Geological Exploration of South Atlantic Islands and Its Contributions to the Continental Drift Debate of the Early 20Th Century
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Two Contrasting Phanerozoic Orogenic Systems Revealed by Hafnium Isotope Data William J
ARTICLES PUBLISHED ONLINE: 17 APRIL 2011 | DOI: 10.1038/NGEO1127 Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data William J. Collins1*(, Elena A. Belousova2, Anthony I. S. Kemp1 and J. Brendan Murphy3 Two fundamentally different orogenic systems have existed on Earth throughout the Phanerozoic. Circum-Pacific accretionary orogens are the external orogenic system formed around the Pacific rim, where oceanic lithosphere semicontinuously subducts beneath continental lithosphere. In contrast, the internal orogenic system is found in Europe and Asia as the collage of collisional mountain belts, formed during the collision between continental crustal fragments. External orogenic systems form at the boundary of large underlying mantle convection cells, whereas internal orogens form within one supercell. Here we present a compilation of hafnium isotope data from zircon minerals collected from orogens worldwide. We find that the range of hafnium isotope signatures for the external orogenic system narrows and trends towards more radiogenic compositions since 550 Myr ago. By contrast, the range of signatures from the internal orogenic system broadens since 550 Myr ago. We suggest that for the external system, the lower crust and lithospheric mantle beneath the overriding continent is removed during subduction and replaced by newly formed crust, which generates the radiogenic hafnium signature when remelted. For the internal orogenic system, the lower crust and lithospheric mantle is instead eventually replaced by more continental lithosphere from a collided continental fragment. Our suggested model provides a simple basis for unravelling the global geodynamic evolution of the ancient Earth. resent-day orogens of contrasting character can be reduced to which probably began by the Early Ordovician12, and the Early two types on Earth, dominantly accretionary or dominantly Paleozoic accretionary orogens in the easternmost Altaids of Pcollisional, because only the latter are associated with Wilson Asia13. -
South Georgia and Antarctic Odyssey
South Georgia and Antarctic Odyssey 30 November – 18 December 2019 | Greg Mortimer About Us Aurora Expeditions embodies the spirit of adventure, travelling to some of the most wild opportunity for adventure and discovery. Our highly experienced expedition team of and remote places on our planet. With over 28 years’ experience, our small group voyages naturalists, historians and destination specialists are passionate and knowledgeable – they allow for a truly intimate experience with nature. are the secret to a fulfilling and successful voyage. Our expeditions push the boundaries with flexible and innovative itineraries, exciting Whilst we are dedicated to providing a ‘trip of a lifetime’, we are also deeply committed to wildlife experiences and fascinating lectures. You’ll share your adventure with a group education and preservation of the environment. Our aim is to travel respectfully, creating of like-minded souls in a relaxed, casual atmosphere while making the most of every lifelong ambassadors for the protection of our destinations. DAY 1 | Saturday 30 November 2019 Ushuaia, Beagle Channel Position: 20:00 hours Course: 83° Wind Speed: 20 knots Barometer: 991 hPa & steady Latitude: 54°49’ S Wind Direction: W Air Temp: 6° C Longitude: 68°18’ W Sea Temp: 5° C Explore. Dream. Discover. —Mark Twain in the soft afternoon light. The wildlife bonanza was off to a good start with a plethora of seabirds circling the ship as we departed. Finally we are here on the Beagle Channel aboard our sparkling new ice-strengthened vessel. This afternoon in the wharf in Ushuaia we were treated to a true polar welcome, with On our port side stretched the beech forested slopes of Argentina, while Chile, its mountain an invigorating breeze sweeping the cobwebs of travel away. -
Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland
Sedimentary Geology 294 (2013) 219–232 Contents lists available at SciVerse ScienceDirect Sedimentary Geology journal homepage: www.elsevier.com/locate/sedgeo Invited review Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland Zheng-Xiang Li a,b,⁎, David A.D. Evans b, Galen P. Halverson c,d a ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin University, GPO Box U1987, Perth, WA 6845, Australia b Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109, USA c Earth & Planetary Sciences/GEOTOP, McGill University, 3450 University St., Montreal, Quebec H3A0E8, Canada d Tectonics, Resources and Exploration (TRaX), School of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia article info abstract Article history: This review paper presents a set of revised global palaeogeographic maps for the 825–540 Ma interval using Received 6 January 2013 the latest palaeomagnetic data, along with lithological information for Neoproterozoic sedimentary basins. Received in revised form 24 May 2013 These maps form the basis for an examination of the relationships between known glacial deposits, Accepted 28 May 2013 palaeolatitude, positions of continental rifting, relative sea-level changes, and major global tectonic events Available online 5 June 2013 such as supercontinent assembly, breakup and superplume events. This analysis reveals several fundamental ’ Editor: J. Knight palaeogeographic features that will help inform and constrain models for Earth s climatic and geodynamic evolution during the Neoproterozoic. First, glacial deposits at or near sea level appear to extend from high Keywords: latitudes into the deep tropics for all three Neoproterozoic ice ages (Sturtian, Marinoan and Gaskiers), al- Neoproterozoic though the Gaskiers interval remains very poorly constrained in both palaeomagnetic data and global Rodinia lithostratigraphic correlations. -
Balkatach Hypothesis: a New Model for the Evolution of the Pacific, Tethyan, and Paleo-Asian Oceanic Domains
Research Paper GEOSPHERE Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains 1,2 2 GEOSPHERE, v. 13, no. 5 Andrew V. Zuza and An Yin 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA 2Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095-1567, USA doi:10.1130/GES01463.1 18 figures; 2 tables; 1 supplemental file ABSTRACT suturing. (5) The closure of the Paleo-Asian Ocean in the early Permian was accompanied by a widespread magmatic flare up, which may have been CORRESPONDENCE: avz5818@gmail .com; The Phanerozoic history of the Paleo-Asian, Tethyan, and Pacific oceanic related to the avalanche of the subducted oceanic slabs of the Paleo-Asian azuza@unr .edu domains is important for unraveling the tectonic evolution of the Eurasian Ocean across the 660 km phase boundary in the mantle. (6) The closure of the and Laurentian continents. The validity of existing models that account for Paleo-Tethys against the southern margin of Balkatach proceeded diachro- CITATION: Zuza, A.V., and Yin, A., 2017, Balkatach hypothesis: A new model for the evolution of the the development and closure of the Paleo-Asian and Tethyan Oceans criti- nously, from west to east, in the Triassic–Jurassic. Pacific, Tethyan, and Paleo-Asian oceanic domains: cally depends on the assumed initial configuration and relative positions of Geosphere, v. 13, no. 5, p. 1664–1712, doi:10.1130 the Precambrian cratons that separate the two oceanic domains, including /GES01463.1. the North China, Tarim, Karakum, Turan, and southern Baltica cratons. -
Chapter 4 Tectonic Reconstructions of the Southernmost Andes and the Scotia Sea During the Opening of the Drake Passage
123 Chapter 4 Tectonic reconstructions of the Southernmost Andes and the Scotia Sea during the opening of the Drake Passage Graeme Eagles Alfred Wegener Institute, Helmholtz Centre for Marine and Polar Research, Bre- merhaven, Germany e-mail: [email protected] Abstract Study of the tectonic development of the Scotia Sea region started with basic lithological and structural studies of outcrop geology in Tierra del Fuego and the Antarctic Peninsula. To 19th and early 20th cen- tury geologists, the results of these studies suggested the presence of a submerged orocline running around the margins of the Scotia Sea. Subse- quent increases in detailed knowledge about the fragmentary outcrop ge- ology from islands distributed around the margins of the Scotia Sea, and later their interpretation in light of the plate tectonic paradigm, led to large modifications in the hypothesis such that by the present day the concept of oroclinal bending in the region persists only in vestigial form. Of the early comparative lithostratigraphic work in the region, only the likenesses be- tween Jurassic—Cretaceous basin floor and fill sequences in South Geor- gia and Tierra del Fuego are regarded as strong enough to be useful in plate kinematic reconstruction by permitting the interpretation of those re- gions’ contiguity in mid-Mesozoic times. Marine and satellite geophysical data sets reveal features of the remaining, submerged, 98% of the Scotia 124 Sea region between the outcrops. These data enable a more detailed and quantitative approach to the region’s plate kinematics. In contrast to long- used interpretations of the outcrop geology, these data do not prescribe the proximity of South Georgia to Tierra del Fuego in any past period. -
