Stem, Branch, and Root Wood Anatomy of Black Oak (Quercus Velutina Lam) Douglas D

Total Page:16

File Type:pdf, Size:1020Kb

Stem, Branch, and Root Wood Anatomy of Black Oak (Quercus Velutina Lam) Douglas D Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1986 Stem, branch, and root wood anatomy of black oak (Quercus velutina Lam) Douglas D. Stokke Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Wood Science and Pulp, Paper Technology Commons Recommended Citation Stokke, Douglas D., "Stem, branch, and root wood anatomy of black oak (Quercus velutina Lam) " (1986). Retrospective Theses and Dissertations. 8312. https://lib.dr.iastate.edu/rtd/8312 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17"x 23" black and white photographic print. Most photographs reproduce acceptably on positive microfilm or microfiche but lack the clarity on xerographic copies made ftt)m the microfilm. For an additional charge, 35mm slides of 6"x 9" black and white photographic prints are available for any photographs or illustrations that cannot be reproduced satisfactorily by xerography. 8703771 Stokke, Douglas D. STEM, BRANCH, AND ROOT WOOD ANATOMY OF BLACK OAK (QUERCUS VELUTINA LAM.) Iowa State University PH.D. 1986 University Microfilms Int6r n sti O n 3.1 300 N. zeeb Road, Ann Arbor, MI 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V . 1. Glossy photographs or pages ^ 2. Colored illustrations, paper or print 3. Photographs with dark background ^ 4. Illustrations are poor copy 5. Pages with black marks, not original copy 6. Print shows through as there is text on both sides of page 7. Indistinct, broken or small print on several pages 8. Print exceeds margin requirements 9. Tightly bound copy with print lost in spine 10. Computer printout pages with indistinct print 11. Page(s) lacking when material received, and not available from school or author. 12. Page(s) seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follows. 14. Curiing and wrinkled pages t/ 15. Dissertation contains pages with print at a slant, filmed as received /' 16. Other University Microfilms International Stem, branch, and root wood anatomy of black oak (Quercus velutina Lam.) by Douglas D. Stokke A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department: Forestry Major: Forestry (Biology-Wood Science) Approved: Signature was redacted for privacy. In Chatge of Major Vtork Signature was redacted for privacy. For the Major g^partj^fent Signature was redacted for privacy. For the Graduate College Iowa State University Ames, Iowa 1986 ii TABLE OF CONTENTS Page lOTRODDCTION 1 OBJECTIVES 3 LITERATURE REVIEW 4 Wood Anatomy of Quercus spp. 10 Stem wood 10 Branch and root wood 17 Specific Gravity and Biomass of Black Oak 26 Specific gravity 26 Biomass 27 Complete-Tree Utilization 29 MATERIALS AND METHODS 33 Harvesting and Sampling 33 Laboratory Procedures 37 Moisture content 37 Specific gravity 37 Diameter, average ring width, and bark percentage 39 Fiber length 40 Proportion of wood elements 41 Fiber transverse dimensions 43 Statistical analysis 44 Transmitted light microscopy 46 Scanning electron microscopy 47 X-ray microanalysis 48 Photographic plates 48 RESULTS AND DISCUSSION 50 Biomass and Root Morphology 50 Biomass 54 Root morphology 57 Percent Wood and Bark 61 iii Page. Wood Quality Variables 61 Specific gravity 65 Fiber dimensions 73 Proportion of wood elements 79 Discussion: Wood quality variables 82 Descriptive Anatomy 100 Stem wood 101 Branch wood 104 Root wood 107 SIMMARY AND CONCLUSIONS 115 LITERATURE CITED 117 ACKI-JOWLEDGEI-ENTS 132 APPENDIX A. SCIENTIFIC AND COMMON NAMES OF QUERCUS SPP. DISCUSSED IN THE TEXT 134a APPENDIX B. FIGURES 135 iv LIST OF TABLES Page Table 1. Proportions of wood elements in oak stem wood reported in the literature 15 Table 2. Fiber length, diameter, lumen diameter, wall thickness, and vessel element length of oak stem wood reported in the literature 18 Table 3. Proportions of wood elements in branches and roots of southern oaks 23 Table 4. Fiber lengths, diameters, lumen diameters, and wall thicknesses of oak branch, and root wood reported