Architectural Lighting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ABSTRACT the Main Feature of a Conventional Terraced Housing Development Is Rows of Rectangular Shaped Houses with the Narrow Fa
MAKING A RETURN ON INVESTMENT IN PASSIVE ARCHITECTURE TERRACED HOUSES DEVELOPMENT Wan Rahmah Mohd Zaki Universiti Teknologi Malaysia(UiTM) Malaysia E-mail: [email protected] Abdul Hadi Nawawi Universiti Teknologi MalaysiaQJiTM) Malaysia E-mail: [email protected] Sabarinah Sh Ahmad Universiti Teknologi MalaysiaQJiTM) Malaysia E-mail: [email protected] ABSTRACT The main feature of a conventional terraced housing development is rows of rectangular shaped houses with the narrow facade as the frontage. Consequently, this limits natural cross ventilation and daylight penetration into the middle of the houses; and cause for unnecessary energy consumption on mechanical cooling and artijicial lighting to make the living spaces comfortable for occupants. Such inconsideration is mainly attributed to the optimum configuration of houses which offers the most economic return desired by the developer. Passive Architecture (PA) design strategies can make terraced houses more conducive for occupants as well as gives reasonable returns to the developer. The idea is demonstrated on a hypothetical double storeys terraced scheme in a 2.5 acre site whereby it is transformed intofour types of PA terraced houses development. The Return on Invesfment of the PA terraced houses is ascertained for two situations, ie., (i) fwed sales price for all types of house; and (ii) added premium to PA terraced houses due to the positive unintended effects such as low density housing, etc. If critical criteria for demand and supply in housing remain constant, it is found that PA terraced housing development offers competitive returns to the developer relative to the returns for conventional terraced housing scheme. Keyworh: Orientation, Indoor Comfort and Operational Energy 1.0 INTRODUCTION 1.1 Housing and Energy The recent public awareness on sustainability calls for housing to not only serves as a basic shelter but also to be energy efficient, i.e., designed to make occupants need low operational energy. -
How Glare Reduces Safety
How Glare Reduces Safety The human eye is pretty amazing...enabling us to see in a broad range of lighting conditions from bright sunlight to pale moonlight. But the eye cannot function well when confronted with widely varying light intensities at the same time, nor when it is disabled by glare. Glare is the criminal's friend. How often have you turned out the light at night and noticed that after your eyes had a few minutes to “get used to the dark,” you could see much more around your bedroom than you’d been able to when the light first went off? Formally termed “adaptation,” this is the key to understanding how glare impairs vision and puts us in unnecessary danger. Inside the eye are two different types of light receptors--“rods” and “cones.” After the bedroom light went out, the pupils enlarged so that the eyes could make better use of what light was available. The extra-sensitive rods, which allow us to see in very faint light, were activated; they are located toward the edges of the retina, making them important to peripheral vision, and are especially sensitive to motion. Cones were at work while the light was still on, facilitating color discrimination and sharpness of vision; they are concentrated at the center of the eye. Many people who have not had occasion to look into the matter tend to assume that safety and “security” can be improved by very bright lighting--which usually entails substan- tial glare. But research claiming to demonstrate such benefits has been shown to be flawed.* The actual result of overbright, glary outdoor lighting is to impair our ability to see at night! The pupil contracts, and the rods shut down. -
A Method for Estimating Discomfort Glare from Exterior Lighting Systems
recommends… A Method for Estimating Discomfort Glare from Exterior Lighting Systems Volume 9, Issue 1 April 2011 A publication of the Alliance for Solid-State Illumination Systems and Technologies recommends… Copyright © 2011 by the Alliance for Solid-State Illumination Systems and Technologies (ASSIST). Published by the Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union St., Troy, NY 12180, USA. Online at http://www.lrc.rpi.edu. All rights reserved. No part of this publication may be reproduced in any form, print, electronic, or otherwise, without the express permission of the Lighting Research Center. ASSIST recommends is prepared by the Lighting Research Center (LRC) at the request of the Alliance for Solid-State Illumination Systems and Technologies (ASSIST). The recommendations set forth here are developed by consensus of ASSIST members and the LRC. ASSIST and the LRC may update these recommendations as new research, technologies, and methods become available. Check for new and updated ASSIST recommends documents at: http://www.lrc.rpi.edu/programs/solidstate/assist/recommends.asp ASSIST Members Acuity Brands Lighting Lite-On Amerlux Global Lighting Solutions NeoPac Lighting Bridgelux New York State Energy Research and China Solid State Lighting Alliance Development Authority Cree OSRAM SYLVANIA / OSRAM Opto Semiconductors Everlight Electronics Co., Ltd. Permlight Federal Aviation Administration Philips Lighting GE Lighting Solutions Seoul Semiconductor ITRI, Industrial Technology Research Institute Sharp Laboratories -
