Tectonic Evolution of the West Scotia Sea Graeme Eagles,1 Roy A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geodetic Determination of Relative Plate Motion and Crustal Deformation Across the Scotia-South America Plate Boundary in Eastern Tierra Del Fuego
Article Geochemistry 3 Volume 4, Number 9 Geophysics 19 September 2003 1070, doi:10.1029/2002GC000446 GeosystemsG G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Geodetic determination of relative plate motion and crustal deformation across the Scotia-South America plate boundary in eastern Tierra del Fuego R. Smalley, Jr. Center for Earthquake Research and Information, University of Memphis, 3876 Central Avenue, Ste. 1, Memphis, Tennessee 38152, USA ([email protected]) E. Kendrick and M. G. Bevis School of Ocean, Earth and Space Technology, University of Hawaii, 1680 East West Road, Honolulu, Hawaii 96822, USA ([email protected]; [email protected]) I. W. D. Dalziel and F. Taylor Institute of Geophysics, Jackson School of Geosciences, University of Texas at Austin, 4412 Spicewood Springs Road, Building 600, Austin, Texas 78759, USA ([email protected]; [email protected]) E. Laurı´a Instituto Geogra´fico Militar de Argentina, Cabildo 381, 1426 Buenos Aires, Argentina ([email protected]) R. Barriga Instituto Geogra´fico Militar de Chile, Nueva Santa Isabel 1640, Santiago, Chile ([email protected]) G. Casassa Centro de Estudios Cientı´ficos, Avda. Arturo Prat 514, Casilla 1469, Valdivia, Chile ([email protected]) E. Olivero and E. Piana Centro Austral de Investigaciones Cientı´ficas, Av. Malvinas Argentinas s/n, Caja de Correo 92, 9410 Ushuaia, Tierra del Fuego, Argentina ([email protected]; [email protected]) [1] Global Positioning System (GPS) measurements provide the first direct measurement of plate motion and crustal deformation across the Scotia-South America transform plate boundary in Tierra del Fuego. -
Chapter 4 Tectonic Reconstructions of the Southernmost Andes and the Scotia Sea During the Opening of the Drake Passage
123 Chapter 4 Tectonic reconstructions of the Southernmost Andes and the Scotia Sea during the opening of the Drake Passage Graeme Eagles Alfred Wegener Institute, Helmholtz Centre for Marine and Polar Research, Bre- merhaven, Germany e-mail: [email protected] Abstract Study of the tectonic development of the Scotia Sea region started with basic lithological and structural studies of outcrop geology in Tierra del Fuego and the Antarctic Peninsula. To 19th and early 20th cen- tury geologists, the results of these studies suggested the presence of a submerged orocline running around the margins of the Scotia Sea. Subse- quent increases in detailed knowledge about the fragmentary outcrop ge- ology from islands distributed around the margins of the Scotia Sea, and later their interpretation in light of the plate tectonic paradigm, led to large modifications in the hypothesis such that by the present day the concept of oroclinal bending in the region persists only in vestigial form. Of the early comparative lithostratigraphic work in the region, only the likenesses be- tween Jurassic—Cretaceous basin floor and fill sequences in South Geor- gia and Tierra del Fuego are regarded as strong enough to be useful in plate kinematic reconstruction by permitting the interpretation of those re- gions’ contiguity in mid-Mesozoic times. Marine and satellite geophysical data sets reveal features of the remaining, submerged, 98% of the Scotia 124 Sea region between the outcrops. These data enable a more detailed and quantitative approach to the region’s plate kinematics. In contrast to long- used interpretations of the outcrop geology, these data do not prescribe the proximity of South Georgia to Tierra del Fuego in any past period. -
Dynamic Subsidence of Eastern Australia During the Cretaceous
