee also on maximizing the societal benefit of AI. Such 2014). However, increased automation may push considerations motivated the AAAI 2008–09 Presi- income distribution further towards a power law dential Panel on Long-Term AI Futures (Horvitz and (Brynjolfsson, McAfee, and Spence 2014), and the Selman 2009) and other projects and community resulting disparity may fall disproportionately along efforts on AI’s future impacts. These constitute a sig- lines of race, class, and gender; research anticipating nificant expansion of the field of AI itself, which up the economic and societal impact of such disparity to now has focused largely on techniques that are could be useful. neutral with respect to purpose. The present docu- Other Market Disruptions ment can be viewed as a natural continuation of Significant parts of the economy, including finance, these efforts, focusing on identifying research direc- insurance, actuarial, and many consumer markets, tions that can help maximize the societal benefit of could be susceptible to disruption through the use of AI. This research is by necessity interdisciplinary, AI techniques to learn, model, and predict human because it involves both society and AI. It ranges and market behaviors. These markets might be iden- from economics, law, and philosophy to computer tified by a combination of high complexity and high security, formal methods, and, of course, various rewards for navigating that complexity (Manyika et branches of AI itself. The focus is on delivering AI al. 2013). that is beneficial to society and robust in the sense Policy for Managing Adverse Effects that the benefits are guaranteed: our AI systems must What policies could help increasingly automated do what we want them to do. societies flourish? For example, Brynjolfsson and This article was drafted with input from the atten- McAfee (2014) explore various policies for incen- dees of the 2015 conference The Future of AI: Oppor- tivizing development of labor-intensive sectors and tunities and Challenges (see Acknowledgements), for using AI-generated wealth to support underem- and was the basis for an open letter that has collect- ployed populations. What are the pros and cons of ed nearly 7000 signatures in support of the research interventions such as educational reform, appren- priorities outlined here. ticeship programs, labor-demanding infrastructure projects, and changes to minimum wage law, tax Short-Term Research Priorities structure, and the social safety net (Glaeser 2014)? History provides many examples of subpopulations Short-term research priorities including optimizing not needing to work for economic security, ranging AI’s economic impact, research in law and ethics, and from aristocrats in antiquity to many present-day cit- computer science research for robust AI. In this sec- izens of Qatar. What societal structures and other fac- tion, each of these priorities will, in turn, be dis- tors determine whether such populations flourish? cussed. Unemployment is not the same as leisure, and there are deep links between unemployment and unhappi- Optimizing AI’s Economic Impact ness, self-doubt, and isolation (Hetschko, Knabe, and The successes of industrial applications of AI, from Schöb 2014; Clark and Oswald 1994); understanding manufacturing to information services, demonstrate what policies and norms can break these links could a growing impact on the economy, although there is significantly improve the median quality of life. disagreement about the exact nature of this impact Empirical and theoretical research on topics such as and on how to distinguish between the effects of AI the basic income proposal could clarify our options and those of other information technologies. Many (Van Parijs 1992; Widerquist et al. 2013). 106 AI MAGAZINE Articles Economic Measures or wars (Asaro 2008)? Would such weapons become It is possible that economic measures such as real the tool of choice for oppressors or terrorists? Final- GDP per capita do not accurately capture the benefits ly, how can transparency and public discourse best and detriments of heavily AI-and-automation-based be encouraged on these issues? economies, making these metrics unsuitable for pol- Privacy icy purposes (Mokyr 2014). Research on improved How should the ability of AI systems to interpret the metrics could be useful for decision making. data obtained from surveillance cameras, phone Law and Ethics Research lines, emails, and so on, interact with the right to pri- vacy? How will privacy risks interact with cybersecu- The development of systems that embody significant rity and cyberwarfare (Singer and Friedman 2014)? amounts of intelligence and autonomy leads to Our ability to take full advantage of the synergy important