Office Lighting: a Review of 80 Years of Standards and Recommendations
LBL-35036 WG-31I Published in the Proceedings of the 1993 IEEE Industry Applications Society AnnUalMeeting, October 2-8, 1993 in Toronto, Ontario, Canada. Office Lighting: A Review of 80 Years of Standards and Recommendations Wemer K.E. Osterhaus Energy and Environment Division Lawrence Berkeley Laboratory University of California 1 Cyclotron Road Berkeley, Califomia 94720 May 1993 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technologies, Building Systems and Materials Division of the U.S. Department of Energy under Contract No. DE- AC03-76SF00098. Office Lighting: A Review of 80 Years of Standards and Recommendations . Werner K. E. Osterhaus Windows and Daylighting Group Building Technologies Program Energy and Environment Division Lawrence Berkeley Laboratory Berkeley, CA 94720 U.S.A. Abstract - This paper traces the development of Lighting conditions were among the dominant complaints quantitative office lighting standards from its from workers. Illuminating engineers recognized that beginnings to the present. It discusses the inadequate lighting was responsible for many industrial oources of recommended lighting practice, the accidents. Extensive data, accumulated by Simpson [i] and nature of the quantitative recommendations, and others provide convincing proof of this condition. The loss trends in recommended values on a comparative of visual power through improper lighting could not be so basis. A critical assessment of contemporary easily recorded, but ophthalmologists [2 and 3] warned about standards is provided within this historical its dangers. context. "Insufficient and improperly applied illumination is a prolific cause of industrial accidents. In the past few years I. INTRODUCTION numerous investigators, studying the cause of accidents, have found that the accident rate in plants with poor lighting is In exploring the development of lighting standards for higher than in similar plants which are well illuminated. -
Conserving Energy in Agricultural Lighting
INTRODUCTION lighting is needed in specific areas of agricultural Innovations in lighting technologies have operations, including offices and packing and greatly improved the efficiency of lighting fixtures processing areas. Lighting used to supplement or in transforming electricity into visible light. Energy replace natural light for plant growth has very savings in lighting are further facilitated by a specific requirements and is typically the most growing body of knowledge about the effects of intensive use of energy for lighting in agriculture. light intensity and quality on plants, animals and humans. In 2005, electricity consumption by US LIGHTING TYPES agricultural operations was approximately 0.14 There are many types of lighting. The most quadrillion BTU (6), driven chiefly by lighting- and commonly used lamps are incandescent, fluorescent ventilation-related energy expenditures in the and a variety of high intensity discharge lights. livestock and greenhouse sectors. As these sectors Halogen lamps are a type of incandescent lighting comprise a comparatively large proportion of New that is slightly more efficient than incandescent Jersey agriculture, conservation of energy in lamps, but typically more expensive to purchase. lighting is an excellent way for New Jersey farmers Fluorescent lamps may be linear or curved tubes or to save energy. small diameter compact bulbs (CFLs). High This document presents an overview of how intensity discharge (HID) lamps include low- energy is consumed in lighting and ways to pressure sodium (LPS), high-pressure sodium minimize its consumption. The most important (HPS), mercury vapor and metal halide. As light opportunity for energy savings in lighting, however, emitting diode (LED) technologies evolve, LEDs is the maximal use of ambient natural light, which are used more frequently in a variety of has little to no associated energy use. -
Our Guide to Barn Light Garage Lighting