in the literature 25 Table 5. Measures of size of the three black oak trees 51 Table 6. Moisture content and biomass of three black oak trees with roots trimmed to a 3-foot radius, wood and bark 52 Table 7. Biomass of three black oak trees with roots trimmed to a 1-foot radius, wood and bark 53 Table 8. Comparison of component percentages of complete-tree biomass of the three black oak trees and oaks sampled by Manwiller and Koch (1981): roots trimmed to 3-foot radius, wood and bark 55 Table 9. Comparison of component percentages of complete-tree biomass of the three black oak trees and oaks sampled by Manwiller and Koch (1981); roots trimmed to 1-foot radius 56 Table 10. Percent wood and bark of tree components 62 Table II. Summary of wood quality variables 63 Table 12. Analysis of variance of specific gravity of wood and bark 67 Table 13. Analysis of variance of specific gravity of wood 68 V Par^e Table 14. Analysis of variance of specific gravity of bark 69 Table 15. Variance components for specific gravity of wood plus bark, wood, and bark 71 Table 16. Analysis of variance of fiber length 77 Table 17. Analysis of variance of fiber radial diameter 78 Table 18. Analysis of variance of fiber radial lumen diameter 80 Table 19. Analysis of variance of fiber double tangential wall thickness 81 Table 20. Analysis of variance of proportion of vessels 83 Table 21. Analysis of variance of proportion of fibers 84 Table 22. Analysis of variance of proportion of rays 85 Table 23. Analysis of variance of proportion of axial parenchyma and vasicentric tracheids 86 Table 24. Variance components for fiber length 91 Table 25. Variance components for fiber transverse dimensions 92 Table 26. Variance components for proportion of wood elements 93 Table 27. Vessel and ray percentages in root, stem, and branch of ring- and diffuse-porous hardwoods as reported by Fegel (1941) 97 vi LIST OF FIGURES Pace Figure 1. U.S. distribution of black oak (Quercus velutina Lam.) 138 Figures 2-3. Stem wood of black oak 140 Figure 4. Anatomical features of tangential section 142 Figure 5. Composite view of the three planes of section: Transverse, tangential, and radial 142 Figure 6. Black oak tree at Rhodes Farm 144 Figure 7. Method used to measure percent wood and bark and diameter of sample discs from projected photographs 146 Figure 8. Method of measuring fiber lengths with the Zeiss photomicroscope 148 Figures 9-10. Stump-root system of tree number one 150 Figures 11-12. Stump-root system of tree number two 152 Figures 13-14. Stump-root system of tree number three 154 Figures 15-17. Macerations 156 Figures 18-20. Visual comparison of fibers, axial parenchyma, and uniseriate rays 158 Figures 21-23. Typical structure of stem wood of black oak 160 Figures 24-26. Typical structure of branch wood of black oak 162 Figures 27-28. Typical cross-sectional structure of root wood of black oak 164 Figures 29-30. Typical longitudinal section structure of root wood of black oak 166 Figures 31-35. Vessel elements in black oak stem wood 168 Figures 36-37. Tyloses in ew vessel elements of stem wood 170 Figure 38. Tyloses in earlywood vessel of stem wood 172 vii Paae Figure 39. Stem latewood 174 Figures 40-41. Stem wood fibers and axial parenchyiaa 176 Figures 42-43. Pitting 17b Figures 44-45. Gelatinous fibers in stem wood 180 Figure 46. Axial parenchyma in stem wood 182 Figures 47-48. Rays in stem wood 184 Figures 49-51. Ray parenchyma in stem wood 136 Figures 52-54. Pith of stem wood 188 Figures 55-58. Upper-crown and branch wood vessel elements 190 Figure 59. Earlywood vessel element in branch wood 192 Figures 60-62. Perforations in branch wood vessels 194 Figure 63. A simple perforation in an earlywood vessel of branch wood 196 Figures 64-65. Other features of branch wood vessels 198 Figures 66-67. Fibers in branch wood 200 Figures 68-70. Pitting in branch wood fibers 202 Figures 71-73. Gelatinous fibers in branch wood 204 Figures 74-76. Axial strand parenchyma in branch wood 206 Figures 77-79. Crystals in branch wood 208 Figures 80-82. X-ray microanalysis of branch crystals 210 Figures 83-85.