legal and ethical questions whose answers between AI and big data will depend in part on our affect both producers and consumers of AI technolo- ability to manage and preserve privacy (Manyika et gy. These questions span law, public policy, profes- al. 2011; Agrawal and Srikant 2000). sional ethics, and philosophical ethics, and will Professional Ethics require expertise from computer scientists, legal What role should computer scientists play in the law experts, political scientists, and ethicists. For exam- and ethics of AI development and use? Past and cur- ple: rent projects to explore these questions include the Liability and Law for Autonomous Vehicles AAAI 2008–09 Presidential Panel on Long-Term AI If self-driving cars cut the roughly 40,000 annual U.S. Futures (Horvitz and Selman 2009), the EPSRC Prin- traffic fatalities in half, the car makers might get not ciples of Robotics (Boden et al. 2011), and recently 20,000 thank-you notes, but 20,000 lawsuits. In what announced programs such as Stanford’s One-Hun- legal framework can the safety benefits of dred Year Study of AI and the AAAI Committee on AI autonomous vehicles such as drone aircraft and self- Impact and Ethical Issues. driving cars best be realized (Vladeck 2014)? Should Policy Questions legal questions about AI be handled by existing (soft-
Recommended publications
  • Jackson: Choosing a Methodology: Philosophical Underpinning
    JACKSON: CHOOSING A METHODOLOGY: PHILOSOPHICAL UNDERPINNING Choosing a Methodology: Philosophical Practitioner Research Underpinning In Higher Education Copyright © 2013 University of Cumbria Vol 7 (1) pages 49-62 Elizabeth Jackson University of Cumbria [email protected] Abstract As a university lecturer, I find that a frequent question raised by Masters students concerns the methodology chosen for research and the rationale required in dissertations. This paper unpicks some of the philosophical coherence that can inform choices to be made regarding methodology and a well-thought out rationale that can add to the rigour of a research project. It considers the conceptual framework for research including the ontological and epistemological perspectives that are pertinent in choosing a methodology and subsequently the methods to be used. The discussion is exemplified using a concrete example of a research project in order to contextualise theory within practice. Key words Ontology; epistemology; positionality; relationality; methodology; method. Introduction This paper arises from work with students writing Masters dissertations who frequently express confusion and doubt about how appropriate methodology is chosen for research. It will be argued here that consideration of philosophical underpinning can be crucial for both shaping research design and for explaining approaches taken in order to support credibility of research outcomes. It is beneficial, within the unique context of the research, for the researcher to carefully
    [Show full text]
  • The Rhetoric of Positivism Versus Interpretivism: a Personal View1
    Weber/Editor’s Comments EDITOR’S COMMENTS The Rhetoric of Positivism Versus Interpretivism: A Personal View1 Many years ago I attended a conference on interpretive research in information systems. My goal was to learn more about interpretive research. In my Ph.D. education, I had studied primarily positivist research methods—for example, experiments, surveys, and field studies. I knew little, however, about interpretive methods. I hoped to improve my knowledge of interpretive methods with a view to using them in due course in my research work. A plenary session at the conference was devoted to a panel discussion on improving the acceptance of interpretive methods within the information systems discipline. During the session, a number of speakers criticized positivist research harshly. Many members in the audience also took up the cudgel to denigrate positivist research. If any other positivistic researchers were present at the session beside me, like me they were cowed. None of us dared to rise and speak in defence of positivism. Subsequently, I came to understand better the feelings of frustration and disaffection that many early interpretive researchers in the information systems discipline experienced when they attempted to publish their work. They felt that often their research was evaluated improperly and treated unfairly. They contended that colleagues who lacked knowledge of interpretive research methods controlled most of the journals. As a result, their work was evaluated using criteria attuned to positivism rather than interpretivism. My most-vivid memory of the panel session, however, was my surprise at the way positivism was being characterized by my colleagues in the session.