Gondwana Research 19 (2011) 372–383 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Dynamic subsidence of Eastern Australia during the Cretaceous Kara J. Matthews a,⁎, Alina J. Hale a, Michael Gurnis b, R. Dietmar Müller a, Lydia DiCaprio a,c a EarthByte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia b Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA c Now at: ExxonMobil Exploration Company, Houston, TX, USA article info abstract Article history: During the Early Cretaceous Australia's eastward passage over sinking subducted slabs induced widespread Received 16 February 2010 dynamic subsidence and formation of a large epeiric sea in the eastern interior. Despite evidence for Received in revised form 25 June 2010 convergence between Australia and the paleo-Pacific, the subduction zone location has been poorly Accepted 28 June 2010 constrained. Using coupled plate tectonic–mantle convection models, we test two end-member scenarios, Available online 13 July 2010 one with subduction directly east of Australia's reconstructed continental margin, and a second with subduction translated ~1000 km east, implying the existence of a back-arc basin. Our models incorporate a Keywords: Geodynamic modelling rheological model for the mantle and lithosphere, plate motions since 140 Ma and evolving plate boundaries. Subduction While mantle rheology affects the magnitude of surface vertical motions, timing of uplift and subsidence Australia depends on plate boundary geometries and kinematics. Computations with a proximal subduction zone Cretaceous result in accelerated basin subsidence occurring 20 Myr too early compared with tectonic subsidence Tectonic subsidence calculated from well data. -
West Antarctica: Tectonics and Paleogeography
Chapter 2 West Antarctica: Tectonics and Paleogeography The origin of West Antarctica (WANT) can be traced back to the Terra Australis orogenesis that began between 520 Ma and 510 Ma—shortly after the terminal suturing of Gondwana (Boger 2011). The onset of this event was responsible for the termination of passive margin sedimentation along much of the Pacific margin of Gondwana and marks the beginning of widespread and broadly coeval deforma- tion and arc-type plutonism. It also began a long-lived process of accretion that added much of the crust that defines eastern Australia, West Antarctica (domain 5 of Boger 2011, Fig. 2.1), and western South America (Cawood 2005, 2009). Post-Gondwana accretionary growth—the Terra Australis and Gondwanide Orogenies—The suturing of the West Gondwana and Australo–Antarctic plates along the Kuunga Orogen brought to an end the long-lived process of convergence between the pre-collision components of Gondwana. The result was a reconfigura- tion of the early to middle Cambrian plate system and the consequent transfer of ocean floor consumption from between the pre-Gondwana cratons to the outboard Pacific margin of newly formed Gondwana supercontinent (Cawood2005 ). This led to the establishment of the accretionary Terra Austrais Orogen (Cawood 2005), a general name given to the orogenic belt that stretched continuously from north- ern South America to northern Australia and which began in the early to middle Cambrian and lasted until the late Carboniferous. In Antarctica Terra Australis (Ross) orogenesis also deformed and variably metamorphosed the pre-Gondwana passive margin (Fig. 2.2). The Gondwana supercontinent underwent a sequential fragmentation over approximately 165 Ma. -
The Timing and Duration of the Karoo Igneous Event, Southern Gondwana
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. B8, PAGES 18,127-18,138,AUGUST 10, 1997 The timing and duration of the Karoo igneousevent, southern Gondwana R.A. Duncan,• P.R. Hooper,: J. Rehacek,2J.S. Marsh, 3 andA.R. Duncan4 Abstract.A volcanicevent of immensescale occurred within a relativelyshort period in early Jurassictime overlarge regions of the contiguousGondwana supercontinent. In southernAfrica, associated remnants of thick volcanic successionsof lava flows and extensive dike and sill complexesof similarcomposition have been grouped together as the Karoo Igneous Province. Correlativevolcanic and plutonic rocks occur in Antarcticaand Australia as the FerrarProvince. Thirty-twonew •OAr-•Ar incrementalt•eatmg experiments on feldsparsand whole rocks from Namibia,South Africa andEast Antarctica produce highly resolved ages with a vastmajority at 183+_ 1 Ma anda totalrange of 184 to 179 Ma. Theseare indistinguishablefrom recent,high- resolution40Ar-39Ar and U-Pb agedeterminations reported from the Antarctic portion of the province.Initial Karoo volcanism(Lesotho-type compositions) occurred across the entireSouth African craton.The ubiquitousdistribution of a plexusof generallynonoriented feeder dikes and sillsintruding Precambrian crystalline rocks and Phanerozoic sediments indicates