Recommended publications
  • Department of Planning and Zoning
    Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only
    [Show full text]
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • Native Trees of Georgia
    1 NATIVE TREES OF GEORGIA By G. Norman Bishop Professor of Forestry George Foster Peabody School of Forestry University of Georgia Currently Named Daniel B. Warnell School of Forest Resources University of Georgia GEORGIA FORESTRY COMMISSION Eleventh Printing - 2001 Revised Edition 2 FOREWARD This manual has been prepared in an effort to give to those interested in the trees of Georgia a means by which they may gain a more intimate knowledge of the tree species. Of about 250 species native to the state, only 92 are described here. These were chosen for their commercial importance, distribution over the state or because of some unusual characteristic. Since the manual is intended primarily for the use of the layman, technical terms have been omitted wherever possible; however, the scientific names of the trees and the families to which they belong, have been included. It might be explained that the species are grouped by families, the name of each occurring at the top of the page over the name of the first member of that family. Also, there is included in the text, a subdivision entitled KEY CHARACTERISTICS, the purpose of which is to give the reader, all in one group, the most outstanding features whereby he may more easily recognize the tree. ACKNOWLEDGEMENTS The author wishes to express his appreciation to the Houghton Mifflin Company, publishers of Sargent’s Manual of the Trees of North America, for permission to use the cuts of all trees appearing in this manual; to B. R. Stogsdill for assistance in arranging the material; to W.
    [Show full text]
  • Oaks (Quercus Spp.): a Brief History
    Publication WSFNR-20-25A April 2020 Oaks (Quercus spp.): A Brief History Dr. Kim D. Coder, Professor of Tree Biology & Health Care / University Hill Fellow University of Georgia Warnell School of Forestry & Natural Resources Quercus (oak) is the largest tree genus in temperate and sub-tropical areas of the Northern Hemisphere with an extensive distribution. (Denk et.al. 2010) Oaks are the most dominant trees of North America both in species number and biomass. (Hipp et.al. 2018) The three North America oak groups (white, red / black, and golden-cup) represent roughly 60% (~255) of the ~435 species within the Quercus genus worldwide. (Hipp et.al. 2018; McVay et.al. 2017a) Oak group development over time helped determine current species, and can suggest relationships which foster hybridization. The red / black and white oaks developed during a warm phase in global climate at high latitudes in what today is the boreal forest zone. From this northern location, both oak groups spread together southward across the continent splitting into a large eastern United States pathway, and much smaller western and far western paths. Both species groups spread into the eastern United States, then southward, and continued into Mexico and Central America as far as Columbia. (Hipp et.al. 2018) Today, Mexico is considered the world center of oak diversity. (Hipp et.al. 2018) Figure 1 shows genus, sub-genus and sections of Quercus (oak). History of Oak Species Groups Oaks developed under much different climates and environments than today. By examining how oaks developed and diversified into small, closely related groups, the native set of Georgia oak species can be better appreciated and understood in how they are related, share gene sets, or hybridize.
