species richness and ISSN 1981-8874

composition along three 9 77198188700380 0 1 8 elevational gradients in southeastern Brazil

Francisco Mallet-Rodrigues1, Ricardo Parrini2 & Bruno Rennó3

Distribution patterns of biotic com- munities along an elevational gradient are determined by several physical and ecological factors, which can vary with altitude, climate, habitat structure and resource availability (Terborgh 1971, 1977, Noon 1981, Lomolino 2001). Va- riations in these factors along an ele- vational gradient may cause a vertical stratification or ecological zonation in the mountainous regions, resulting in distinct elevational ranges among orga- nisms. Decreasing species richness with in- creasing elevation has been the pattern accepted by some authors (Terborgh 1977, Stevens 1992), but Rahbek (1995) showed that many elevational gradients have mid-elevational peaks in species richness, as initially noted by Terborgh Figure 1. State of Rio de Janeiro with the three study areas in black (1977), and described as the mid-domain (1 – Serra da Bocaina, 2 – Serra de Itatiaia, 3 – Serra dos Órgãos). effect (Colwell & Hurt 1994, Colwell & Lees 2000). Recen- 1993), the Atlantic Forest has been classified into lowland tly, several elevational species richness patterns have been (below 50 m), submontane (50 to 500 m), montane (500 to found along montane gradients (Rahbek 1995, McCain 2005, 1,500 m) and high montane forest (1,500 to 1,900 m) (Veloso 2007, 2009, Cavarzere & Silveira 2012). Patterns such as et al. 1991). Above high montane forests, the landscape is decreasing richness with increasing elevation, low-elevation dominated by high grasslands with depauperate bird species plateau in richness followed by a monotonic decrease, low- richness and a high proportion of endemic species (Vasconce- -elevation plateau with a mid-peak in richness, and unimodal los & Rodrigues 2010, Mallet-Rodrigues et al. 2010). mid-elevational peaks in richness have been found with near- A significant relationship between elevation and the pro- ly equal frequency on mountains around the world (McCain portion of endemic to the Atlantic Forest has been 2009). found in the mountains of eastern Brazil. The proportion of While the elevational distribution of birds is quite pronoun- endemism rises gradually with increasing altitude. Nearly ced in tropical forests of the Andes (e.g. Terborgh 1977), the half of the bird species found above 1,800 m in the mountains relatively low and isolated mountains of eastern South Ame- of southeastern Brazil are endemic species (Scott & Brooke rica have a reduced vertical ecological zonation, with few ca- 1985, Mallet-Rodrigues et al. 2010). However, the lowlands ses of replacement of bird species along elevational gradients are also very important because many threatened species are (Willis & Schuchmann 1993). Few studies have focused on found in them (Goerck 1999, Buzzetti 2000, Mallet-Rodri- the elevational distribution of birds in the mountains of eas- gues et al. 2010). Intensive human activity causing the frag- tern Brazil (Holt 1928, Scott & Brooke 1985, Goerck 1999, mentation of lowland and submontane forests is probably the Buzzetti 2000, Rajão & Cerqueira 2006, Rajão 2007, Cavar- main factor responsible for the highest concentration of thre- zere Junior 2010, Mallet-Rodrigues et al. 2010). Although atened species at low elevations. Most of the threatened bird the distribution of montane birds from eastern Brazil does not species live in lowland and submontane forests (Collar et al. have an evident ecological zonation (Willis & Schuchmann 1992, Alves et al. 2000).

Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br 39 The main objective of this study is to compare the patterns in the elevatio- nal distribution of bird species of three major mountain ranges of southeastern Brazil. Here we describe and compare the species richness, elevational range limits, proportion of Atlantic Forest en- demics, and invasive and threatened spe- cies along the elevational gradient of the three mountain ranges.

Material and methods Study regions Our study was conducted in three Figure 2. Bird species richness along the elevational gradient in the three study areas in southeastern major mountain ranges in southeastern Brazil. Brazil (Serra da Bocaina, Serra de Ita- tiaia and Serra dos Órgãos) (Figure 1). Dense rainforests with a rich assembly of plant species and a profusion of lia- nas and epiphytes are predominant in the three regions. Below 800 m the climate is tropical with rains concentrated in the summer (Köppen climate classification categories “Aw”). Above 800 m the cli- mate is mesothermal humid with mode- rate summer (Köppen climate classifica- tion categories “Cfb”). The three regions studied here are considered Important Bird Areas (IBAs) in Brazil (Bencke et al. 2006). Figure 3. Species richness of birds endemic to the Atlantic Forest along the elevational gradient in the three study areas in southeastern Brazil. Serra da Bocaina is a part of the Serra do Mar range, situated on the border of the states of Rio de Janeiro and São Pau- lo. The elevation ranges from sea level to 2,088 m, but to just over 1,600 m in the state of Rio de Janeiro. The Parque Nacional da Serra da Bocaina occupies most of the region. The dense forests (submontane, montane and high mon- tane forests) are distributed throughout much of the region, which is one of the best preserved portions of Atlantic Fo- rest in southeastern Brazil. However, in- creasing human occupation in the region Figure 4. Species richness of invasive birds along the elevational gradient in the three study areas in has threatened the local biodiversity. southeastern Brazil. During 1,350 hours of fieldwork we vi- sited the following localities (all located in the state of Rio de Janeiro): 1) Flo- restão (22º 55’S, 44º 20’W; 0 to 20 m); 2) Bracuí (22º 56´S, 44º 23´W; 100 to 700 m); 3) Funil (23º 00’S, 44º 42’W; 800 to 1,200 m); 4) Perequê (23º 00’S, 44º 31’W; 10 to 40 m); 5) Mambucaba (23º 01’S, 44º 32’W; 0 to 40 m); 6) São Roque (23º 04´S, 44º 41´W; 0 to 250 m); 7) Ariró (23º 05´S, 44º 17´W; 0 to 20 m); 8) Parati-Cunha road (between 23º 12’S, 44º 44’W and 23º 10’S, 44º 50’W; 10 to 1,600 m); 9) Vale dos Veados (22° 48’S, Figure 5. Species richness of threatened birds in the state of Rio de Janeiro along the elevational gra- 44° 37’W; 1,200 to 1,350 m). dient in the three study areas in southeastern Brazil.

40 Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br (22º 23’S, 44º 32’W; 550 to 950 m); 3) Penedo (22º 25´S, 44º 31´W; 400 to 750 m); 4) Parque Nacional do Itatiaia (ca. 22º 29´S, 44º 33´W; 500 to 2,700 m); 5) Resende Wetland or “Brejão da Kodak” (22º 26´S, 44º 23´W; 400 m). Serra dos Órgãos is located in the cen- tral region of the state of Rio de Janeiro in the northern section of the Serra do Mar range. Two large protected areas are located in the region – Parque Na- cional da Serra dos Órgãos and Parque Estadual dos Três Picos. The summit of the Serra dos Órgãos exceeds 2,200 m. The rich forests of the region (lowland, submontane, montane and high montane forests) are distributed from lowlands to approximately 2,100 m above sea level. Forests below 100 m are very fragmen- ted or absent due to human activities. Figure 6. The Fork-tailed Pygmy-Tyrant (Hemitriccus furcatus) has often been found in High grasslands are found above the fo- Itatiaia and Bocaina, but in the Serra dos Órgãos it has been recorded only in the Reserva rest line. Low temperatures and frost are Ecológica Guapiaçu, municipality of Cachoeiras de Macacu (Photo: Bruno Rennó). often recorded in the higher areas during the winter. Data on the birds of the Ser- ra dos Órgãos and localities visited in the region (totaling 6,500 hours of fiel- dwork) have been published elsewhere (Mallet-Rodrigues et al. 2010).

Methods Fieldwork was conducted between 1989 and 2011 in several localities of the three study regions (see above). We assumed the highest and lowest elevatio- nal records to determine the distribution of each bird species along the elevatio- nal gradient. The interpolation of species occurrences between known elevation occurences has been used to study spe- cies richness patterns along elevational gradients (Rahbek 1997, Nogué et al. 2013). Although this range interpola- tion may overestimate species richness Figure 7. Usually found above 1,000 m, in the state of Rio de Janeiro the Black-capped at mid-elevations (Grytnes & Vetaas Piprites (Piprites pileata) is restricted to the Itatiaia massif (Photo: Bruno Rennó). 2002), it may help overcome some of the Serra de Itatiaia is situated in the southern portion of the limitations of undersampling (McCain 2009). Mantiqueira massif, on the border of the states of Rio de Only qualitative surveys of birds were performed at each Janeiro, Minas Gerais and São Paulo. The Parque Nacional locality. Although the sampling efforts undertaken among de Itatiaia is the oldest national park in Brazil. Itatiaiaçu, the three regions are distinct, the remarkable total of 21,550 with 2,791 m is the highest peak in a region named Agulhas hours of fieldwork (finely distributed along the elevational Negras. To the south of Itatiaia, the Paraiba do Sul River is gradient) is significantly larger than the sampling effort of si- located at 400 m elevation in an area dominated by grass- milar studies (Bencke & Kindel 1999, Goerck 1999, Buzzetti land, scrub and urban environments. The forests in the region 2000, Cavarzere Junior 2010). Therefore, we consider our (montane and high montane forests) range from 600 to 2,300 sampling effort appropriate for the estimation of the species m. High grasslands are found above the tree line. Freezing richness along the three elevational gradients. temperatures and frost often occur in higher areas during the Birds were recorded along roads and trails in forests, second winter. Araucaria angustifolia reaches the northern limit of growth, swamps and open areas. Our study includes bird re- its range near the region. In 13,700 hours of fieldwork, we cords made ​​in all months of the year. Species were identified visited the following localities: 1) Visconde de Mauá (22º through binoculars (8x40 and 10x50) or by listening to their 20´S, 44º 33´W; 1,000 to 1,200 m); 2) Serrinha do Alambari vocalizations. Several birds had their vocalizations recorded

Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br 41 with tape recorders and directional microphones. Some birds Among the birds considered invasive species in the state of were attracted by play-back and photographed to facilitate Rio de Janeiro, 36 species were found in our study. Thirty- their identification. -two invasive species were found in both Itatiaia and Órgãos, The altitude of the localities we visited was determined representing about 7.5% of the species recorded in each re- using an analog altimeter and GPS. The and syste- gion. Nineteen invasive species were recorded in Bocaina, matics of the birds are based on CBRO (2014). We followed representing 4.5% of the species found in that region. Alves et al. (2000) for the threatened bird species of the sta- We observed a decrease in the proportion of invasive spe- te of Rio de Janeiro. Atlantic Forest endemic species follow cies along the elevational gradients in Itatiaia and Órgãos those established by Parker et al. (1996). (Figure 4). Above 1,900 m no invasive species were recorded in Órgãos, whereas in Itatiaia the proportion reached 2% of Results the species. We also found a higher proportion of invasive We found 507 bird species (70 families) in our study. A to- species below 200 m in Bocaina, whereas these birds did not tal of 407 species (65 families) was found in Serra da Bocai- represent more than 1% of the species above 200 m. na, 419 (68 families) in Serra de Itatiaia and 436 (68 families) Sixty-four (44%) of the 145 bird species considered thre- in Serra dos Órgãos (Table 1). We assume that we detected atened, probably threatened, or with unknown status in the most bird species present in the study regions with our exten- state of Rio de Janeiro (Alves et al. 2000) were found in our sive field work. field work. The highest threatened bird species richness (49 A decrease in the number of bird species along the elevatio- species, or 11%) was found in Serra dos Órgãos. Forty three nal gradient was found in our study (Figure 2). Although spe- threatened species (10.5%) were found in Bocaina, contras- cies richness declined monotonically with elevation in Bo- ting with 33 species (8%) in Itatiaia. A decrease in the propor- caina, we found a low-elevation plateau (or slight increase in tion of threatened species along the elevational gradient was the species richness up to about 1,000 and 1,200 m) in Itatiaia found in our study. The highest proportion of threatened birds and Órgãos, followed by a gradual decline to the summit. in each elevational zone was found in Bocaina (Figure 5). An elevational turnover of congeneric bird species was recorded in 53 species of 18 genera and 14 families (Table Discussion 2). We found the same basic elevational replacement pattern In our fieldwork, we found high bird species richness in (same genera and species) in the three regions. However, the three study regions, which are three of the most signi- some slight differences were found in this pattern of species ficant and endemic-rich IBAs in southeastern Brazil (Ben- replacement among the regions. cke et al. 2006). Other studies carried out in the mountains Among the 365 bird species shared by Itatiaia and Órgãos, of eastern Brazil have revealed a decline in the number of 302 species (83%) have their lower elevational range limits bird species along elevational gradients (Holt 1928, Scott & higher in Itatiaia and 229 species (63%) have their upper ele- Brooke 1985, Goerck 1999, Buzzetti 2000, Browne 2005, vational range limits also higher in Itatiaia than in Serra dos Mallet-Rodrigues et al. 2010). Decreasing habitat heteroge- Órgãos. A comparison between Bocaina and Itatiaia showed neity and complexity towards higher elevations can be major that 90% of the species shared by both regions have elevatio- causes of the decline in bird richness along elevational gra- nal ranges similar or higher in Itatiaia than in Bocaina. When dients (Stotz et al. 1996). Lower floristic complexity of high comparing Bocaina and Órgãos, only 12 species (3.2%) have montane forests when compared with those of lowland and their lower elevational range limits higher in Bocaina. submontane forests from southeastern Brazil (Veloso et al. At least 23 montane bird species found in Itatiaia and Órgãos 1991) may at least partially explain the decline in number of were also found in lower elevations or even at sea level in Serra species along the elevational gradients in Itatiaia and Órgãos. da Bocaina (Table 3). Some lowlands species (as with the sou- Additionally, the less extensive areas covered by high mon- thern limit of their range in Mangaratiba (southern coast of the tane forests and high grasslands above 1,500-1,600 m may state of Rio de Janeiro), or slightly further north, are apparen- influence the elevational decline in species richness in Itatiaia tly replaced by congeneric montane species in the coastal fo- and Órgãos. Lower bird richness has previously been found rests of Bocaina, such as Sooretama Slaty-Antshrike Thamno- in the high montane forests and high grasslands in Serra dos philus ambiguus replaced by Variable Antshrike Thamnophilus Órgãos (Mallet-Rodrigues et al. 2010). caerulescens, Ochre-bellied Flycatcher Mionectes oleagineus While some studies have revealed a monotonic elevational replaced by by Gray-hooded Flycatcher Mionectes rufiventris decline in bird species richness (Terborgh 1977, Stevens 1992, and Yellow-backed Hemithraupis flavicollis replaced Sergio & Pedrini 2007), or a mid-domain effect (Colwell & by Rufous-headed Tanager Hemithraupis ruficapilla). Hurt 1994, Colwell & Lees 2000), our study showed both a We recorded 144 bird species endemic to the Atlantic Fo- plateau of species richness at lower altitudes before decli- rest in our study (Table 1). The highest endemic bird richness ning towards the highest elevations in Itatiaia and Órgãos, was found in Serra dos Órgãos (130 species), followed by as reported by other studies (Navarro S. 1992, Stotz et al. Bocaina (126 species) and Itatiaia (116 species). Endemism 1996, Blake & Loiselle 2000) and a monotonic elevational in the three study areas corresponded to about 30% of the decline in species at Bocaina. Our results confirm the predo- bird assemblage of each region. The proportion of forest bird minance of both monotonic elevational declines in richness species endemic to the Atlantic Forest increased along the and plateaus of species richness at lower altitudes among the elevational gradient in the three regions (Figure 3). Nearly elevational richness patterns found in South America (Mc- half of the birds found above 800 m in Bocaina are endemic Cain 2009) and in the Brazilian Atlantic Forest (Cavarzere & to the Atlantic Forest. Silveira 2012).

42 Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br Biotic variables such as vegetation change, abiotic factors such as temperature and rainfall, and the elevational range overlap in several species at intermediate elevations could contribute to the slight increase in species richness that we detected in Itatiaia and Órgãos up to about 1,000 and 1,200 m However, they may be also a consequence of habitat loss, hunting and trapping in lower elevations, which may have led to the disappearance of some species from lowlands. This patter did not occur in Bocaina because while human presen- ce is relatively intense at sea level and on the lower slopes of Bocaina, forests in this region are better preserved than those of the lower elevations of Itatiaia and Órgãos. The lower bird species richness in the foothills caused by the disappearan- ce of some species has also been discussed in other studies (Bencke & Kindel 1999, Mallet-Rodrigues et al. 2010). Cavarzere Junior (2010) found a “U” shaped pattern in the bird species distribution along an elevational gradient (0 to 800 m) in the Serra do Mar, southeastern Brazil, with lower bird richness being found in intermediate elevations. Howe- ver, high montane forests and high grasslands are absent from their study region. When controlling for the area effect at each elevational zone, species richness was found to be highest in the mid-elevational gradient, as predicted by the mid-domain effect (Colwell & Hurt 1994, Rahbek 1995, Colwell & Lees 2000, Colwell et al. 2004, Nogué et al. 2013). However, area effects have been not supported as primary drivers of eleva- tional bird richness (McCain 2009). The overlap in the dis- tribution of lowland and montane species at the intermediate elevations may be responsible for the hump-shaped pattern showing higher species richness in the middle elevational gradient, as proposed by Brown (2001) in his study on ele- vational distribution in mammals. However, the mid-domain Figure 8. The Gray-winged Cotinga (Tijuca condita) is an endemic effect may not be positively associated with the elevational bird in the state of Rio de Janeiro where it has generally been diversity of birds in the Atlantic Forest since five different found above 1,800 m in the Serra dos Órgãos and Reserva elevational patterns have been identified for Atlantic forest Biológica do Tinguá (Photo: Bruno Rennó). birds (Cavarzere & Silveira 2012). Geographical extent of the areas oc- cupied by each altitudinal range have been related to the elevational patterns of bird communities (Kattan & Franco 2004). Therefore, the decline in species richness associated with high elevations may be just as much if not more related to the progressive reduction of the area toward the summit of the mountain than to ecological factors. The geographically smaller area of the upper Bocaina (be- tween 1,300 and 1,600 m) with a relati- vely lower number of bird species when compared to similar areas at the same elevations in Itatiaia and Órgãos may indicate that the area factor has a funda- metal role in the distribution of species along the elevational gradients. The elevational limits of distinct vege- tation types (submontane, montane and high montane forests and high grasslan- Figure 9. Interestingly, the Buff-throated Warbling-Finch (Poospiza lateralis) is not found in Serra dos ds) have been reported to be higher in Ita- Órgãos, although it is relatively common in Itatiaia, Bocaina and further northward in the Caparaó tiaia than in Serra do Mar (Hueck 1972). region, near the border of the states of Minas Gerais and Espirito Santo (Photo: Bruno Rennó). High montane forests (or nebular forests)

Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br 43 are found between 2,200 and 2,400 m in Itatiaia, whereas the Buzzetti 2000, Browne 2005, Mallet-Rodrigues et al. 2010). highest peaks of northern Serra do Mar reach no more than The Atlantic forest that once covered more than 90% of the 2,250 m. Consequently, the upper elevational range limits of state of Rio de Janeiro has undergone extensive fragmenta- some bird species may be higher in Itatiaia simply due to the tion that has allowed the invasion of birds typical of open ha- fact that the mountains are higher there. In our study, most bitats from central and northeastern Brazil (Sick 1997). The bird species shared by Itatiaia and Órgãos have their lower and expansion of species ranges caused by deforestation is still upper elevational range limits higher in Itatiaia than in Serra poorly studied in Brazil (Alvarenga 1990, Willis 1991, Willis dos Órgãos or Bocaina. More detailed study is needed to iden- & Oniki 1987, 2002). We found a slight decline in the number tify the causes of distinct elevational range limits among bird of invasive species along the elevational gradient. A higher populations in mountain ranges of eastern Brazil. proportion of these birds in lower elevations may be attri- The southern coast of Rio de Janeiro where the Serra da Bo- buted to more intense human activities in these regions with caina is located has been identified as a region where some the formation of open habitats favorable to these species. The montane bird species in the northern Serra do Mar range are smaller proportion of invasive species in Bocaina seems to also found at sea level (Sick 1997, Buzzetti 2000). This dis- be a consequence of the good condition of its forests. Inva- tribution pattern extends southward along the Atlantic Forest sive species benefited by deforestation are more common in region to southern Brazil (Bencke & Kindel 1999). In our stu- the bird communities of Itatiaia and Órgãos because these dy, some species found only at higher elevations in Itatiaia and regions have large man-made and native open areas (such as Órgãos were also found at lower elevations in Serra da Bocai- high grasslands). The higher number of invasive species in na. A combination of climatic factors such as high rainfall and Itatiaia and Órgãos may be also due in part to the proximity of humidity may be related to the lower elevational limits of some these regions to the southern Minas Gerais and Paraiba do Sul bird species on the southern coast of Rio de Janeiro. Additio- river valley, where most of the invasive species originated. nal factors influencing the occurrence of montane birds in the The decline in the proportion of threatened birds along the lowlands of southern Rio de Janeiro may be a possible change elevational gradient found in our study reveals that the con- in the structure and composition of the plant community along servation status of montane forests is of less concern than the latitudinal gradient (Buzzetti 2000). Some montane birds the lowland forests (intensively cleared for agricultural use in the state of Rio de Janeiro closely associated with bamboo and human settlements). The high number of threatened birds thickets also occur at sea level in Bocaina. found in Bocaina may be related to high local richness of Our results showed a similar species turnover along the ele- endemic Atlantic Forest species, because the most of the thre- vational gradients in the three study regions, although some atened birds in state of Rio de Janeiro are highly dependent species are absent from one or two of the mountain ranges. on the forest (Alves et al. 2000). Few threatened species were Slight differences in the floristic composition and vegetation found in each elevational band in Itatiaia and Órgãos, even at structure can have an important role in species replacement low elevations where the rate of deforestation has been more along elevation (Navarro S. 1994, Blake & Loiselle 2000). intense. A high number of habitat generalist species may also Further studies on this matter of species replacement in bird be an important factor contributing to the smaller proportion assemblages in southeastern Brazil are needed. of threatened birds in each elevational band in Itatiaia and The endemic Atlantic Forest species richness found in our Órgãos. A decline in the percentage of threatened bird species study was similar to that found in other localities in southeas- along the elevational gradient has also been found in other tern Brazil (Scott & Brooke 1995, Goerck 1999, Browne 2005, studies conducted in the mountains of eastern Brazil (Goerck Mallet-Rodrigues & Noronha 2009). The lower endemic spe- 1999, Buzzetti 2000, Mallet-Rodrigues et al. 2010). cies richness found in Itatiaia when compared to Bocaina and Órgãos can be related to the presence of many species typical Acknowledgements of open habitats (including opportunistic invasive species) in We are grateful to a Flávio Medeiros de Britto (in memo- Itatiaia. Endemic species richness at all elevations in Bocaina riam), José Fernando Pacheco, Luiz Pedreira Gonzaga, Maria is considerably higher than in the other two study areas. Luísa Marinho de Noronha, Luciano Lima, Luiz Ribenboim, Although we found an increase in endemic bird richness Luís Soares, Agnes Rennó, Fabiana Rennó, Bruna Chiaradia, along the elevational gradient in the three study regions, a Vitor Piacentini, André De Luca, Marco Rego, Fernanda Al- progressive decline in the proportion of endemism between ves, Tatiana Pongiluppi, Carlos Garske, Carlos Gussoni, João 1,700 and 2,400 m in Itatiaia may be related to the presence Quental, Marcos Barretti, Maycon Resende and Geiser Tri- of large open habitas in the highlands. However, the propor- velato for the opportunities to work and/or for their pleasant tion of endemic birds increased again above 2,500 m. The company in the field on several occasions. decline in the number of species with elevation and the pre- dominance of some birds common in the highlands of eastern References Brazil, such as White-throated Hummingbird Leucochloris Alvarenga, H.M.F. (1990) Novos registros e expansões geográficas de aves no leste do estado de São Paulo. Ararajuba 1:115-117. albicollis, Large-tailed Antshrike Mackenziaena leachii, Ita- Alves, M.A.S., J.F. Pacheco, L.A.P. Gonzaga, R.B. Cavalcanti, M.A. Rapo- tiaia Spinetail Oreophylax moreirae, and Serra do Mar Tyran- so, C. Yamashita, N.C. Maciel, & M. Castanheira (2000) Aves, p. 113- nulet Phylloscartes difficilis are responsible for the increase 124. In: Bergallo, H.G., C.F.D. Rocha, M.A.S. Alves & M. Van Sluys in the proportion of endemic species in the higher elevations (Org.) A fauna ameaçada de extinção do Estado do Rio de Janeiro. Rio de Janeiro. EdUERJ. of Itatiaia. Endemic species richness increasing along the ele- Bencke, G.A. & A. Kindel (1999) Bird counts along an altitudinal gradient vational gradient as found in our study has been discussed of Atlantic forest in northeastern Rio Grande do Sul, Brazil. Ararajuba by some authors (Scott & Brooke 1985, Stotz et al. 1996, 7(2):91-107.

44 Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br Bencke, G.A., G.N. Maurício, P.F. Develey & J.M. Goerck (2006) Áreas im- Nogué, S., V. Rull & T. Vegas-Vilarrúbia (2013) Elevational gradients in the portantes para a conservação das aves no Brasil: Parte 1 – estados neotropical table mountains: patterns of endemism and implications for do domínio da Mata Atlântica. São Paulo: SAVE Brasil. conservation. Diversity and Distributions 19:676-687. Blake, J.G. & B.A. Loiselle (2000) Diversity of birds along an elevational Noon, B.R. (1981) The distribution of an avian guild along a temperate ele- gradient in the Cordillera Central, Costa Rica. Auk 117(3):663–686. vational gradient: The importance and expression of competition. Eco- Brown, J.H. (2001) Mammals on mountainsides: elevational patterns of di- logy 51: 105-124. versity. Global Ecology and Biogeography 10(1):101-109. Parker, T.A., D.F. Stotz, & J.W. Fitzpatrick (1996) Ecological and distribu- Browne, P.W.P. (2005) The birds of Parati, south-east Brazil. Cotinga 24:85- tional databases, p. 113-436. In: Stotz, D.F., J. Fitzpatrick, T.A. Parker 98. & D.K. Moskovits (eds.) Neotropical birds: ecology and conserva- Buzzetti, D.R.C. (2000) Distribuição altitudinal de aves em Angra dos Reis tion. Chicago. University of Chicago Press. e Parati, sul do Estado do Rio de Janeiro, Brasil, p. 131-148. In: Alves, Rahbek, C. (1995) The elevational gradient of species richness: A uniform M.A.S., J.M.C. Silva, M. Van Sluys, H. de G. Bergallo & C.F.D. Rocha pattern Ecography 18: 200-205. (orgs.) A ornitologia no Brasil: Pesquisa atual e perspectivas. Rio de Janeiro: EdUERJ. Rahbek, C. (1997) The relationship among area, elevation, and regional Cavarzere Junior, V.A. (2010) Distribuição das aves ao longo de um gra- species richness in Neotropical birds. The American Naturalist 149: diente altitudinal na Serra do Mar do Estado de São Paulo, Brasil. 875-901. Masters Dissertation. São Paulo. Instituto de Biociências da Universi- Rajão, H. (2007) Distribuição altitudinal de três espécies de Drymophila dade de São Paulo, Departamento de Zoologia. (Aves Passeriformes: Thamnophilidae) no Parque Nacional da Serra Cavarzere, V.A. & L.F. Silveira (2012) Bird species diversity in the Atlantic dos Órgãos, RJ, p. 155-163. In: Cronemberger, C. & E.B.V. de Castro Forest of Brazil is not explained by the Mid-domain Effect. Zoologia (Orgs.) Ciência e conservação na Serra dos Órgãos. Brasília. IBAMA, 29(4):285-292. Rajão, H. & R. Cerqueira (2006) Distribuição altitudinal e simpatria das aves CBRO - Comitê Brasileiro de Registros Ornitológicos. (2014) Listas das do gênero Drymophila Swainson (Passeriformes, Thamnophilidae) na aves do Brasil. 10ª Edição. Available on: Mata Atlântica. Revista Brasileira de Zoologia 23(3): 597-607. Access on 13 March 2015. Scott, D.A. & M. de L. Brooke (1985) The endangered avifauna of Southe- Collar, N.J., L.P. Gonzaga, N. Krabbe, A. Madroño Nieto, L.G. Naranjo, T.A. astern Brazil: a report on the BOU/WWF expeditions of 1980/81 and Parker III & D.C. Wege (1992) Threatened birds of the America: The 1981/82, p. 115-139. In: Diamond, A.W. & T.E. Lovejoy (eds.) Conser- ICBP/IUCN Red Data Book. Cambridge. ICBP. vation of Tropical Forest Birds. Cambridge. ICBP (Techn. Publ. 4). Colwell, R.K. & G.C. Hurt (1994) Nonbiological gradients inspecies rich- Sergio, F. & P. Pedrini (2007) Biodiversity gradients in the Alps: the overri- ness and a spurious Rapoport effect. American Naturalist 144(4):570- ding importance of elevation. Biodiversity & Conservation 16:3243– 595. 3254. Colwell, R.K. & D.C. Lees (2000) The mid-domain effect: geometric cons- Sick, H. (1997) Ornitologia Brasileira. Rio de Janeiro: Editora Nova Fron- traints on the geography of species richness. Trends in Ecology and teira. Evolution 15:70-76. Colwell, R.K., C. Rahbek & N.J. Gotelli (2004) The mid-domain effect and Stevens, G.C. (1992) The elevational gradient in altitudinal range: an exten- species richness patterns: what have we learned so far? American Na- sion of Rapoport’s latitudinal rule to altitude. The American Natura- turalist 163: E1E23. doi: 10.1086/382056. list 140:893–911. Goerck, J.M. (1999) Distribution of birds along an elevational gradient in the Stotz, D.F., J.W. Fitzpatrick, T.A. Parker III & D.K. Moskovits (1996) Ne- Atlantic Forest of Brazil: Implications for the conservation of endemic otropical birds: ecology and conservation. Chicago: University of and endangered species. Bird Conservation International 9:235-253. Chicago Press. Grytnes, J.A. & O.R. Vetaas (2002) Species richness and altitude: a compa- Terborgh, J. (1971) Distribution on environmental gradients: Theory and a rison between null models and interpolated plant species richness along preliminary interpretation of distributional patterns in the avifauna of the Himalayan altitudinal gradient, Nepal. The American Naturalist the Cordillera Vilcabamba, Peru. Ecology 52:23-40. 159:294–304. Terborgh, J. (1977) Bird species diversity on an Andean elevation gradient. Holt, E.G. (1928) An ornithological survey of Serra do Itatiaya, Brazil. Bul- Ecology 58:1007-1019. letin of the American Museum of Natural History 57:251-326. Vasconcelos, M.F. & M. Rodrigues (2010) Patterns of geographic distribu- Hueck, K. (19720 As florestas da América do Sul: Ecologia, composição e tion and conservation of the open-habitat avifauna of southeastern Bra- importância econômica. São Paulo: Ed. Polígono. zilian mountaintops (campos rupestres and campos de altitude). Papéis Kattan, G.H. & P. Franco (2004) Bird diversity along elevational gradients Avulsos de Zoologia 50(1):1-29. in the Andes of Colombia: Area and mass effects. Global Ecology and Veloso, H.P., A.L.R. Rangel Filho & J.C.A. Lima (1991) Classificação da Biogeography 13:451-458. vegetação brasileira, adaptada a um sistema universal. Rio de Janei- Lomolino, M.V. (2001) Elevation gradients of species density: Historical and ro: IBGE, Departamento de Recursos Naturais e Estudos Ambientais. prospective views. Global Ecology and Biogeography 10:3-13. Luederwaldt, H. (19090 Beitrag zur Ornithologie des Campo Itatiaya. Zoo- Willis, E.O. (1991) Expansão geográfica deNetta erythrophthalma, Fluvico- logische Jahrbucher Abteilung für Systematik 27(4):329-360. la nengeta e outras aves de zonas abertas com a “desertificação” antró- Magurran, A.E. (1988) Ecological diversity and its measurement. Prince- pica em São Paulo. Ararajuba 2:101-102. ton: Princeton University Press. Willis, E.O. & Y. Oniki (1987) Invasion of deforested regions of São Paulo Mallet-Rodrigues, F. & M.L.M. Noronha (2009) Birds in the Parque Esta- state by the Picazuro Pigeon, Columba picazuro Temminck, 1813. Ci- dual dos Três Picos, Rio de Janeiro state, south-east Brazil. Cotinga ência e Cultura 39:1064-1065. 31:96-107. Willis, E.O. & Y. Oniki (2002) Birds of Santa Teresa, Espírito Santo, Bra- Mallet-Rodrigues, F., R. Parrini, L.M.S. Pimentel & R. Bessa (2010) Alti- zil: do humans add or subtract species? Papéis Avulsos de Zoologia tudinal distribution of birds in a mountainous region in southeastern 42(9):193-264. Brazil. Zoologia 27(4):503-522. Willis, E.O. & K.L. Schuchmann (1993) Comparison of cloudforest avifau- McCain, C.M. (2005) Elevational gradients in diversity of small mammals. nas in southeastern Brazil and western Colombia. Ornitologia Neotro- Ecology 86:366–372. pical 4:55-63. McCain, C.M. (2007) Could temperature and water availability drive eleva- tional species richness patterns? A global case study for bats. Global Ecology and Biogeography 16(1):1–13. 1. Laboratório de Ornitologia, Departamento de Zoo- McCain, C.M. (20090 Global analysis of bird elevational diversity. Global logia, Instituto de Biologia, UFRJ, 21944-970, Rio de Ecology and Biogeography 18(3):346–360. Janeiro, RJ. E-mail: [email protected] Miranda-Ribeiro, A. (1905) Vertebrados do Itatiaya (peixes, serpentes, sau- 2. Rua Desembargador Isidro 160, ap. 601, 20521-160, rios, aves e mammiferos). Archivos do Museu Nacional do Rio de Janeiro 13:163-190. Rio de Janeiro, RJ. E-mail: [email protected] Navarro S., A.G. (1992) Altitudinal distribution of birds in the Sierra Madre 3. Rua Vereador Richard Rocha Andrade, 266, 27516- del Sur, Guerrero, Mexico. Condor 94(1):29–39. 170, Resende, RJ. E-mail: [email protected]

Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br 45 Table 1. Elevational distribution of the bird species recorded in the Serra da Bocaina, Itatiaia and Órgãos. Status: E = spe- cies endemic to the Atlantic Forest region; A = species threatened with extinction in the state of Rio de Janeiro; I = invasive species; Int = introduced exotic species; a = only one record; b = few records. The taxonomy and systematics of the birds follow CBRO (2014), with some modifications. Species Bocaina Itatiaia Órgãos Tinamidae Tinamus solitarius (Vieillot, 1819) E, A 0-800 300-900 Crypturellus soui (Hermann, 1783) 100-300 Crypturellus obsoletus (Temminck, 1815) 50-1,600 500-2,300 100-2,100 Crypturellus tataupa (Temminck, 1815) 0-500 400-1,000 100-1,200 Nothura maculosa (Temminck, 1815) 400 Anatidae Dendrocygna viduata (Linnaeus, 1766) 0-50 400 100-300 Cairina moschata (Linnaeus, 1758) 0-50b Amazonetta brasiliensis (Gmelin, 1789) 0-50 400 100-1,000 Nomonyx dominica (Linnaeus, 1766) 400 Cracidae Penelope superciliaris Temminck, 1815 100-400 Penelope obscura Temminck, 1815 0-1,600 500-2,250 800-2,000 Odontophoridae Odontophorus capueira (Spix, 1825) E, A 0-1,600 500-1,400 300-1,500 Podicipedidae Tachybaptus dominicus (Linnaeus, 1766) 0-50 400 100-1,000 Podilymbus podiceps (Linnaeus, 1758) 0-50 400 Phalacrocoracidae Phalacrocorax brasilianus (Gmelin, 1789) 0-50 400-1,700 100-900 Anhingidae Anhinga anhinga (Linnaeus, 1766) A 400 Ardeidae Tigrisoma lineatum (Boddaert, 1783) 0-50 400-600 100-300 Cochlearius cochlearius (Linnaeus, 1766) 0-50b Ixobrychus exilis (Gmelin, 1789) 400 Ixobrychus involucris (Vieillot, 1823) 400 Nycticorax nycticorax (Linnaeus, 1758) 0-50 400 100-1,000 Butorides striata (Linnaeus, 1758) 0-50 400 100-1,000 Bubulcus ibis (Linnaeus, 1758) I 0-50 400-1,300 100-300 Ardea cocoi Linnaeus, 1766 0-50 400 Ardea alba Linnaeus, 1758 0-50 400 100-300 Syrigma sibilatrix (Temminck, 1824) 0-50 400-1,300 100-1,000 Pilherodius pileatus (Boddaert, 1783) A 0-50 400-1,300 100-1,000 Egretta thula (Molina, 1782) 0-50 400 100-1,000 Egretta caerulea (Linnaeus, 1758) 0-50 Threskiornithidae Theristicus caudatus (Boddaert, 1783) I 400 100-1,000 Platalea ajaja (Linnaeus, 1758) 0-50b 400 Cathartidae Cathartes aura (Linnaeus, 1758) 0-500 400-2,500 100-2,100 Cathartes burrovianus Cassin, 1845 400-1,300 100-1,100 Coragyps atratus (Bechstein, 1793) 0-1,600 400-2,400 100-2,100 Sarcoramphus papa (Linnaeus, 1758) A 20a 900-1,800b Accipitridae Leptodon cayanensis (Latham, 1790) 0-200 400-1,200 100-1,100 Chondrohierax uncinatus (Temminck, 1822) 100a 2,000a 1,000a Elanoides forficatus(Linnaeus, 1758) 0-400

46 Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br Elanus leucurus (Vieillot, 1818) I 400-1,300 1,000a Harpagus diodon (Temminck, 1823) 0-400 600-1,750 100-1,100 Accipiter striatus Vieillot, 1808 0-100 1,100-2,100 1,000-1,900 Accipiter bicolor (Vieillot, 1817) A 0-100 1,100-1,300 100-600 Ictinia plumbea (Gmelin, 1788) 400-600 100-300 Rostrhamus sociabilis (Vieillot, 1817) 400 100-700 Geranospiza caerulescens (Vieillot, 1817) 100a 600-1,200 100-1,300 Heterospizias meridionalis (Latham, 1790) 0-50 400-1,200 100-1,300 Amadonastur lacernulatus (Temminck, 1827) E, A 0-700 600a 100-1,000 Urubitinga coronata (Vieillot, 1817) A 0-100a 2,000 e 2,400b 300-1,800 Rupornis magnirostris (Gmelin, 1788) 0-1,600 400-2,160 100-2,000 Parabuteo leucorrhous (Quoy e Gaimard, 1824) 1,100-2,350 300-1,800 Geranoaetus albicaudatus Vieillot, 1816 I 100-700 400-2,400 100-2,100 Pseudastur polionotus (Kaup, 1847) E, A 0-800b 600-1,500 100-1,500 Buteo brachyurus Vieillot, 1816 100a 400-2,160 100-2,100 Buteo albonotatus Kaup, 1847 I 900b Spizaetus tyrannus (Wied, 1820) A 0-1,600 400-2,160 100-1,800 Spizaetus melanoleucus Vieillot, 1816 A 830-1,200 100-1,000 Rallidae Aramides mangle (Spix, 1825) A 0-50 Aramides cajanea (Statius Muller, 1776) 0-50 Aramides saracura (Spix, 1825) E 0-1,600 400-2,300 100-1,500 Amaurolimnas concolor (Gosse, 1847) 0-50 Laterallus melanophaius (Vieillot, 1819) 0-50 400 100-1,000 Laterallus exilis (Temminck, 1831) 0-50b Porzana albicollis (Vieillot, 1819) 0-50 400 100-1,000 Pardirallus nigricans (Vieillot, 1819) 0-50 400-2,160 100-1,200 Pardirallus sanguinolentus (Swainson, 1837) 400 Gallinula galeata (Lichtenstein, 1818) 0-50 400 100-900 Porphyrio martinicus (Linnaeus, 1766) 0-50 400 Charadriidae Vanellus chilensis (Molina, 1782) 0-500 400-2,160 100-1,800 Pluvialis dominica (Statius Muller, 1776) 0-50 400 Recurvirostridae Himantopus melanurus Vieillot, 1817 A 400 Scolopacidae Gallinago paraguaiae (Vieillot, 1816) 0-50 400 Tringa flavipes (Gmelin, 1789) 0-50 400 1,000a Calidris fuscicollis (Vieillot, 1819) 0-50 1,000a Jacanidae Jacana jacana (Linnaeus, 1766) 0-50 400 100-300 Columbidae Columbina minuta (Linnaeus, 1766) 400-500 100-300 Columbina talpacoti (Temminck, 1811) 0-50 400-1,300 100-1,500 Columbina squammata (Lesson, 1831) I 400-1,500 Claravis pretiosa (Ferrari-Perez, 1886) 50a 100-1,200 Columba livia Gmelin, 1789 Int 0-100 400-1,300 100-1,200 Patagioenas picazuro (Temminck, 1813) I 0-100 400-2,160 100-1,200 Patagioenas cayennensis (Bonnaterre, 1792) 0-500 400-600 100-1,800 Patagioenas plumbea (Vieillot, 1818) 0-1,600 600-2,270 300-1,800 Zenaida auriculata (Des Murs, 1847) 400 Leptotila verreauxi Bonaparte, 1855 0-500 400-1,200 100-1,000 Leptotila rufaxilla (Richard e Bernard, 1792) 0-500 400-1,200 100-1,500 Geotrygon montana (Linnaeus, 1758) 0-1,600 400-1,200 100-1,800

Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br 47 Cuculidae Piaya cayana (Linnaeus, 1766) 0-1,600 400-1,700 100-2,000 Coccyzus melacoryphus Vieillot, 1817 50a 550a Coccyzus americanus (Linnaeus, 1758) 50a 100-300 Coccyzus euleri Cabanis, 1783 0-50 1,200a 100-900 Crotophaga ani Linnaeus, 1758 0-1,200 400-1,200 100-1,300 Guira guira (Gmelin, 1788) 0-1,300 400-2,150 100-1,300 Tapera naevia (Linnaeus, 1766) 0-500 400 100-1,200 Tytonidae Tyto alba (Scopoli, 1769) 0-50 400 100-300 Strigidae Megascops choliba (Vieillot, 1817) 0-1,600 400-1,300 100-2,000 Megascops atricapilla (Temminck, 1822) E 80a 950-1,200 100-350 Pulsatrix koeniswaldiana (Bertoni e Bertoni, 1901) E 0-1,500 600-1,550 100-1,500 Strix hylophila Temminck, 1825 E 1,200-1,800 600-1,800 Strix virgata (Cassin, 1849) 20-30b 600-1,000 100-300 Strix huhula Daudin, 1,800 A 100-300 300-600 Glaucidium minutissimum (Wied, 1830) E 0-500 300-900 Glaucidium brasilianum (Gmelin, 1788) 0-1,200 400-1,250 100-1,800 Athene cunicularia (Molina, 1782) I 0-50 400-570 100-1,500 Asio clamator (Vieillot, 1808) 0-50 400 100-900 Asio stygius (Wagler, 1832) 400-1,670 Nyctibiidae Nyctibius aethereus (Wied, 1820) A 250-900 Nyctibius griseus (Gmelin, 1789) 0-900 500 100-900 Caprimulgidae Nyctiphrynus ocellatus (Tschudi, 1844) 600 600-1,200 Antrostomus rufus (Boddaert, 1783) 400-900 Lurocalis semitorquatus (Gmelin, 1789) 0-700 600-1,250 100-1,000 Hydropsalis albicollis (Gmelin, 1789) 0-500 400-1,200 100-1,100 Hydropsalis parvula Gould, 1837 400 Hydropsalis longirostris (Bonaparte, 1825) 2,400 2,000-2,100 Hydropsalis maculicauda (Lawrence, 1862) 400 Hydropsalis torquata (Gmelin, 1789) 0-50 Hydropsalis forcipata (Nitzsch, 1840) E 1,500a 1,200-1,800 800-1,800 Chordeiles nacunda (Vieillot, 1817) 400 Chordeiles minor (Forster, 1771) 500 Chordeiles acutipennis (Hermann, 1783) 0-50 Apodidae Cypseloides fumigatus (Streubel, 1848) 100-1,600 800 Streptoprocne zonaris (Shaw, 1796) 0-1,600 400-2,150 100-1,800 Streptoprocne biscutata (Sclater, 1866) 1,200-2,500 100-2,100 Chaetura cinereiventris Sclater, 1862 0-1,200 900-1,400 100-1,100 Chaetura meridionalis Hellmayr, 1907 0-1,200 400-2,000 100-1,800 Panyptila cayennensis (Gmelin, 1789) 0-500 800 100-600 Trochilidae Ramphodon naevius (Dumont, 1818) E, A 0-1,100 100-900 Glaucis hirsutus (Gmelin, 1788) 0-50 100-600 Phaethornis squalidus (Temminck, 1822) E 0-800 550-2,200 300-800 Phaethornis idaliae (Bourcier e Mulsant, 1856) E, A 100-300 Phaethornis ruber (Linnaeus, 1758) 0-500 500 100-700 Phaethornis pretrei (Lesson e Delattre, 1839) I 400-1,200 800-1,800 Phaethornis eurynome (Lesson, 1832) E 0-1,400 500-1,800 400-2,100

48 Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br Eupetomena macroura (Gmelin, 1788) 0-400 400-1,200 100-1,300 Aphantochroa cirrochloris (Vieillot, 1818) E 0-700 100-1,100 Florisuga fusca (Vieillot, 1817) E 0-1,100 400-1,200 100-1,500 Colibri serrirostris (Vieillot, 1816) 0-100 400-2,400 100-2,100 Anthracothorax nigricollis (Vieillot, 1817) 0-1,100 400-1,450 Stephanoxis lalandi (Vieillot, 1818) E 0-1,600 1,100-2,450 600-2,100 Lophornis magnificus (Vieillot, 1817) 0-100 800-1,200 100-800 Lophornis chalybeus (Vieillot, 1822) 20a Chlorostilbon lucidus (d´Orbigny e Lafresnaye, 1838) 80a 400-2,400 300-1,200 Thalurania glaucopis (Gmelin, 1788) E 0-1,000 400-1,300 100-1,300 Hylocharis cyanus (Vieillot, 1818) 0-400 100-800 Leucochloris albicollis (Vieillot, 1818) E 50-1,600 950-2,500 300-2,100 Amazilia versicolor (Vieillot, 1818) 0-700 400-1,200 100-1,200 Amazilia fimbriata (Gmelin, 1788) 0-50 Amazilia lactea (Lesson, 1832) 400-1,100 100-1,200 Clytolaema rubricauda (Boddaert, 1783) E 100-1,600 550-2,400 100-2,100 Heliothryx auritus (Gmelin, 1788) A 500-1,200 Heliomaster squamosus (Temminck, 1823) 800-1,050 Calliphlox amethystina (Boddaert, 1783) 0-50 800- 1,200 100-1,600 Trogonidae Trogon viridis Linnaeus, 1766 0-600 100-600 Trogon surrucura Vieillot, 1817 E 0-1,350 400-1,850 100-1,800 Trogon rufus Gmelin, 1788 0-1,000 400-1,700 100-1,800 Alcedinidae Megaceryle torquatus (Linnaeus, 1766) 0-1,250 400-1,700 100-1,000 Chloroceryle amazona (Latham, 1790) 0-100 400 100-1,000 Chloroceryle americana (Gmelin, 1788) 0-100 400 100-1,000 Chloroceryle inda (Linnaeus 1766) 0-50b Momotidae Baryphthengus ruficapillus (Vieillot, 1818) E 0-1,600 400-1,250 100-1,500 Galbulidae Galbula ruficauda Cuvier, 1816 0-600 100-600 Bucconidae Notharchus swainsoni (Gray, 1846) E, A 0-500 300-600 Nystalus chacuru (Vieillot, 1816) I 400-1,200 100-1,800 Malacoptila striata (Spix, 1824) E 0-400 400-2,100 100-1,200 Ramphastidae Ramphastos toco Statius Muller, 1776 I 400-800 300-800 Ramphastos vitellinus Lichtenstein, 1823 0-500 100-1,000 Ramphastos dicolorus Linnaeus, 1766 E 0-1,600 500-2,100 300-900 Selenidera maculirostris (Lichtenstein, 1823) E 0-1,600 800-1,350 100-1,800 Pteroglossus bailloni (Vieillot, 1819) E 0-1,600 600-1,850 300-1,800 Picidae Picumnus cirratus Temminck, 1825 0-1,600 400-1,670 100-1,500 Melanerpes candidus (Otto, 1796) 0-100 400-1,200 100-1,200 Melanerpes flavifrons (Vieillot, 1818) E 0-700 400-2,100 100-1,100 Veniliornis maculifrons (Spix, 1824) E 0-500 400-1,000 100-1,800 Veniliorns spilogaster (Wagler, 1827) E 0-1,600 800-2,150 Piculus flavigula (Boddaert, 1783) 0-700 100-1,000 Piculus aurulentus (Temminck, 1821) E 250-1,200 900-1,940 800-1,800 Colaptes melanochloros (Gmelin, 1788) 0-400 400-1,200 100-1,200 Colaptes campestris (Vieillot, 1818) 0-1,600 400-2,400 100-1,800 Celeus flavescens (Gmelin, 1788) 0-700 700a 100-1,500

Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br 49 Dryocopus lineatus (Linnaeus, 1766) 0-500 400-1,300 600-1,200 Campephilus robustus (Lichtenstein, 1818) E, A 0-1,600 400-2,200 1,000a Cariamidae Cariama cristata (Linnaeus, 1766) I 400-2,200 600-1,500 Falconidae Caracara plancus (Miller, 1777) 0-500 400-2,300 100-2,100 Milvago chimachima (Vieillot, 1816) 0-1,300 400-2,160 100-1,800 Herpetotheres cachinnans (Linnaeus, 1758) I 0-50 400-1,300 100-1,000 Micrastur ruficollis (Vieillot, 1817) 0-1,600 900-2,200 300-1,800 Micrastur semitorquatus (Vieillot, 1817) 0-100 500-1,300 100-600 Falco sparverius Linnaeus, 1758 400-2,400 100-1,800 Falco rufigularis Daudin, 1,800 900-1,670 100-900 Falco femoralis Temminck, 1822 0-50 400-1,200 100-1,800 Falco peregrinus Tunstall, 1771 400 Psittacidae Primolius maracana (Vieillot, 1816) 0-100 400-1,300 100-1,200 Psittacara leucophthalmus (Statius Muller, 1776) 20b 400-2,400 100-1,800 Pyrrhura frontalis (Vieillot, 1817) E 0-1,600 400-2,200 100-2,000 Forpus xanthopterygius (Spix, 1824) 0-1,600 400-1,300 100-1,000 Brotogeris tirica (Gmelin, 1788) E 0-1,600 400-1,250 100-1,200 Brotogeris chiriri (Vieillot, 1818) 400-1,100 Touit melanonotus (Wied, 1820) E, A 0-100b 800-1,400 300-1,200 Touit surdus (Kuhl, 1820) E, A 100-1,000 Pionopsitta pileata (Scopoli, 1769) E, A 0-1,600 800-1,750 300-1,500 Pionus maximiliani (Kuhl, 1820) 0-1,600 400-1,900 100-1,800 Amazona farinosa (Boddaert, 1783) A 200-1,000 Amazona rhodocorytha (Salvadori, 1890) E, A 0-1,600 Amazona aestiva (Linnaeus, 1758) I 400 Triclaria malachitacea (Spix, 1824) E, A 100-1,200 300-1,200 Thamnophilidae Terenura maculata (Wied, 1831) E 0-700 400-1,450 100-1,000 Myrmotherula axillaris (Vieillot, 1817) 100-600 Myrmotherula minor Salvadori, 1864 E, A 0-500 300-800 Myrmotherula unicolor (Ménétriès, 1835) E 0-500 100-600 Formicivora erythronotos Hartlaub, 1852 E, A 0-100 Thamnomanes caesius (Temminck, 1820) 100-400b Rhopias gularis (Spix, 1825) E 0-1,600 500-1,500 100-1,500 Dysithamnus stictothorax (Temminck, 1823) E 0-1,000 500-1,450 100-1,300 Dysithamnus mentalis (Temminck, 1823) 0-700 400-1,600 100-1,500 Dysithamnus xanthopterus Burmeister, 1856 E 800-1,600 1,200-2,000 800-1,800 Herpsilochmus rufimarginatus (Temminck, 1822) 0-500 600-1,150 100-600 Thamnophilus ruficapillus Vieillot, 1816 0-1,600 400-2,400 850-2,100 Thamnophilus palliatus (Lichtenstein, 1823) 0-100 100-1,000 Thamnophilus ambiguus Swainson, 1825 E 100-400 Thamnophilus caerulescens Vieillot, 1816 0-1,600 400-2,400 800-2,000 Hypoedaleus guttatus (Vieillot, 1816) E 0-900 100-900 Batara cinerea Vieillot, 1819 0-1,600 700-2,300 100-2,000 Mackenziaena leachii (Such, 1825) E 800-1,600 1,200-2,500 100-2,000 Mackenziaena severa (Lichtenstein, 1823) E 0-700 400-1,500 100-1,500 Biatas nigropectus (Lafresnaye, 1850) E, A 700-1,320 600-1,500 Myrmoderus loricatus (Lichtenstein, 1823) E 400-1,750 100-1,200 Myrmoderus squamosus Pelzeln, 1868 E 0-1,200 Pyriglena leucoptera (Vieillot, 1818) E 0-1,600 400-1,600 100-1,800