that these magmaspenetrated the cratonover a broadregion. Lithosphere thinning of the continentfollowed the main pulseof igneousactivity, with volcanismfocused in the Lebombo-Nuanetsiregion, near the eventualsplit between Africa andAntarctica. Seafloor spreading and dispersion of eastand west Gondwanafollowed some 10-20 m.y. afterward.The volumeof the combinedKaroo-Ferrar province(•2.5 x 106km3) makes it oneof thelargest continental flood basalt events. The timing of thisevent correlates with a moderatemass extinction (Toarcian-Aalenian), affecting largely marine invertebrates. This extinction event was not as severe as those recorded at the Permian- Triassicor Cretaceous-Tertiaryboundaries associated with the Siberianand Deccan flood basalts events,respectively. -
The Way the Earth Works: Plate Tectonics
CHAPTER 2 The Way the Earth Works: Plate Tectonics Marshak_ch02_034-069hr.indd 34 9/18/12 2:58 PM Chapter Objectives By the end of this chapter you should know . > Wegener's evidence for continental drift. > how study of paleomagnetism proves that continents move. > how sea-floor spreading works, and how geologists can prove that it takes place. > that the Earth’s lithosphere is divided into about 20 plates that move relative to one another. > the three kinds of plate boundaries and the basis for recognizing them. > how fast plates move, and how we can measure the rate of movement. We are like a judge confronted by a defendant who declines to answer, and we must determine the truth from the circumstantial evidence. —Alfred Wegener (German scientist, 1880–1930; on the challenge of studying the Earth) 2.1 Introduction In September 1930, fifteen explorers led by a German meteo- rologist, Alfred Wegener, set out across the endless snowfields of Greenland to resupply two weather observers stranded at a remote camp. The observers had been planning to spend the long polar night recording wind speeds and temperatures on Greenland’s polar plateau. At the time, Wegener was well known, not only to researchers studying climate but also to geologists. Some fifteen years earlier, he had published a small book, The Origin of the Con- tinents and Oceans, in which he had dared to challenge geologists’ long-held assumption that the continents had remained fixed in position through all of Earth history. Wegener thought, instead, that the continents once fit together like pieces of a giant jigsaw puzzle, to make one vast supercontinent. -
3D Model of a Sector of the South Scotia Ridge (Antarctica)
ARTICLE IN PRESS Computers & Geosciences 35 (2009) 83–91 www.elsevier.com/locate/cageo 3D model of a sector of the South Scotia Ridge (Antarctica) Sara SusiniÃ, Mauro De Donatis LINEE—Laboratory of Information-technology for Earth and Environmental Sciences, Universita` degli Studi di Urbino ‘‘Carlo Bo’’, Campus Scientifico, Loc. Crocicchia, 61029 Urbino, Italy Received 26 September 2007 Abstract A three-dimensional geological model was built to show and analyse a northern sector of the Scotia–Antarctica transform plate boundary. The South Scotia Ridge is a 400 km long submerged continental structural high representing the eastern continuation of the Antarctic Peninsula. South Scotia Ridge runs approximately in the E–W direction, separating Scotia Sea Plate from Antarctica Plates. Structures, due to the transform plate margin, are considered to be concentrated inside this continental high. The three-dimensional model, built using seismic profiles and a digital elevation model, is a powerful tool to visualize and help to understand deep geological structures. Maps and profiles, on the contrary, only give a two-dimensional view, and do not show the structure of the continental–oceanic boundary at depth. The model shows that the deformation style of the continental–oceanic boundary, and of the oceanic crust nearby, is related to the left-lateral movement of the main transform fault system. Furthermore, it seems to be connected to the orientation and geometry of the South Scotia Ridge with respect to the homogeneous deformation regime, which affects the entire Scotia Plate. Moving from west to east, the NW-dipping main fault surface becomes almost vertical with a sinistral strike–slip movement in the central sector. -
Similarities of the Scotia and Caribbean Plates: Implications for a Common Plate Tectonic History?!