    [Show full text]
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Native Nebraska Woody Plants
    THE NEBRASKA STATEWIDE ARBORETUM PRESENTS NATIVE NEBRASKA WOODY PLANTS Trees (Genus/Species – Common Name) 62. Atriplex canescens - four-wing saltbrush 1. Acer glabrum - Rocky Mountain maple 63. Atriplex nuttallii - moundscale 2. Acer negundo - boxelder maple 64. Ceanothus americanus - New Jersey tea 3. Acer saccharinum - silver maple 65. Ceanothus herbaceous - inland ceanothus 4. Aesculus glabra - Ohio buckeye 66. Cephalanthus occidentalis - buttonbush 5. Asimina triloba - pawpaw 67. Cercocarpus montanus - mountain mahogany 6. Betula occidentalis - water birch 68. Chrysothamnus nauseosus - rabbitbrush 7. Betula papyrifera - paper birch 69. Chrysothamnus parryi - parry rabbitbrush 8. Carya cordiformis - bitternut hickory 70. Cornus amomum - silky (pale) dogwood 9. Carya ovata - shagbark hickory 71. Cornus drummondii - roughleaf dogwood 10. Celtis occidentalis - hackberry 72. Cornus racemosa - gray dogwood 11. Cercis canadensis - eastern redbud 73. Cornus sericea - red-stem (redosier) dogwood 12. Crataegus mollis - downy hawthorn 74. Corylus americana - American hazelnut 13. Crataegus succulenta - succulent hawthorn 75. Euonymus atropurpureus - eastern wahoo 14. Fraxinus americana - white ash 76. Juniperus communis - common juniper 15. Fraxinus pennsylvanica - green ash 77. Juniperus horizontalis - creeping juniper 16. Gleditsia triacanthos - honeylocust 78. Mahonia repens - creeping mahonia 17. Gymnocladus dioicus - Kentucky coffeetree 79. Physocarpus opulifolius - ninebark 18. Juglans nigra - black walnut 80. Prunus besseyi - western sandcherry 19. Juniperus scopulorum - Rocky Mountain juniper 81. Rhamnus lanceolata - lanceleaf buckthorn 20. Juniperus virginiana - eastern redcedar 82. Rhus aromatica - fragrant sumac 21. Malus ioensis - wild crabapple 83. Rhus copallina - flameleaf (shining) sumac 22. Morus rubra - red mulberry 84. Rhus glabra - smooth sumac 23. Ostrya virginiana - hophornbeam (ironwood) 85. Rhus trilobata - skunkbush sumac 24. Pinus flexilis - limber pine 86. Ribes americanum - wild black currant 25.
    [Show full text]
  • Eastern Gray Squirrel Survival in a Seasonally-Flooded Hunted Bottomland Forest Ecosystem
    Squirrel Survival in a Flooded Ecosystem. Wilson et al. Eastern Gray Squirrel Survival in a Seasonally-Flooded Hunted Bottomland Forest Ecosystem Sarah B. Wilson, School of Forestry and Wildlife Sciences, Auburn University, 602 Duncan Dr. Auburn University, AL 36849 Stephen S. Ditchkoff, School of Forestry and Wildlife Sciences, Auburn University, 602 Duncan Dr. Auburn University, AL 36849 Robert A. Gitzen, School of Forestry and Wildlife Sciences, Auburn University, 602 Duncan Dr. Auburn University, AL 36849 Todd D. Steury, School of Forestry and Wildlife Sciences, Auburn University, 602 Duncan Dr. Auburn University, AL 36849 Abstract: Though the eastern gray squirrel (Sciurus carolinensis) is an important game species throughout its range in North America, little is known about environmental factors that may affect survival. We investigated survival and predation of a hunted population of eastern gray squirrels on Lown- des Wildlife Management Area in central Alabama from July 2015–April 2017. This area experiences annual flooding conditions from November through the following September. Our Kaplan-Meier survival estimate at 365 days for all squirrels was 0.25 (0.14–0.44, 95% CL) which is within the range for previously studied eastern gray squirrel populations (0.20–0.58). There was no difference between male (0.13; 0.05–0.36, 95% CL) and female survival (0.37; 0.18–0.75, 95% CL, P = 0.16). Survival was greatest in summer (1.00) and fall (0.65; 0.29–1.0, 95% CL) and lowest during winter (0.23; 0.11–0.50, 95% CL). We found squirrels were more likely to die during the flooded winter season and mortality risk increased as flood extent through- out the study area increased.