50 Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br Drymophila ferruginea (Temminck, 1822) E 0-1,000 400-1,470 100-1,000 Drymophila rubricollis (Bertoni, 1901) E 1,000-1,600 1150-1,700 1,200-1,700 Drymophila genei (Filippi, 1847) E 1,600 1,400-2,400 1,500-2,100 Drymophila ochropyga (Hellmayr, 1906) E 0-1,200 600-1,480 900-1,300 Drymophila malura (Temminck, 1825) E 1,200-1,300b 1,200-1,800 900-1,700 Drymophila squamata (Lichtenstein, 1823) E 0-600 100-600 Conopophagidae Conopophaga lineata (Wied, 1831) E 0-1,600 400-2,100 300-2,000 Conopophaga melanops (Vieillot, 1818) E 0-800 500-1,100 100-800 Grallariidae Grallaria varia (Boddaert, 1783) 0-1,300 400-1,850 100-1,800 Hylopezus nattereri (Pinto, 1937) E 0-700 1,200-2,450 Rhinocryptidae Merulaxis ater Lesson, 1830 E 0-1,600 600-1,680 100-1,200 Eleoscytalopus indigoticus (Wied, 1831) E 1,200-1,300b 600-1,300 800-1,200 Scytalopus speluncae (Ménétriès, 1835) E 800-1,600 1,100-2,400 900-2,100 Psilorhamphus guttatus (Ménétriès, 1835) E 0-100 100-1,500 Formicariidae Formicarius colma Boddaert, 1783 0-200 600-900 100-900 Chamaeza campanisona (Lichtenstein, 1823) 0-700 300-1,000 Chamaeza meruloides Vigors, 1825 E 500-1,100 600-1,400 800-1,200 Chamaeza ruficauda (Cabanis e Heine, 1859) E 800-1,600 1,150-2,280 1,000-2,000 Scleruridae Sclerurus macconnelli Chubb, 1919 A 20b 100-200 Sclerurus scansor (Ménétriès, 1835) E 0-1,600 400-1,850 100-1,500 Dendrocolaptidae Dendrocincla turdina (Lichtenstein, 1820) E 0-900 500-1,250 100-900 Sittasomus griseicapillus (Vieillot, 1818) 0-1,600 400-2,300 100-1,800 Xiphorhynchus fuscus (Vieillot, 1818) E 0-1,600 400-1,700 100-1,500 Campylorhamphus falcularius (Vieillot, 1822) E 0-100b 400-2,000 100-1,800 Lepidocolaptes angustirostris (Vieillot, 1818) I 0-100b 400-600 100-800 Lepidocolaptes squamatus (Lichtenstein, 1822) E 50-1,600 400-2,100 100-1,800 Dendrocolaptes platyrostris Spix, 1825 0-1,000 400-1,780 300-1,200 Xiphocolaptes albicollis (Vieillot, 1818) 0-700 500-1,650 100-1,800 Xenopidae Xenops minutus (Sparrman, 1788) 0-500 900 100-1,000 Xenops rutilans Temminck, 1821 0-1,600 400-1,800 100-1,500 Furnariidae Furnarius figulus (Lichtenstein, 1823) I 0-100 400-1,000 100-1,000 Furnarius rufus (Gmelin, 1788) 0-1,200 400-1,200 100-1,800 Lochmias nematura (Lichtenstein, 1823 0-1,600 400-2,400 100-2,100 Automolus leucophthalmus (Wied, 1821) E 0-1,200 500-1,200 100-900 Anabazenops fuscus (Vieillot, 1816) E 0-1,600 400-1,460 300-1,800 Anabacerthia amaurotis (Temminck, 1823) E 800-1,200 900-1,500 300-1,500 Anabacerthia lichtensteini Cabanis e Heine, 1859 E 0-1,200 1,400 100-900 Philydor atricapillus (Wied, 1821) E 0-700 500-1,150 100-1,300 Philydor rufum (Vieillot, 1818) 0-1,200 400-1,900 100-1,500 Heliobletus contaminatus Berlepsch, 1885 E 800-1,200 800-2,400 800-1,800 Syndactyla rufosuperciliata (Lafresnaye, 1832) 500-1,600 950-2,150 300-2,000 Cichlocolaptes leucophrus (Jardine e Selby, 1830) E 0-1,600 900-1,700 100-1,500 Leptasthenura setaria (Temminck, 1824) E 1,200-1,600 850-2,200 Phacellodomus rufifrons (Wied, 1821) I 400-600 100-1,300 Phacellodomus erythrophthalmus (Wied, 1821) E 0-700 400-600 100-1,800

Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br 51 Phacellodomus ferrugineigula (Pelzeln, 1858) E 600 Anumbius annumbi (Vieillot, 1817) I 400 1,000b Certhiaxis cinnamomeus (Gmelin, 1788) 0-100 400-600 100-1,000 Synallaxis ruficapilla Vieillot, 1819 E 0-1,600 400-1,800 100-1,800 Synallaxis cinerascens Temminck, 1823 900-1,900 900-1,200 Synallaxis albescens Temminck, 1823 I 0-50b 400 1,000b Synallaxis spixi Sclater, 1856 0-1,600 400-2,300 100-2,100 Asthenes moreirae (Miranda Ribeiro, 1906) E 1,700-2,500 1,950-2,100 Cranioleuca pallida (Wied, 1831) E 800-1,600 500-2,300 400-2,000 Pipridae Neopelma aurifrons (Wied, 1831) E, A 100-200b Neopelma chrysolophum Pinto, 1944 E 800-1,600 900-1,800 800-2,100 Manacus manacus (Linnaeus, 1766) 0-500 400-800 100-1,100 Machaeropterus regulus (Hahn, 1819) 100-600 Ilicura militaris (Shaw e Nodder, 1809) E 0-1,200 400-1,200 100-1,500 Chiroxiphia caudata (Shaw e Nodder, 1793) E 0-1,600 400-1,800 100-1,800 Oxyruncidae Oxyruncus cristatus Swainson, 1821 0-1,200 1,200-1,450 100-1,800 Onychorhynchidae Onychorhynchus swainsoni (Pelzeln, 1858) E, A 0-100 600-1,200 Myiobius barbatus (Gmelin, 1789) 0-500 100-900 Myiobius atricaudus Lawrence, 1863 650-1,100 600-1,250 900-1,100 Tityridae Schiffornis virescens (Lafresnaye, 1838) E 0-1,200 500-2,080 800-1,500 Schiffornis turdina (Wied, 1831) 100-400 Laniisoma elegans (Thunberg, 1823) E, A 0-1,200 100-1,100 Iodopleura pipra (Lesson, 1831) E, A 0-500 300-1,000 Tityra inquisitor (Lichtenstein, 1823) A 0-500 600-1,000 100-600 Tityra cayana (Linnaeus, 1766) 0-1,200 400-1,150 100-600 Pachyramphus viridis (Vieillot, 1816) 0-1,200 700-1,200 100-1,000 Pachyramphus castaneus (Jardine e Selby, 1827) 0-1,600 400-1,820 300-1,800 Pachyramphus polychopterus (Vieillot, 1818) 0-1,200 400-1,200 100-1,800 Pachyramphus marginatus (Lichtenstein, 1823) 0-500 100-600 Pachyramphus validus (Lichtenstein, 1823) 0-1,200 400-1,200 100-1,000 Cotingidae Lipaugus lanioides (Lesson, 1844) E, A 0-500 1,100-1,200b Tijuca atra Ferrusac, 1829 E 1,600 1140-2,200 300-1,800 Tijuca condita Snow, 1980 E, A 1,800-2,100 Procnias nudicollis (Vieillot, 1817) E, A 0-1,200 600-1,100 100-1,800 Pyroderus scutatus (Shaw, 1792) A 0-1,200 500-1,800 100-600 Carpornis cucullata (Swainson, 1821) E 0-1,400 800-1,800 Carpornis melanocephala (Wied, 1820) E, A 100-200b Phibalura flavirostris Vieillot, 1816 A 20a 800-1,900 500-1,800 Pipritidae Piprites chloris (Temminck, 1822) 500a Piprites pileata (Temminck, 1822) E, A 1,100-1,900 Platyrinchidae Calyptura cristata (Vieillot, 1818) E, A 550b Platyrinchus mystaceus Vieillot, 1818 0-1,200 400-1,800 100-1,500 Platyrinchus leucoryphus Wied, 1831 A 200a 100-400 Rynchocyclidae Mionectes oleagineus (Lichtenstein, 1823) 100-600 Mionectes rufiventris Cabanis, 1846 E 0-1,600 400-1,950 100-1,800