Deep Carbon Science
From Crust to Core Carbon plays a fundamental role on Earth. It forms the chemical backbone for all essential organic molecules produced by living organ- isms. Carbon-based fuels supply most of society’s energy, and atmos- pheric carbon dioxide has a huge impact on Earth’s climate. This book provides a complete history of the emergence and development of the new interdisciplinary field of deep carbon science. It traces four cen- turies of history during which the inner workings of the dynamic Earth were discovered, and it documents the extraordinary scientific revolutions that changed our understanding of carbon on Earth for- ever: carbon’s origin in exploding stars; the discovery of the internal heat source driving the Earth’s carbon cycle; and the tectonic revolu- tion. Written with an engaging narrative style and covering the scien- tific endeavors of about 150 pioneers of deep geoscience, this is a fascinating book for students and researchers working in Earth system science and deep carbon research. is a life fellow at St. Edmund’s College, University of Cambridge. For more than 50 years he has passionately engaged in bringing discoveries in astronomy and cosmology to the general public. He is a fellow of the Royal Historical Society, a former vice- president of the Royal Astronomical Society and a fellow of the Geological Society. The International Astronomical Union designated asteroid 4027 as Minor Planet Mitton in recognition of his extensive outreach activity and that of Dr. Jacqueline Mitton. From Crust to Core A Chronicle of Deep Carbon Science University of Cambridge University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 79 Anson Road, #06–04/06, Singapore 079906 Cambridge University Press is part of the University of Cambridge. -
THE CONTINENTAL DRIFT CONTROVERSY Volume IV: Evolution Into Plate Tectonics
Comp. by: Kkavitha Stage: Proof Chapter No.: FrontMatter Title Name: FRANKEL_Vol-4 Page Number: 0 Date:20/1/12 Time:17:17:28 THE CONTINENTAL DRIFT CONTROVERSY Volume IV: Evolution into Plate Tectonics Resolution of the sixty-year debate over continental drift, culminating in the triumph of plate tectonics, changed the very fabric of Earth Science. Plate tectonics can be considered alongside the theories of evolution in the life sciences and of quantum mechanics in physics in terms of its fundamental importance to our scientific under- standing of the world. This four-volume treatise on The Continental Drift Controversy is the first complete history of the origin, debate and gradual acceptance of this revolutionary explanation of the structure and motion of the Earth’s outer surface. Based on extensive interviews, archival papers, and original works, Frankel weaves together the lives and work of the scientists involved, producing an accessible narrative for scientists and non-scientists alike. Explanations of the curious magnetic anomalies on the seafloor and discovery and explanation of transform faults in the ocean crust in the mid-sixties led to the rapid acceptance of seafloor spreading. The birth of plate tectonics followed soon after with the geometrification of geology. Finally it was understood that the Earth’s surface is divided into a small number of nearly rigid plates, most of which contain continental and oceanic parts, and whose relative motions are describable in terms of Euler’s fixed point theorem. Although plate tectonics did not explain the cause or dynamic mechanism of drifting continents, it provided a convincing kinematic explanation that continues to inspire geodynamic research to the present day. -
Towards Interactive Global Paleogeographic Maps, New Reconstructions at 60, 40 and 20 Ma