EGU21-16364 https://doi.org/10.5194/egusphere-egu21-16364 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Similarities of the Scotia and Caribbean Plates: Implications for a common plate tectonic history?! Christian Burmeister1, Paul Wintersteller2, and Martin Meschede1 1Institute for Geography and Geology, University of Greifswald, Greifswald, Germany 2MARUM/Geoscience department, University of Bremen, Bremen, Germany The active volcanic arcs of the Scotia Plate and Caribbean Plate are two prominent features along the otherwise passive margins of the Atlantic Ocean, where subduction processes of oceanic crust is verifiable. Both arcs have been, and continue to be, important oceanic gateways during their formation. Trapped between the large continental plates of North- and South America, as well as Antarctica, the two significantly smaller oceanic plates show striking similarities in size, shape, plate margins and morphology, although formed at different times and locations during Earth’s history. Structural analyses of the seafloor are based on bathymetric datasets by multibeam- echosounders (MBES), including data of the Global Multi Resolution Topography (GMRT), Alfred Wegener Institute (AWI), MARUM/Uni-Bremen, Geomar/Uni-Kiel, Uni-Hamburg and the British Antarctic Survey (BAS). Bathymetric data were processed to create maps of ocean floor morphology with resolution of 150-250 meters in accuracy. The Benthic Terrain Modeler 3.0 (BTM), amongst other GIS based tools, was utilized to analyse the geomorphometry of both plates. Furthermore, we used the bathymetric datasets for three-dimensional modelling of the seafloor to examine large-scale-structures in more detail. The modelling of ship-based bathymetric datasets, in combination with the GEBCO 2014 global 30 arc-second interval grid, included in the GMRT bathymetric database, delivered detailed bathymetric maps of the study area. -
Mid-Cretaceous Tectonic Evolution of the Tongareva Triple Junction in the Southwestern Pacific Basin
Mid-Cretaceous tectonic evolution of the Tongareva triple junction in the southwestern Paci®c Basin Roger L. Larson Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882, Robert A. Pockalny USA Richard F. Viso Elisabetta Erba Dipartimento di Scienze della Terra, UniversitaÁ di Milano, 20133 Milano, Italy Lewis J. Abrams Center for Marine Science, University of North Carolina, Wilmington, North Carolina 28409, USA Bruce P. Luyendyk Department of Geological Sciences, University of California, Santa Barbara, California 93106, USA Joann M. Stock Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California Robert W. Clayton 91125, USA ABSTRACT The trace of the ridge-ridge-ridge triple junction that con- nected the Paci®c, Farallon, and Phoenix plates during mid-Creta- ceous time originates at the northeast corner of the Manihiki Pla- teau near the Tongareva atoll, for which the structure is named. The triple junction trace extends .3250 km south-southeast, to and beyond a magnetic anomaly 34 bight. It is identi®ed by the inter- section of nearly orthogonal abyssal hill fabrics, which mark the former intersections of the Paci®c-Phoenix and Paci®c-Farallon Ridges. A distinct trough is commonly present at the intersection. A volcanic episode from 125 to 120 Ma created the Manihiki Pla- teau with at least twice its present volume, and displaced the triple junction southeast from the Nova-Canton Trough to the newly formed Manihiki Plateau. Almost simultaneously, the plateau was rifted by the new triple junction system, and large fragments of the plateau were rafted away to the south and east. -
The Age and Origin of the Central Scotia Sea
Geophysical Journal International Geophys. J. Int. (2010) 183, 587–600 doi: 10.1111/j.1365-246X.2010.04781.x The age and origin of the central Scotia Sea Graeme Eagles Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK. E-mail: [email protected] Accepted 2010 August 18. Received 2010 July 6; in original form 2010 May 7 SUMMARY Opening of the Drake Passage gateway between the Pacific and Atlantic oceans has been linked in various ways to Cenozoic climate changes. From the oceanic floor of Drake Passage, the largest of the remaining uncertainties in understanding this opening is in the timing and process of the opening of the central Scotia Sea. All but one of the available constraints on the age of the central Scotia Sea is diagnostic