52 Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br Leptopogon amaurocephalus Tschudi, 1846 0-1,000 400-1,600 100-1,500 Corythopis delalandi (Lesson, 1830) 500-800 100-600 Phylloscartes ventralis (Temminck, 1824) 800-1,400 1,200-2,450 800-2,100 Phylloscartes paulista Ihering e Ihering, 1907 E, A 0-200 400a Phylloscartes oustaleti (Sclater, 1887) E, A 0-1,200 300-800 Phylloscartes difficilis (Ihering e Ihering, 1907) E 1,600 1,200-2,500 800-2,100 Rhynchocyclus olivaceus (Temminck, 1820) A 0-200 100-200 Tolmomyias sulphurescens (Spix, 1825) 0-1,300 400-1,500 100-1,700 Tolmomyias flaviventris (Wied, 1831) I 100-200 Todirostrum poliocephalum (Wied, 1831) E 0-1,200 400-1450 100-1,300 Todirostrum cinereum (Linnaeus, 1766) I 0-100 400-1,800 100-1,000 Poecilotriccus plumbeiceps (Lafresnaye, 1846) 0-1,600 600-1,750 500-1,800 Myiornis auricularis (Vieillot, 1818) 0-1,600 400-1,600 100-1,500 Hemitriccus diops (Temminck, 1822) E 600-1,450 1,000-1,500 Hemitriccus obsoletus (Miranda-Ribeiro, 1906) E 800-1,600 1,200-2,250 Hemitriccus orbitatus (Wied, 1831) E 0-500 100-1,000 Hemitriccus nidipendulus (Wied, 1831) E 0-100 400-1,200 100-1,000 Hemitriccus furcatus (Lafresnaye, 1846) E, A 0-700 400-1,400 Tyrannidae Hirundinea ferruginea (Gmelin, 1788) 0-1,100 400-1,400 100-1,200 Tyranniscus burmeisteri Cabanis e Heine, 1859 0-1,300 500-1,800 100-1,500 Ornithion inerme Hartlaub, 1853 A 400a Camptostoma obsoletum (Temminck, 1824) 0-700 400-1,950 100-1,800 Elaenia flavogaster (Thunberg, 1822) 0-700 400-1,200 100-1,800 Elaenia spectabilis Pelzeln, 1868 400 Elaenia chilensis Hellmayr, 1927 600 800-1,000b Elaenia parvirostris Pelzeln, 1868 1,150-1,850b 900a Elaenia mesoleuca (Deppe, 1830) 800-1,600 1,000-2,250 800-1,800 Elaenia obscura (d´Orbigny e Lafresnaye, 1837) 1,600 750-2,500 800-2,100 Myiopagis caniceps (Swainson, 1835) 0-450b 500-1,320 400a Capsiempis flaveola (Lichtenstein, 1823) 0-100 500-1,750 300-900 Phyllomyias virescens (Temminck, 1824) E 600a 900-2,200 800-1,300 Phyllomyias fasciatus (Thunberg, 1822) 0-1,600 400-2,300 100-1,800 Phyllomyias griseocapilla Sclater, 1862 E 0-1,600 600-2,240 500-1,800 Polystictus superciliaris (Wied, 1831) 1,400a 2,400a Pseudocolopteryx sclateri (Oustalet, 1892) 400 Serpophaga nigricans (Vieillot, 1817) 1,200-1,250 400-2,400 400-1,200 Serpophaga subcristata (Vieillot, 1817) 0-1,300 400-2,430 300-1,300 Attila phoenicurus Pelzeln, 1868 0-1,200 1,200-1,800 800-1,100 Attila rufus (Vieillot, 1819) E 0-1,200 400-1,300 100-1,500 Legatus leucophaius (Vieillot, 1818) 0-500 500-940 100-600 Ramphotrigon megacephalum (Swainson, 1835) 0-80b 600-1,450 100-1,100 Myiarchus tuberculifer (d´Orbigny e Lafresnaye, 1837) 100-700b Myiarchus swainsoni Cabanis e Heine, 1859 700-1,600 800-1,700 700-1,300 Myiarchus ferox (Gmelin, 1789) 0-100 400-1,200 100-1,800 Sirystes sibilator (Vieillot, 1818) 200-1,000 500-1,350 300-1,000 Rhytipterna simplex (Lichtenstein, 1823) 0-500 600a 100-1,000 Pitangus sulphuratus (Linnaeus, 1766) 0-1,300 400-2,200 100-1,800 Machetornis rixosa (Vieillot, 1819) I 0-1,600 400-1,800 100-1,100 Myiodynastes maculatus (Statius Muller, 1776) 0-1,200 400-1,200 100-1,500 Megarynchus pitangua (Linnaeus, 1766) 0-700 400-1,200 100-1,800 Myiozetetes cayanensis (Linnaeus, 1766) 0-100 200-1,800 Myiozetetes similis (Spix, 1825) 0-1,600 400-1,800 100-1,800

Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br 53 Tyrannus melancholicus Vieillot, 1819 0-1,600 400-2,200 100-1,800 Tyrannus savana Vieillot, 1808 0-700 400-1,300 100-1,000 Empidonomus varius (Vieillot, 1818) 0-500 400-1,200 100-1,300 Colonia colonus (Vieillot, 1818) 0-700 400-1,800 300-1,200 Myiophobus fasciatus (Statius Muller, 1776) 0-1,200 400-2,450 100-1,200 Pyrocephalus rubinus (Boddaert, 1783) 30a 400 100-1,800 Fluvicola nengeta (Linnaeus, 1766) I 0-500 400-1,700 100-1,200 Arundinicola leucocephala (Linnaeus, 1764) 0-50 400 100-200 Gubernetes yetapa (Vieillot, 1818) 0-100a 400 900-1,000b Cnemotriccus fuscatus (Wied, 1831) 0-400 100-200 Lathrotriccus euleri (Cabanis, 1868) 0-1,200 400-1,850 100-1,800 Contopus cooperi (Nuttall, 1831) 0-100a 1,070-1,250b 400a Contopus cinereus (Spix, 1825) 0-400 400-1,500 100-1,000 Knipolegus cyanirostris (Vieillot, 1818) 300-1,600 600-2,150 500-2,100 Knipolegus lophotes Boie, 1828 400-2,200 100-1,000 Knipolegus nigerrimus (Vieillot, 1818) E 500-1,100 400-2,500 400-2,100 Satrapa icterophrys (Vieillot, 1818) 0-1,200 400-1,200 100-1,000 Xolmis cinereus (Vieillot, 1816) 0-100 400-1,200 800-1,000 Xolmis velatus (Lichtenstein, 1823) I 0-100 400-1,200 100-1,800 Muscipipra vetula (Lichtenstein, 1823) E 20a 1,200-2,200 800-1,800 Vireonidae Cyclarhis gujanensis (Gmelin, 1789) 0-1,600 400-2,200 100-2,000 Vireo olivaceus (Linnaeus, 1766) 0-1,200 400-1,350 100-1,300 Hylophilus poicilotis Temminck, 1822 E 800-1,600 600-2,200 700-1,600 Hylophilus amaurocephalus (Nordmann, 1835) 850-1,000 Hylophilus thoracicus Temminck, 1822 0-100 400 100-400 Corvidae Cyanocorax cristatellus (Temminck, 1823) I 400-1,780 800-1,000 Hirundinidae Pygochelidon cyanoleuca (Vieillot, 1817) 0-1,600 400-2,500 100-2,000 Alopochelidon fucata (Temminck, 1822) I 400 1,000a Atticora tibialis (Cassin, 1853) 0-700 780-1,250 100-500 Stelgidopteryx ruficollis (Vieillot, 1817) 0-1,200 400-1,200 100-1,300 Progne tapera (Vieillot, 1817) I 0-100 400 100-1,300 Progne chalybea (Gmelin, 1789) 0-400 100-1,500 100-1,000 Tachycineta albiventer (Boddaert, 1783) 400 Tachycineta leucorrhoa (Vieillot, 1817) I 0-200 400 100-1,000 Hirundo rustica Linnaeus, 1758 VS 0-50 100-1,000 Troglodytidae Troglodytes musculus Naumann, 1823 0-1,300 400-2,450 100-1,800 Pheugopedius genibarbis Swainson, 1838 I 100-600 Cantorchilus longirostris (Vieillot, 1819) 0-500 400-900 100-600 Donacobiidae Donacobius atricapilla (Linnaeus, 1766) 0-100 400 100-900 Polioptilidae Ramphocaenus melanurus Vieillot, 1819 A 0-700 400a Turdidae Turdus flavipes Vieillot, 1818 0-1,400 400-2,200 100-2,000 Turdus rufiventris Vieillot, 1818 0-1,600 400-2,500 100-2,000 Turdus leucomelas Vieillot, 1818 0-400 400-1,400 100-1,100 Turdus amaurochalinus Cabanis, 1850 0-700 400-1,200 100-2,000 Turdus subalaris (Seebohm, 1887) E 500-1,850 100-1,000 Turdus albicollis Vieillot, 1818 0-1,200 400-2,200 100-2,000