OUR GUIDE TO BARN LI GHT GARAGE LIGHTING Garage lighting plays an important role in the overall exterior lighting plan for any home. The garage not only serves as the access point for many homeowners but is often the first structure visitors see as they approach the home. Stylish, easy-to-customize fixtures from Barn Light Electric oer plenty of illumination without harsh glare while adding the curb appeal you desire! SINGLE CAR GARAGE 1 2 3 4 5 #1: (2) Drake Gooseneck Lighst (14” Shades, 100-Black, G15 Gooseneck Arms, Cast Guard & Clear Glass), #2: (2) Original™ Warehouse Gooseneck Lights (18” Shades, 615-Oil-Rubbed Bronze, G22 Gooseneck Arms), #3: Goodrich® Marathon Porcelain Gooseneck Light (16” Shade, 150-Porcelain Black, G22 Gooseneck Arm), #4: (2) Chestnut Gooseneck Lights (16“ Shades, 995-Raw Copper, G15 Gooseneck Arms), #5: The Original™ Warehouse Gooseneck Light (14” Shade, 300-Dark Green, G15 Gooseneck Arm) What are the most popular Gooseneck Arms used for garage gooseneck lighting? Q Great question! We have more than 25 Gooseneck Arms and we’ve seen customers use A them all. However, our most popular gooseneck arms include: G22, G15, G11, G3 and G1. [email protected] (800) 407-8784 320 KNOX MCRAE DRIVE, Titusvi lle, FL 32780 barnlight.com 2-CAR GARAGE 1 For two-car garages, multiple options exist for lighting including one large fixture over each door, one large fixture between two doors, or smaller fixtures flanking the doors. Depending upon your taste, the amount of light can be manipulated with the type and wattage of bulb. -
Tran. a Et Al.Pdf
This may be the author’s version of a work that was submitted/accepted for publication in the following source: Tran, Alexandra, Isoardi, Gillian, & lsdale, Eric (2017) Exterior lighting of public stairways. In Proceedings of the Conference at the CIE Midterm Meeting 2017. CIE - International Commission on Illumination, United States of America, pp. 193-202. This file was downloaded from: https://eprints.qut.edu.au/114525/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.25039/x44.2017. -
Guide to Selecting Anti-Glare Contrast Filters
GUIDE TO SELECTING ANTI-GLARE CONTRAST FILTERS By: George E. Drazinakis Bangor, PA BASIC FILTER FACTS The display filter (also serving as readout filter panel) is a vital point of interface between the information display system and the viewer. Since most information systems exist for the purpose of delivering visual information to viewers, thus permitting decisions to be made or actions to be taken, it is essential that communication between the imaging system and the operator is free of interference which could distort the message, delay its recognition, or create confusion. Various display technologies can be differentiated by whether the display produces light internally -emissive- for example, CRT, EL, LED or it functions by modulating externally produced light -transmissive- for example LCD. In a practical sense, displays are neatly divided into CRTs and flat panel displays. No matter what form of character generation the instrument panel employs – CRT, Liquid Crystal, EL, Plasma, Vacuum Fluorescent, LED, etc. – the primary consideration in design must be the facility of quick assimilation of the information presented. Character design, character size, stroke width, light output, and other parameters are, of course, very important. A major consideration beyond this, however, is the critical element which can greatly improve the readability of the display, or if improperly designed, can detract from its performance even to the extent of rendering it useless. This element is the optical filter which is located between the display and the operator. A filter is any device that when placed in the path of a beam of radiation alters its frequency distribution. The filter performs several functions. -
Street Lighting Design Guidelines & Details
City and County of Denver Street Lighting Design Guidelines & Details Department of Public Works Engineering Division September 2019 City and County of Denver Street Lighting Design Guidelines Developed by: The City and County of Denver Public Works Department Clanton & Associates, Inc. Jacobs Engineering Group Copyright © 2019 City and County of Denver. All Rights Reserved. Reproduction of this document, in any form, without prior written permission from the City and County of Denver is strictly prohibited. Distribution of this document is strictly for use by and for business within the City and County of Denver, CO. 2 | Page City and County of Denver Street Lighting Design Guidelines Table of Content Background and Purpose .................................................................................................................................. 7 1.1 Typical Street Light Installations............................................................................................................. 7 Streetlight General Guidance ........................................................................................................................... 9 Fundamentals of Lighting Design ................................................................................................................. 11 3.1 Factors in Lighting Design ..................................................................................................................... 11 3.2 Non-Visual Effects of Light ................................................................................................................... -
Lighting for the Workplace