    [Show full text]
  • A Comprehensive Framework to Reinforce Evidence Synthesis Features in Cloud-Based Systematic Review Tools
    applied sciences Article A Comprehensive Framework to Reinforce Evidence Synthesis Features in Cloud-Based Systematic Review Tools Tatiana Person 1,* , Iván Ruiz-Rube 1 , José Miguel Mota 1 , Manuel Jesús Cobo 1 , Alexey Tselykh 2 and Juan Manuel Dodero 1 1 Department of Informatics Engineering, University of Cadiz, 11519 Puerto Real, Spain; [email protected] (I.R.-R.); [email protected] (J.M.M.); [email protected] (M.J.C.); [email protected] (J.M.D.) 2 Department of Information and Analytical Security Systems, Institute of Computer Technologies and Information Security, Southern Federal University, 347922 Taganrog, Russia; [email protected] * Correspondence: [email protected] Abstract: Systematic reviews are powerful methods used to determine the state-of-the-art in a given field from existing studies and literature. They are critical but time-consuming in research and decision making for various disciplines. When conducting a review, a large volume of data is usually generated from relevant studies. Computer-based tools are often used to manage such data and to support the systematic review process. This paper describes a comprehensive analysis to gather the required features of a systematic review tool, in order to support the complete evidence synthesis process. We propose a framework, elaborated by consulting experts in different knowledge areas, to evaluate significant features and thus reinforce existing tool capabilities. The framework will be used to enhance the currently available functionality of CloudSERA, a cloud-based systematic review Citation: Person, T.; Ruiz-Rube, I.; Mota, J.M.; Cobo, M.J.; Tselykh, A.; tool focused on Computer Science, to implement evidence-based systematic review processes in Dodero, J.M.
    [Show full text]
  • Future of Research on Catastrophic and Existential Risk
    ORE Open Research Exeter TITLE Working together to face humanity's greatest threats: Introduction to The Future of Research in Catastrophic and Existential Risk AUTHORS Currie, AM; Ó hÉigeartaigh, S JOURNAL Futures DEPOSITED IN ORE 06 February 2019 This version available at http://hdl.handle.net/10871/35764 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Working together to face humanity’s greatest threats: Introduction to The Future of Research on Catastrophic and Existential Risk. Adrian Currie & Seán Ó hÉigeartaigh Penultimate Version, forthcoming in Futures Acknowledgements We would like to thank the authors of the papers in the special issue, as well as the referees who provided such constructive and useful feedback. We are grateful to the team at the Centre for the Study of Existential Risk who organized the first Cambridge Conference on Catastrophic Risk where many of the papers collected here were originally presented, and whose multi-disciplinary expertise was invaluable for making this special issue a reality. We’d like to thank Emma Bates, Simon Beard and Haydn Belfield for feedback on drafts. Ted Fuller, Futures’ Editor-in-Chief also provided invaluable guidance throughout. The Conference, and a number of the publications in this issue, were made possible through the support of a grant from the Templeton World Charity Foundation (TWCF); the conference was also supported by a supplementary grant from the Future of Life Institute.
    [Show full text]
  • ARCHITECTS of INTELLIGENCE for Xiaoxiao, Elaine, Colin, and Tristan ARCHITECTS of INTELLIGENCE
    MARTIN FORD ARCHITECTS OF INTELLIGENCE For Xiaoxiao, Elaine, Colin, and Tristan ARCHITECTS OF INTELLIGENCE THE TRUTH ABOUT AI FROM THE PEOPLE BUILDING IT MARTIN FORD ARCHITECTS OF INTELLIGENCE Copyright © 2018 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. Acquisition Editors: Ben Renow-Clarke Project Editor: Radhika Atitkar Content Development Editor: Alex Sorrentino Proofreader: Safis Editing Presentation Designer: Sandip Tadge Cover Designer: Clare Bowyer Production Editor: Amit Ramadas Marketing Manager: Rajveer Samra Editorial Director: Dominic Shakeshaft First published: November 2018 Production reference: 2201118 Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK ISBN 978-1-78913-151-2 www.packt.com Contents Introduction ........................................................................ 1 A Brief Introduction to the Vocabulary of Artificial Intelligence .......10 How AI Systems Learn ........................................................11 Yoshua Bengio .....................................................................17 Stuart J.