    [Show full text]
  • Quercus Coccinea.Indd
    Quercus coccinea (Scarlet Oak) Beech Family (Fagaceae) Introduction: Scarlet oak is a member of the red oak group with lobed leaves and is valued for its ornamental attributes as well as its fi ne wood. It is considered an excellent alternative to the overplanted pin oak because it is beautiful throughout the year and tolerates alkaline soil. Culture: Scarlet oak makes an excellent lawn or park tree. It thrives in full sun and well-drained, acidic soil. This tree is less susceptible to chlorosis problems than pin oak. Potential problems on oaks in general include obscure scale, two-lined chestnut borer, bacterial leaf scorch, oak horn gall and gypsy moth. In addition, as little as 1 inch of fi ll soil can kill an oak. Botanical Characteristics: Additional information: Scarlet oak is appropriately named for its Native habit: Maine south to Florida, west to extraordinary leaf color in early spring and in autumn. Minnesota and Missouri. Its delicate branching pattern combined with nearly black bark and persistent leaves make this an exceptional tree Growth habit: Scarlet oak has a rounded, open even in winter. form at maturity. Although scarlet oak has a predominant tap root, it does have some spreading lateral roots, making the tree Tree size: This oak can attain a height of 70 to easier to transplant than some oaks. It is best to transplant 75 feet and a width of 40 to 50 feet. It can reach a the tree in the fall. The lateral roots may appear above the height of 100 feet in the wild.
    [Show full text]
  • Species List For: Engelmann Woods NA 174 Species
    Species List for: Engelmann Woods NA 174 Species Franklin County Date Participants Location NA List NA Nomination List List made by Maupin and Kurz, 9/9/80, and 4/21/93 WGNSS Lists Webster Groves Nature Study Society Fieldtrip Participants WGNSS Vascular Plant List maintained by Steve Turner Species Name (Synonym) Common Name Family COFC COFW Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer negundo var. undetermined box elder Sapindaceae 1 0 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Actaea pachypoda white baneberry Ranunculaceae 8 5 Adiantum pedatum var. pedatum northern maidenhair fern Pteridaceae Fern/Ally 6 1 Agastache nepetoides yellow giant hyssop Lamiaceae 4 3 Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Ambrosia artemisiifolia common ragweed Asteraceae/Heliantheae 0 3 Ambrosia trifida giant ragweed Asteraceae/Heliantheae 0 -1 Amelanchier arborea var. arborea downy serviceberry Rosaceae 6 3 Antennaria parlinii var. undetermined (A. plantaginifolia) plainleaf pussytoes Asteraceae/Gnaphalieae 5 5 Aplectrum hyemale putty root Orchidaceae 8 1 Aquilegia canadensis columbine Ranunculaceae 6 1 Arisaema triphyllum ssp. triphyllum (A. atrorubens) Jack-in-the-pulpit Araceae 6 -2 Aristolochia serpentaria Virginia snakeroot Aristolochiaceae 6 5 Arnoglossum atriplicifolium (Cacalia atriplicifolia) pale Indian plantain Asteraceae/Senecioneae 4 5 Arnoglossum reniforme (Cacalia muhlenbergii) great Indian plantain Asteraceae/Senecioneae 8 5 Asarum canadense wild ginger Aristolochiaceae 6 5 Asclepias quadrifolia whorled milkweed Asclepiadaceae 6 5 Asimina triloba pawpaw Annonaceae 5 0 Asplenium rhizophyllum (Camptosorus) walking fern Aspleniaceae Fern/Ally 7 5 Asplenium trichomanes ssp. trichomanes maidenhair spleenwort Aspleniaceae Fern/Ally 9 5 Srank: SU Grank: G? * Barbarea vulgaris yellow rocket Brassicaceae 0 0 Blephilia hirsuta var.
    [Show full text]
  • Black Oak Quercus Velutina Tree Acorns ILLINOIS RANGE
    black oak Quercus velutina Kingdom: Plantae FEATURES Division: Magnoliphyta The deciduous black oak tree may grow to a height Class: Magnoliopsida of 80 feet and a diameter of about three and one- Order: Fagales half feet. The trunk is straight. The bark is black and deeply furrowed, with a yellow or orange inner bark. Family: Fagaceae The leaves are arranged alternately on the stem. The ILLINOIS STATUS simple leaf blade has seven to nine shallow lobes, each lobe bristle-tipped. The leaf is dark green, shiny common, native and smooth on the upper surface. It is hairy all over or hairy only along the veins on the lower surface. Each leaf may be 10 inches long and eight inches wide with a five-inch leafstalk. Male and female flowers are separate but located on the same tree. The tiny flower has no petals. Male (staminate) flowers are arranged in drooping clusters, while female (pistillate) flowers are in groups of one to four. The fruit is an acorn. Acorns may be single or in groups of two. The acorn is red-brown, ovoid or ellipsoid and not more than one-half enclosed by the cup. The cup appears to have a ragged edge. BEHAVIORS The black oak may be found statewide in Illinois. This tree grows in upland woods. It flowers in April tree and May when the leaves begin to unfold. The hard, red-brown wood is used in construction, for fuel and ILLINOIS RANGE for making fence posts.. acorns © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources.