Lighting for the Workplace AWB_Workplace_Q_Produktb_UK.qxd 02.05.2005 10:35 Uhr Seite 3 CONTENTS 3 Foreword by Paul Morrell, 4–5 President of the British Council for Offices INTRODUCTION 6–7 The Changing Corporate Perspective 6–7 WORKPLACE LIGHTING – PAST, PRESENT AND FUTURE 8–51 Lighting Research versus the Codes 10–11 – The Lessons of Lighting Research 12–15 – Current Guidance and its Limitations 16–23 Key Issues in Workplace Lighting 24–29 Natural Light, Active Light & Balanced Light 30–37 Further Considerations in Workplace Lighting 38–47 Lighting Techniques – Comparing the Options 48–51 WORKPLACE LIGHTING – APPLICATION AREAS 52–97 Open Plan Offices 56–67 Cellular Offices 68–71 Dealer Rooms 72–75 Control Rooms 76–79 Call Centres 80–83 Communication Areas/Meeting Rooms 84–87 Break-Out Zones 88–91 Storage 92–93 Common Parts 94–97 WORKPLACE LIGHTING – LIGHTING DESIGN 98–135 Product Selector 100–133 Advisory Services 134–135 References & Useful Websites 135 IMPRINT Publisher: Zumtobel Staff GmbH, Dornbirn/A Design: Marketing Communication Reprints, even in part, require the permission of the publishers © 2005 Zumtobel Staff GmbH, Dornbirn/A Paul Morrell President of the British Council for Offices (BCO) London aims to continue being Europe’s leading financial centre and will need more, higher quality office space in the future (photo: Piper’s model of the future City of London, shown at MIPIM 2005) FOREWORD 5 The UK office market, in particular in London, is changing, driven by a number of long-term trends in international banking and finance. Informed forecasts, such as the recent Radley Report*, point, firstly, to a shift towards our capital city, at the expense of Paris and Frankfurt, as Europe’s leading financial centre, with a commensurate pressure on office space. -
Lighting Your House
LIGHTING YOUR HOUSE Lighting accounts for approximately 5 to 10 percent of your household energy bill. This amount may not seem like a lot, but it can add up quickly. Energy efficient lighting is easy and results in immediate energy savings to lower your bill. Light-emitting diodes (LEDs) Save the most money on energy costs, upwards of 75 percent. Additionally, they can last 20-30 times longer than incandescent bulbs. Their versatility allows them to be used in a variety of applications, including as outdoor and holiday lighting. POTENTIAL SAVINGS Check out the potential savings you can see by replacing just five of your more frequently used bulbs with energy efficient alternatives. TYPE OF BULB Incandescent (60W) CFL (13W) LED (10W) $2.50 $10.00 $15.00 Approximate Cost (5 bulbs at $0.50 each) (5 bulbs at $2.00 each) (5 bulbs at $3.00 each) Life Span When Used 3 Hours/Day, 7 Days/Week ~10 months ~9 Years, 1 month ~22 years, 9 months Number of Bulbs Needed 125 13 5 in LED Life Span Yearly Electricity Cost (11.3¢/kWh) $37.12 $8.04 $6.19 Lifetime Savings with LED $756 $62 - - - 1 LIGHTING YOUR HOUSE RECYCLE BULBS Check you local waste and recycling department. To find other recycling centers near you, visit the Earth911 website. LIGHTING LINGO Now that we know the current state of light bulbs, it is important to understand their terminology. Two critical features to keep in mind are watts and lumens. Watts (W): The amount of energy a bulb uses to produce light, or how much energy the bulb consumes. -
Residential Lighting Design Guide What Sets Us Apart
RESIDENTIAL LIGHTING DESIGN GUIDE WHAT SETS US APART INNOVATION We combine the latest energy efficient technology and design styles to create an extensive range of attractive and sustainable luminaires. We have over 5,000 products, including many high performance products that can’t be found anywhere else. Our EcoTechnology solutions offer sustainable energy solutions that meet the qualitative needs of the visual environment with the least impact on the physical environment. SUSTAINABILITY At ConTech Lighting, our commitment to the environment is as important as our commitment to innovation, quality and our customers. We believe that lighting can be environmentally responsible and energy efficient, while providing high-quality performance and outstanding aesthetic design. EcoTechnology applies to our daily operation as well as to our products; from materials, manufacturing and transportation to the disposal process for our products and by-products. QUALITY We use the best components and manufacturing methods resulting in the highest quality fixtures. From cast housings and high performance reflectors, to the testing of each ballasted fixture before it ships, ConTech Lighting is defined by its quality. SERVICE Our responsive, personalized customer focus, and market expertise represents an oasis of outstanding service in an industry that values it, but frequently doesn’t receive it. We are here for you, live and in person, Monday through Friday 7:30am – 5:30pm CST. PRODUCT AVAILABILITY & SPEEDSHIPTM Our products are in stock and ready to ship. Our unique SpeedShip™ process helps us toward our goal of shipping 100% of placed orders within 48 hours; at no additional cost to you. MARKET EXPERTISE Every market has its own unique lighting challenges.