    [Show full text]
  • PDF Download Starting with Science Strategies for Introducing Young Children to Inquiry 1St Edition Ebook
    STARTING WITH SCIENCE STRATEGIES FOR INTRODUCING YOUNG CHILDREN TO INQUIRY 1ST EDITION PDF, EPUB, EBOOK Marcia Talhelm Edson | 9781571108074 | | | | | Starting with Science Strategies for Introducing Young Children to Inquiry 1st edition PDF Book The presentation of the material is as good as the material utilizing star trek analogies, ancient wisdom and literature and so much more. Using Multivariate Statistics. Michael Gramling examines the impact of policy on practice in early childhood education. Part of a series on. Schauble and colleagues , for example, found that fifth grade students designed better experiments after instruction about the purpose of experimentation. For example, some suggest that learning about NoS enables children to understand the tentative and developmental NoS and science as a human activity, which makes science more interesting for children to learn Abd-El-Khalick a ; Driver et al. Research on teaching and learning of nature of science. The authors begin with theory in a cultural context as a foundation. What makes professional development effective? Frequently, the term NoS is utilised when considering matters about science. This book is a documentary account of a young intern who worked in the Reggio system in Italy and how she brought this pedagogy home to her school in St. Taking Science to School answers such questions as:. The content of the inquiries in science in the professional development programme was based on the different strands of the primary science curriculum, namely Living Things, Energy and Forces, Materials and Environmental Awareness and Care DES Exit interview. Begin to address the necessity of understanding other usually peer positions before they can discuss or comment on those positions.
    [Show full text]
  • Principles of Scientific Inquiry
    Chapter 2 PRINCIPLES OF SCIENTIFIC INQUIRY Introduction This chapter provides a summary of the principles of scientific inquiry. The purpose is to explain terminology, and introduce concepts, which are explained more completely in later chapters. Much of the content has been based on explanations and examples given by Wilson (1). The Scientific Method Although most of us have heard, at some time in our careers, that research must be carried out according to “the scientific method”, there is no single, scientific method. The term is usually used to mean a systematic approach to solving a problem in science. Three types of investigation, or method, can be recognized: · The Observational Method · The Experimental (and quasi-experimental) Methods, and · The Survey Method. The observational method is most common in the natural sciences, especially in fields such as biology, geology and environmental science. It involves recording observations according to a plan, which prescribes what information to collect, where it should be sought, and how it should be recorded. In the observational method, the researcher does not control any of the variables. In fact, it is important that the research be carried out in such a manner that the investigations do not change the behaviour of what is being observed. Errors introduced as a result of observing a phenomenon are known as systematic errors because they apply to all observations. Once a valid statistical sample (see Chapter Four) of observations has been recorded, the researcher analyzes and interprets the data, and develops a theory or hypothesis, which explains the observations. The experimental method begins with a hypothesis.
    [Show full text]
  • Advancing Science Communication.Pdf
    SCIENCETreise, Weigold COMMUNICATION / SCIENCE COMMUNICATORS Scholars of science communication have identified many issues that may help to explain why sci- ence communication is not as “effective” as it could be. This article presents results from an exploratory study that consisted of an open-ended survey of science writers, editors, and science communication researchers. Results suggest that practitioners share many issues of concern to scholars. Implications are that a clear agenda for science communication research now exists and that empirical research is needed to improve the practice of communicating science. Advancing Science Communication A Survey of Science Communicators DEBBIE TREISE MICHAEL F. WEIGOLD University of Florida The writings of science communication scholars suggest twodominant themes about science communication: it is important and it is not done well (Hartz and Chappell 1997; Nelkin 1995; Ziman 1992). This article explores the opinions of science communication practitioners with respect to the sec- ond of these themes, specifically, why science communication is often done poorly and how it can be improved. The opinions of these practitioners are important because science communicators serve as a crucial link between the activities of scientists and the public that supports such activities. To intro- duce our study, we first review opinions as to why science communication is important. We then examine the literature dealing with how well science communication is practiced. Authors’Note: We would like to acknowledge NASA’s Marshall Space Flight Center for provid- ing the funds todothis research. We alsowant tothank Rick Borcheltforhis help with the collec - tion of data. Address correspondence to Debbie Treise, University of Florida, College of Journalism and Communications, P.O.