of, or consistent with, a Mesozoic age. Comparison of tectonic and magnetic features on the seafloor with plate kinematic models shows that it is likely to have accreted to a mid-ocean ridge between the South American and Antarctic plates following their separation in Jurassic times. Subsequent regional shallowing may be related GJI Geodynamics and tectonics to subduction-related processes that preceded backarc extension in the East Scotia Sea. The presence of a fragment of Jurassic–Cretaceous ocean floor in the gateway implies that deep water connections through the Scotia Sea basin complex may have been possible since Eocene times when the continental tips of South America and the Antarctic Peninsula first passed each other. Key words: Tectonics and climate interactions; Kinematics of crustal and mantle deforma- tion; Antarctica; South America. -
Nazca Plate Region) GRENADA 80°W 60°W 40°W 11900900 a A' 1 1 1 2 0 200 400 600 800 1,000 1,200 BARBADOS Compiled by Gavin P
U.S. DEPARTMENT OF THE INTERIOR OPEN-FILE REPORT 2015–1031-E U.S. GEOLOGICAL SURVEY This report supplements Open-File Report 2010–1083-E 80°W 70°W 60°W 50°W PRE-INSTRUMENTAL SEISMICITY 1500 – 1899 SAINT LUCIA Seismicity of the Earth 1900–2013 BARBADOS Deaths, tsunami, MMI VIII+, or M 8 SAINT VINCENT AND THE GRENADINES HONDURAS M 8.5 labeled with year ARUBA CURAÇAO Seismotectonics of South America (Nazca Plate Region) GRENADA 80°W 60°W 40°W 11900900 A A' 1 1 1 2 0 200 400 600 800 1,000 1,200 BARBADOS Compiled by Gavin P. Hayes, Gregory M. Smoczyk, Harley M. Benz, Antonio Villaseñor, TRINIDAD AND TOBAGO CURAÇAO NICARAGUA Barranquilla Maracaibo Caracas HONDURAS GRENADA 3 Valencia Maracay Demerara Plain and Kevin P. Furlong Cartagena TRENCH AXIS Managua Barquisimeto NICARAGUA 19921992 0 2014 11950950 Clark Basin 10° COSTA RICA PANAMA 1U.S. Geological Survey VENEZUELA 2 GUYANA Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas, (CSIC), Barcelona, Spain COSTA RICA Panama FRENCH 3Department of Geosciences, Pennsylvania State University, University Park, Pa., USA San Jose Cucuta VENEZUELA SURINAME GUIANA 10°N 11983983 PANAMA –200 COLOMBIA Bucaramanga TECTONIC SUMMARY 19341934 GUYANA Equator The South American arc extends over 7,000 kilometers (km), from the Chilean margin triple junction offshore of southern Chile, to Medellin Equator ECUADOR its intersection with the Panama fracture zone, offshore of the southern coast of Panama in Central America. It marks the plate –400 Manizales FRENCH boundary between the subducting Nazca plate and the South America plate, where the oceanic crust and lithosphere of the Nazca Bogota SURINAME PROFILE A plate begin their descent into the mantle beneath South America. -
Late Cretaceous to Present-Day Opening of the Southwest Pacific Constrained by Numerical Models and Seismic Tomography
University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers: part A Faculty of Science, Medicine and Health 1-1-2012 Late Cretaceous to present-day opening of the southwest Pacific constrained by numerical models and seismic tomography Kara J. Matthews University of Sydney Maria Seton University of Sydney Nicolas Flament University of Sydney, [email protected] R. Dietmar Muller University of Sydney Follow this and additional works at: https://ro.uow.edu.au/smhpapers Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons Recommended Citation Matthews, Kara J.; Seton, Maria; Flament, Nicolas; and Muller, R. Dietmar, "Late Cretaceous to present-day opening of the southwest Pacific constrained by numerical models and seismic tomography" (2012). Faculty of Science, Medicine and Health - Papers: part A. 4387. https://ro.uow.edu.au/smhpapers/4387 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Late Cretaceous to present-day opening of the southwest Pacific constrained by numerical models and seismic tomography Abstract The southwest Pacific is a frontier region for petroleum exploration. A complex series of subduction and back-arc basin forming episodes characterises the late Cretaceous to present day evolution of the region. Controversial aspects of the regional tectonic history include the presence or lack of subduction between 83 and 43 Ma, the polarity of subduction, the timing of back-arc basin formation, and whether or not Pacific plate motion can be tied ot the motion of Australia via spreading in the Tasman Sea during the late Cretaceous-early Cenozoic.