    [Show full text]
  • Introduction to the Southern Blue Ridge Ecoregional Conservation Plan
    SOUTHERN BLUE RIDGE ECOREGIONAL CONSERVATION PLAN Summary and Implementation Document March 2000 THE NATURE CONSERVANCY and the SOUTHERN APPALACHIAN FOREST COALITION Southern Blue Ridge Ecoregional Conservation Plan Summary and Implementation Document Citation: The Nature Conservancy and Southern Appalachian Forest Coalition. 2000. Southern Blue Ridge Ecoregional Conservation Plan: Summary and Implementation Document. The Nature Conservancy: Durham, North Carolina. This document was produced in partnership by the following three conservation organizations: The Nature Conservancy is a nonprofit conservation organization with the mission to preserve plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Southern Appalachian Forest Coalition is a nonprofit organization that works to preserve, protect, and pass on the irreplaceable heritage of the region’s National Forests and mountain landscapes. The Association for Biodiversity Information is an organization dedicated to providing information for protecting the diversity of life on Earth. ABI is an independent nonprofit organization created in collaboration with the Network of Natural Heritage Programs and Conservation Data Centers and The Nature Conservancy, and is a leading source of reliable information on species and ecosystems for use in conservation and land use planning. Photocredits: Robert D. Sutter, The Nature Conservancy EXECUTIVE SUMMARY This first iteration of an ecoregional plan for the Southern Blue Ridge is a compendium of hypotheses on how to conserve species nearest extinction, rare and common natural communities and the rich and diverse biodiversity in the ecoregion. The plan identifies a portfolio of sites that is a vision for conservation action, enabling practitioners to set priorities among sites and develop site-specific and multi-site conservation strategies.
    [Show full text]
  • Vascular Plants of Williamson County Quercus Nigra − BLACK OAK [Fagaceae]
    Vascular Plants of Williamson County Quercus nigra − BLACK OAK [Fagaceae] Quercus nigra L., BLACK OAK. Tree, evergreen, 1-trunked, in range to 12 m tall; monoecious; shoots with only cauline leaves, foliage ± glossy green and essentially glabrous, clustered near tips on twigs of short lateral branches; buds angular, on scales reddish hairy above midpoint. Stems: initially new growth with conspicuous projected ridges aging cylindric, young twigs with semicircular leaf scars and numerous small lenticels; on new growth having 5 vertical files of bud scale scars with to 10 scars in each file; bark tight. Leaves: helically alternate, 3-lobed above midpoint with a pair of rounded to obtuse lateral lobes (elongate rhombate), on twigs first leaves of a short lateral branchlet often unlobed, petiolate, with stipules; stipules 2, attached at node, linear-narrowly triangular to linear or narrowly oblong-linear, (2−)3.5−6 mm long, light tannish brown aging papery, flat, thickened at base, with principal veins raised on lower surface, pubescent with crooked arms < 0.5 mm long; petiole hemicylindric, to 5 mm long, ± pubescent with short stellate hairs; blade obovate in outline, (15−)50−95 × (9−)13−45 mm, tapered to long-tapered at base, lateral lobes widely spreading (crosslike), often somewhat wavy above midblade and lacking teeth or projections on margins, pinnately veined with conspicuous, elaborate vein network raised on upper surface and some principal veins somewhat raised on lower surface, on emerging leaves with short hairs along margins and lower midrib and appressed, purple-red fine hairs on lower surface (abscising) and white- tomentose tufts in axils of lateral veins, mature blade essentially without nonglandular hairs, upper surface with green tissue patches appearing slightly sunken, margin narrowly colorless, lower surface with inconspicuous, minute glandular hairs along side of midrib.
    [Show full text]