    [Show full text]
  • Global Catastrophic Risks 2016
    Global Challenges Foundation Global Catastrophic Risks 2016 © Global Challenges Foundation/Global Priorities Project 2016 GLOBAL CATASTROPHIC RISKS 2016 THE GLOBAL CHALLENGES FOUNDATION works to raise awareness of the The views expressed in this report are those of the authors. Their Global Catastrophic Risks. Primarily focused on climate change, other en- statements are not necessarily endorsed by the affiliated organisations. vironmental degradation and politically motivated violence as well as how these threats are linked to poverty and rapid population growth. Against this Authors: background, the Foundation also works to both identify and stimulate the Owen Cotton-Barratt*† development of good proposals for a management model – a global gover- Sebastian Farquhar* nance – able to decrease – and at best eliminate – these risks. John Halstead* Stefan Schubert* THE GLOBAL PRIORITIES PROJECT helps decision-makers effectively prior- Andrew Snyder-Beattie† itise ways to do good. We achieve his both by advising decision-makers on programme evaluation methodology and by encouraging specific policies. We * = The Global Priorities Project are a collaboration between the Centre for Effective Altruism and the Future † = The Future of Humanity Institute, University of Oxford of Humanity Institute, part of the University of Oxford. Graphic design: Accomplice/Elinor Hägg Global Challenges Foundation in association with 4 Global Catastrophic Risks 2016 Global Catastrophic Risks 2016 5 Contents Definition: Global Foreword 8 Introduction 10 Catastrophic Risk Executive summary 12 1. An introduction to global catastrophic risks 20 – risk of events or 2. What are the most important global catastrophic risks? 28 Catastrophic climate change 30 processes that would Nuclear war 36 Natural pandemics 42 Exogenous risks 46 lead to the deaths of Emerging risks 52 Other risks and unknown risks 64 Our assessment of the risks 66 approximately a tenth of 3.
    [Show full text]
  • Race in Academia
    I, SOCIETY AI AND INEQUALITY: NEW DECADE, MORE CHALLENGES Mona Sloane, Ph.D. New York University [email protected] AI TECHNOLOGIES are becoming INTEGRAL to SOCIETY © DotEveryone SURVEILLANCE CAPITALISM TRADING in BEHAVIOURAL FUTURES © The Verge © The Innovation Scout TOTALIZING NARRATIVE of AI AI as a master technology = often either utopia or dystopia AI = human hubris? ”In 2014, the eminent scientists Stephen Hawking, Stuart Russell, Max Tegmark and Frank Wilczek wrote: ‘The potential benefits are huge; everything that civilisation has to offer is a product of human intelligence; we cannot predict what we might achieve when this intelligence is magnified by the tools that AI may provide, but the eradication of war, disease, and poverty would be high on anyone's list. Success in creating AI would be the biggest event in human history’.” Artificial General Intelligence? CORRELATION CAUSATION Race Race Gender Class INTERSECTIONAL INEQUALITY ETHICS EVERYWHERE EVERYWHERE EVERYWHERE EVERYWHERE EVERYWHERE EVERYWHERE EVERYWHERE ETHICS as POLICY APPROACH or as TECHNOLOGY APPROACH The ‘SOCIAL’ Problem ETHICS IS A SMOKESCREEN WHOSE HEAD – OR “INTELLIGENCE” – ARE TRYING TO MODEL, ANYWAY? THE FOUNDERS OF THE ”BIG 5 TECH COMPANIES”: AMAZON, FACEBOOK, ALPHABET, APPLE, MICROSOFT BIG TECH, BIG BUSINESS https://www.visualcapitalist.com/how-big-tech-makes-their-billions-2020/ 1956 DARTMOUTH CONFRENCE THE DIVERSITY ARGUMENT IS IMPORTANT. BUT IT IS INSUFFICIENT. EXTRACTION as a social super structure Prediction Dependency Extraction EXTRACTION Capitalism Racism White Supremacy Settler Colonialism Carcerality Heteronormativity … SCIENCE = ONTOLOGICAL AND EPISTEMOLOGICAL ENGINE Real world consequences of classification systems: racial classification in apartheid South Africa Ruha Benjamin, Alondra Nelson, Charlton McIlwain, Meredith Broussard, Andre Brock, Safiya Noble, Mutale Nkonde, Rediet Abebe, Timnit Gebru, Joy Buolamwini, Jessie Daniels, Sasha Costanza- Chock, Marie Hicks, Anna Lauren Hoffmann, Laura Forlano, Danya Glabau, Kadija Ferryman, Vincent Southerland – and more.