Earth-Science Reviews 214 (2021) 103508 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Towards interactive global paleogeographic maps, new reconstructions at 60, 40 and 20 Ma F. Poblete a,b,*, G. Dupont-Nivet a,c, A. Licht d, D.J.J. van Hinsbergen e, P. Roperch a, M. G. Mihalynuk f, S.T. Johnston g, F. Guillocheau a, G. Baby a, F. Fluteau h, C. Robin a, T.J. M. van der Linden e,i, D. Ruiz c, M.L.J. Baatsen j a G´eosciences Rennes, UMR CNRS 6118, Rennes, 35042 Rennes Cedex, France b Departamento de Geología, Facultad de Ciencias Físicas y Matematicas,´ Universidad de Chile, Chile c Universitat¨ Potsdam, Institute of Geoscience, 14476 Potsdam, Germany d Centre Europ´een de Recherche et d’Enseignement des G´eosciences de l’Environnement (Cerege), UMR CNRS 7330, 13545 Aix-en-Provence, France e Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, the Netherlands f British Columbia Geological Survey, Vancouver, Canada g Department of Earth and Atmospheric Sciences, University of Alberta, Canada h Universit´e de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France i Thomas van der Linden – LinGeo, Berlin, Germany j IMAU, Utrecht University, Princetonplein 5, 3584CC Utrecht, the Netherlands ARTICLE INFO ABSTRACT Keywords: Paleogeographic maps are essential tools for understanding Earth system dynamics. They provide boundary Paleogeographic maps conditions for climate and geodynamic modelling, for analysing surface processes and biotic interactions. Paleoelevation However, the temporal and spatial distribution of key features such as seaways and mountain belts that govern Cenozoic climate changes and biotic interchange differ between various paleogeographies that require regular updates Eocene-Oligocene transition with new data and models. -
West Antarctica: Tectonics and Paleogeography
Chapter 2 West Antarctica: Tectonics and Paleogeography The origin of West Antarctica (WANT) can be traced back to the Terra Australis orogenesis that began between 520 Ma and 510 Ma—shortly after the terminal suturing of Gondwana (Boger 2011). The onset of this event was responsible for the termination of passive margin sedimentation along much of the Pacific margin of Gondwana and marks the beginning of widespread and broadly coeval deforma- tion and arc-type plutonism. It also began a long-lived process of accretion that added much of the crust that defines eastern Australia, West Antarctica (domain 5 of Boger 2011, Fig. 2.1), and western South America (Cawood 2005, 2009). Post-Gondwana accretionary growth—the Terra Australis and Gondwanide Orogenies—The suturing of the West Gondwana and Australo–Antarctic plates along the Kuunga Orogen brought to an end the long-lived process of convergence between the pre-collision components of Gondwana. The result was a reconfigura- tion of the early to middle Cambrian plate system and the consequent transfer of ocean floor consumption from between the pre-Gondwana cratons to the outboard Pacific margin of newly formed Gondwana supercontinent (Cawood2005 ). This led to the establishment of the accretionary Terra Austrais Orogen (Cawood 2005), a general name given to the orogenic belt that stretched continuously from north- ern South America to northern Australia and which began in the early to middle Cambrian and lasted until the late Carboniferous. In Antarctica Terra Australis (Ross) orogenesis also deformed and variably metamorphosed the pre-Gondwana passive margin (Fig. 2.2). The Gondwana supercontinent underwent a sequential fragmentation over approximately 165 Ma. -
In Shackleton's Footsteps
In Shackleton’s Footsteps 20 March – 06 April 2019 | Polar Pioneer About Us Aurora Expeditions embodies the spirit of adventure, travelling to some of the most wild and adventure and discovery. Our highly experienced expedition team of naturalists, historians and remote places on our planet. With over 27 years’ experience, our small group voyages allow for destination specialists are passionate and knowledgeable – they are the secret to a fulfilling a truly intimate experience with nature. and successful voyage. Our expeditions push the boundaries with flexible and innovative itineraries, exciting wildlife Whilst we are dedicated to providing a ‘trip of a lifetime’, we are also deeply committed to experiences and fascinating lectures. You’ll share your adventure with a group of like-minded education and preservation of the environment. Our aim is to travel respectfully, creating souls in a relaxed, casual atmosphere while making the most of every opportunity for lifelong ambassadors for the protection of our destinations. DAY 1 | Wednesday 20 March 2019 Ushuaia, Beagle Channel Position: 21:50 hours Course: 84° Wind Speed: 5 knots Barometer: 1007.9 hPa & falling Latitude: 54°55’ S Speed: 9.4 knots Wind Direction: E Air Temp: 11°C Longitude: 67°26’ W Sea Temp: 9°C Finally, we were here, in Ushuaia aboard a sturdy ice-strengthened vessel. At the wharf Gary Our Argentinian pilot climbed aboard and at 1900 we cast off lines and eased away from the and Robyn ticked off names, nabbed our passports and sent us off to Kathrine and Scott for a wharf. What a feeling! The thriving city of Ushuaia receded as we motored eastward down the quick photo before boarding Polar Pioneer. -