54 Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br Mimidae Mimus saturninus (Lichtenstein, 1823) I 0-100 400-1,200 100-1,100 Motacillidae Anthus lutescens Pucheran, 1855 0-700 400 100-1,000 Anthus hellmayri Hartert, 1909 800-2,400 Passerellidae Zonotrichia capensis (Statius Muller, 1776) 0-1,600 400-2,500 100-2,100 Ammodramus humeralis (Bosc, 1792) 400-500 100-1,000 Arremon semitorquatus Swainson, 1838 E 0-700 500-800 300-1,100 Parulidae Setophaga pitiayumi (Vieillot, 1817) 0-1,100 400-1,150 100-1,000 Geothlypis aequinoctialis (Gmelin, 1789) 0-700 400-1,200 100-1,300 Basileuterus culicivorus (Deppe, 1830) 0-1350 400-1,900 100-1,800 Myiothlypis leucoblephara (Vieillot, 1817) E 100-1,600 800-2,300 800-2,000 Myiothlypis rivularis (Wied, 1821) A 0-1,200 400a Icteridae Psarocolius decumanus (Pallas, 1769) 0-1,200 400-1,200 100-1,000 Cacicus chrysopterus (Vigors, 1825) 0-1,400 1,200-2,250 Cacicus haemorrhous (Linnaeus, 1766) 0-700 400-1,400 100-900 Gnorimopsar chopi (Vieillot, 1819) 400-1,200 100-1,000 Agelasticus cyanopus (Vieillot, 1819) 0-100b 400 Chrysomus ruficapillus (Vieillot, 1819) I 400 100-900 Pseudoleistes guirahuro (Vieillot, 1819) 400 Molothrus oryzivorus (Gmelin, 1788) A 0-100 900-1,500 Molothrus bonariensis (Gmelin, 1789) 0-1,200 400-1,670 100-1,000 Sturnella superciliaris (Bonaparte, 1850) I 0-100 400 100-1,000 Mitrospingidae Orthogonys chloricterus (Vieillot, 1819) E 0-1,100 400-1,300 100-1,000 Thraupidae Coereba flaveola (Linnaeus, 1758) 0-700 400-1,150 100-1,000 Saltator maximus (Statius Muller, 1776) 0-100 100-500 Saltator similis d´Orbigny e Lafresnaye, 1837 0-1,600 400-2,250 300-2,000 Saltator maxillosus Cabanis, 1851 E 800-1,600 1550-2,150 900-2,100 Saltator fuliginosus (Daudin, 1,800) E 0-1,200 400-1,500 100-1,000 Orchesticus abeillei (Lesson, 1839) E 0-1,300 1,100-1,680 500-1,500 Nemosia pileata (Boddaert, 1783) I 0-100 400-600 100-800 Thlypopsis sordida (d´Orbigny e Lafresnaye, 1837) 0-200 400-650 100-1,000 Pyrrhocoma ruficeps (Strickland, 1844) E 1,200-1,450 800-1,800 Tachyphonus coronatus (Vieillot, 1822) E 0-1,100 400-1,300 100-1,000 Ramphocelus bresilius (Linnaeus, 1766) E 0-500 400-700 100-1,300 Lanio cristatus (Linnaeus, 1766) 0-700 100-600 Lanio pileatus (Wied, 1821) 400-800 100-800 Lanio melanops (Vieillot, 1818) 0-1,200 400-1,780 100-1,800 Tangara brasiliensis (Linnaeus, 1766) E, A 100-600 Tangara seledon (Statius Muller, 1776) E 0-600 500-1,330 100-600 Tangara cyanocephala (Statius Muller, 1776) E 0-400 900-1,150 100-600 Tangara cyanoventris (Vieillot, 1819) E 400-1,200 400-1,300 300-1,000 Tangara desmaresti (Vieillot, 1819) E 0-1,600 400-2,000 100-2,000 Tangara sayaca (Linnaeus, 1766) 0-1,200 400-2,420 100-1,800 Tangara cyanoptera (Vieillot, 1817) E 0-1,600 400-1,200 100-1,800 Tangara palmarum (Wied, 1823) 0-700 400-1,200 100-1,300 Tangara ornata (Sparrman, 1789) E 0-1,300 400-1,750 100-1,800 Tangara cayana (Linnaeus, 1766) I 0-1,600 400-2,000 100-2,000

Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br 55 Stephanophorus diadematus (Temminck, 1823) 300-1,600 650-2,450 1,200-2,100 Cissops leverianus (Gmelin, 1788) 0-700 600-1,750 800b Schistochlamys ruficapillus(Vieillot, 1817) 400-1,700 800-2,100 Pipraeidea melanonota (Vieillot, 1819) 0-1,350 400-2,380 100-1,800 Tersina viridis (Illiger, 1811) 0-500 400-1,200 300-1,000 Dacnis nigripes Pelzeln, 1856 E, A 20-80b 400-1,700 100-1,000 Dacnis cayana (Linnaeus, 1766) 0-1,300 400-1,600 100-1,800 Chlorophanes spiza (Linnaeus, 1758) A 0-100 100-500 Hemithraupis guira (Linnaeus, 1766) 50a Hemithraupis ruficapilla (Vieillot, 1818) E 0-700 400-1,450 100-1,200 Hemithraupis flavicollis (Vieillot, 1818) 100-500 Conirostrum speciosum (Temminck, 1824) 0-100 400-800 100-1,000 Haplospiza unicolor Cabanis, 1851 E 0-1,200 400-2,150 100-2,000 Donacospiza albifrons (Vieillot, 1817) 400-2,400 900-2,100 Poospiza thoracica (Nordmann, 1835) E 1,600 1,200-2,300 900-2,100 Poospiza lateralis (Nordmann, 1835) 1,300-1,600 1150-2,400 Sicalis citrina Pelzeln, 1870 I 2,400a Sicalis flaveola (Linnaeus, 1766) 0-1,600 400-1,900 100-1,800 Sicalis luteola (Sparrman, 1789) I 400 Emberizoides herbicola (Vieillot, 1817) 400-500 100-1,000 Embernagra platensis (Gmelin, 1789) 400-2,500 Volatinia jacarina (Linnaeus, 1766) 0-700 400-1,200 100-1,000 Sporophila frontalis (Verreaux, 1869) E, A 0-1,400 950-1,200 400-2,000 Sporophila falcirostris (Temminck, 1820) E, A 0-1,600 600-1,100 100-1,500 Sporophila collaris (Boddaert, 1783) A 400 Sporophila lineola (Linnaeus, 1758) I 0-100 400-1,200 100-200 Sporophila nigricollis (Vieillot, 1823) 100-1,000b Sporophila ardesiaca (Dubois, 1894) 0-300 400-800 100-500 Sporophila caerulescens (Vieillot, 1823) 0-1,200 400-2,000 100-1,200 Sporophila leucoptera (Vieillot, 1817) 0-100 400-1000 600-950b Sporophila bouvreuil (Statius Muller, 1776) 400 Sporophila angolensis (Linnaeus, 1766) A 100a 600 700a Tiaris fuliginosus (Wied, 1830) 0-700 700-1,200 100-1,100 Cardinalidae Piranga flava (Vieillot, 1822) 400-1,900 800-1,200 Habia rubica (Vieillot, 1817) 0-1,200 500-1,200 100-1,300 Caryothraustes canadensis (Linnaeus, 1766) 100-600 Amaurospiza moesta (Hartlaub, 1853) E, A 1,100-1,300 Cyanoloxia brissonii (Lichtenstein, 1823) A 0-200 400-1,000 800-1,000 Fringillidae Sporagra magellanica (Vieillot, 1805) 1,200-1,300 400-2,400 800-1,200 Euphonia chlorotica (Linnaeus, 1766) 0-500 400-1,200 100-800 Euphonia violacea (Linnaeus, 1758) 0-700 100-1,000 Euphonia chalybea (Mikan, 1825) A 1,800b 400-1,800 Euphonia cyanocephala (Vieillot, 1818) A 600-1,100 1,100a 400-1,800 Euphonia xanthogaster Sundevall, 1834 0-300 100-1,000 Euphonia pectoralis (Latham, 1801) E 0-1,200 400-1,500 100-1,500 Chlorophonia cyanea (Thunberg, 1822) 25ma 900-1,800 100-1,800 Estrildidae Estrilda astrild (Linnaeus, 1758) Int 0-100 400 100-1,100 Passeridae Passer domesticus (Linnaeus, 1758) Int 0-100 400 100-1,100 Number of species 407 419 436

56 Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br Table 2. Congeneric bird species with elevational replacement on the Serra da Bocaina, Itatiaia and Órgãos (Low = Low elevation; Mid = Mid-elevation; High = High elevation).

Species Bocaina Itatiaia Órgãos Penelope superciliaris - - Low Penelope obscura Low; Mid; High Low; Mid; High Mid; High

Phaethornis squalidus Low; Mid Low; Mid; High Low Phaethorni idaliae - - Low Phaethornis ruber Low Low Low Phaethornis pretrei - Low; Mid; High Mid; High Phaethronis eurynome Low; Mid; High Mid; High Mid; High

Veniliornis maculifrons Low Low; Mid Low; Mid; High Veniliornis spilogaster Low; Mid; High Mid; High -

Piculus flavigula Low; Mid - Low Piculus aurulentus Low; Mid; High Mid; High Mid; High

Thamnophilus ruficapillus Low Low; Mid; High Mid; High Thamnophilus palliatus Low - Low Thamnophilus ambiguus - - Low Thamnophilus caerulescens Low; Mid; High Mid; High Mid; High

Drymophila ferruginea Low; Mid Low; Mid Low; Mid Drymophila rubricollis High Mid Mid; High Drymophila genei High Mid; High High Drymophila ochropyga Low; Mid; High Mid Mid Drymophila malura - Mid; High Mid; High Drymophila squamata Low - Low

Conopophaga lineata Low; Mid; High Mid; High Mid; High Conopophaga melanops Low; Mid Low; Mid Low

Chamaeza campanisona Low; Mid - Low; Mid Chamaeza meruloides Mid Low; Mid Mid Chamaeza ruficauda Mid; High Mid; High Mid; High

Myiobius barbatus Low - Low Myiobius atricaudus Mid; High Low; Mid; High Mid; High

Schiffornis virescens Low; Mid; High Low; Mid; High Mid; High Schiffornis turdina - - Low

Carpornis cucullata Low; Mid; High - Mid; High

Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br 57 Carpornis melanocephala - - Low

Phylloscartes ventralis Mid; High Mid; High Mid; High Phylloscartes paulista Low - Low Phylloscartes oustaleti Low; Mid; High - Low Phylloscartes difficilis High Mid; High Mid; High

Hemitriccus diops - Low; Mid Mid; High Hemitriccus obsoletus Mid; High Mid; High - Hemitriccus orbitatus Low - Low

Attila phoenicurus Low; Mid Low; Mid Mid Attila rufus Low; Mid Low Low; Mid

Hylophilus poicilotis Mid; High Low; Mid; High Mid; High Hylophilus amaurocephalus - - Mid Hylophilus thoracicus Low Low Low

Cacicus chrysopterus Low; Mid; High Mid; High - Cacicus haemorrhous Low; Mid Low; Mid Low; Mid

Saltator maximus Low - Low Saltator similis Low; Mid; High Low; Mid; High Low; Mid; High Saltator maxillosus Mid; High High High

Tangara seledon Low Low; Mid Low Tangara cyanocephala Low Mid Low Tangara cyanoventris Mid; High Low; Mid Mid Tangara desmaresti Mid; High Low; Mid; High Low; Mid; High

Table 3. Montane bird species in Itatiaia and Órgãos that are found in lower elevations or even at sea level in the Serra da Bocaina.

Species

Phaethornis eurynome Piculus aurulentus Merulaxis ater

Stephanoxis lalandi Pionopsitta pileata Carpornis cucullata

Leucochloris albicollis Thamnophilus ruficapillus Phyllomyias griseocapilla

Clytolaema rubricauda Thamnophilus caerulescens Myiothlypis leucoblephara

Trogon surrucura Batara cinerea Orchesticus abeillei

Ramphastos dicolorus Mackenziaena leachii Stephanophorus diadematus

Pteroglossus bailloni Drymophila ochropyga Cissopis leverianus

Veniliornis spilogaster Conopophaga lineata

58 Atualidades Ornitológicas, 188, novembro e dezembro de 2015 - www.ao.com.br