    [Show full text]
  • The Time for a National Study on AI Is NOW
    The Time For a National Study On AI is NOW Subscribe Past Issues Translate RSS View this email in your browser "I think we should be very careful about artificial intelligence. If I were to guess at what our biggest existential threat is, it’s probably that. With artificial intelligence, we are summoning the demon." Elon Musk, CEO, Tesla Motors & SpaceX ARTIFICIAL INTELLIGENCE STUDY: AI TODAY, AI TOMORROW We are following up on our last message about a proposed National Study on Artificial Intelligence. We very much appreciate the responses and encouragement we have received, and welcome input and questions from any League and/or its members on this subject. http://mailchi.mp/35a449e1979f/the-time-for-a-national-study-on-ai-is-now?e=[UNIQID][12/20/2017 6:29:08 PM] The Time For a National Study On AI is NOW We believe that the pace of development of AI and the implications of its advancement make this an extremely timely subject. AI is becoming an important part of our society - from medical uses to transportation to banking to national defense. Putting off this study will put us behind in the progress being made in AI. We again request that your League consider supporting this study at your program planning meeting. The reason to propose this study now is because there are currently no positions that address many of the issues that fall under the umbrella of this relatively new and powerful technology. For several years now private groups and even countries (like Russia, China and Korea) have made it a priority to develop mechanical brains/computers that can function intelligently http://mailchi.mp/35a449e1979f/the-time-for-a-national-study-on-ai-is-now?e=[UNIQID][12/20/2017 6:29:08 PM] The Time For a National Study On AI is NOW and command robots or other machines to perform some task.
    [Show full text]
  • Philosophical Approaches to Qualitative Research
    Loyola University Chicago Loyola eCommons School of Social Work: Faculty Publications and Other Works Faculty Publications 2014 Philosophical Approaches to Qualitative Research Julia Pryce [email protected] Renée Spencer Jill Walsh Follow this and additional works at: https://ecommons.luc.edu/socialwork_facpubs Part of the Social Work Commons Recommended Citation Pryce, Julia; Spencer, Renée; and Walsh, Jill. Philosophical Approaches to Qualitative Research. The Oxford Handbook of Qualitative Research Methods, , : 81-98, 2014. Retrieved from Loyola eCommons, School of Social Work: Faculty Publications and Other Works, http://dx.doi.org/10.1093/oxfordhb/ 9780199811755.001.0001 This Book Chapter is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in School of Social Work: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Oxford University Press, 2014. CHAPTER Philosophical Approaches to 5 Qualitative Research Renée Spencer, Julia M. Pryce, and Jill Walsh Abstract This chapter reviews some of the major overarching philosophical approaches to qualitative inquiry and includes some historical background for each. Taking a “big picture” view, the chapter discusses post-positivism, constructivism, critical theory, feminism, and queer theory and offers a brief history of these
    [Show full text]