An Assessment for Fisheries Operating in South Georgia and South Sandwich Islands
FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands by Nigel Varty, Ben Sullivan and Andy Black BirdLife International Global Seabird Programme Cover photo – Fishery Patrol Vessel (FPV) Pharos SG in Cumberland Bay, South Georgia This document should be cited as: Varty, N., Sullivan, B. J. and Black, A. D. (2008). FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands. BirdLife International Global Seabird Programme. Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire, UK. 2 Executive Summary As a result of international concern over the cause and level of seabird mortality in longline fisheries, the United Nations Food and Agricultural Organisation (FAO) Committee of Fisheries (COFI) developed an International Plan of Action-Seabirds. The IPOA-Seabirds stipulates that countries with longline fisheries (conducted by their own or foreign vessels) or a fleet that fishes elsewhere should carry out an assessment of these fisheries to determine if a bycatch problem exists and, if so, to determine its extent and nature. If a problem is identified, countries should adopt a National Plan of Action – Seabirds for reducing the incidental catch of seabirds in their fisheries. South Georgia and the South Sandwich Islands (SGSSI) are a United Kingdom Overseas Territory and the combined area covered by the Territorial Sea and Maritime Zone of South Georgia is referred to as the South Georgia Maritime Zone (SGMZ) and fisheries within the SGMZ are managed by the Government of South Georgia and South Sandwich Islands (GSGSSI) within the framework of the Convention on the Conservation of Antarctic Marine Living (CCAMLR). -
The Reception and Commemoration of William Speirs Bruce Are, I Suggest, Part
The University of Edinburgh School of Geosciences Institute of Geography A SCOT OF THE ANTARCTIC: THE RECEPTION AND COMMEMORATION OF WILLIAM SPEIRS BRUCE M.Sc. by Research in Geography Innes M. Keighren 12 September 2003 Declaration of originality I hereby declare that this dissertation has been composed by me and is based on my own work. 12 September 2003 ii Abstract 2002–2004 marks the centenary of the Scottish National Antarctic Expedition. Led by the Scots naturalist and oceanographer William Speirs Bruce (1867–1921), the Expedition, a two-year exploration of the Weddell Sea, was an exercise in scientific accumulation, rather than territorial acquisition. Distinct in its focus from that of other expeditions undertaken during the ‘Heroic Age’ of polar exploration, the Scottish National Antarctic Expedition, and Bruce in particular, were subject to a distinct press interpretation. From an examination of contemporary newspaper reports, this thesis traces the popular reception of Bruce—revealing how geographies of reporting and of reading engendered locally particular understandings of him. Inspired, too, by recent work in the history of science outlining the constitutive significance of place, this study considers the influence of certain important spaces—venues of collection, analysis, and display—on the conception, communication, and reception of Bruce’s polar knowledge. Finally, from the perspective afforded by the centenary of his Scottish National Antarctic Expedition, this paper illustrates how space and place have conspired, also, to direct Bruce’s ‘commemorative trajectory’—to define the ways in which, and by whom, Bruce has been remembered since his death. iii Acknowledgements For their advice, assistance, and encouragement during the research and writing of this thesis I should like to thank Michael Bolik (University of Dundee); Margaret Deacon (Southampton Oceanography Centre); Graham Durant (Hunterian Museum); Narve Fulsås (University of Tromsø); Stanley K.