1 Global plate boundary evolution and kinematics since the late Paleozoic 2 3 Kara J. Matthewsa*1, Kayla T. Maloneya, Sabin Zahirovica, Simon E. Williamsa, Maria Setona, R. Dietmar 4 Müllera 5 6 aSchool of Geosciences, University of Sydney, Sydney, NSW 2006, Australia 7 *Corresponding author:
[email protected] 8 1Present address: Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, 9 UK 10 11 Keywords: Alexander Terrane, Paleozoic, Pangea, Panthalassa, plate reconstruction, subduction 12 13 Highlights: 14 - A continuous global plate reconstruction model is presented that spans 410–0 Ma 15 - The model is digital and open-access 16 - A new regional model for the Baltica-derived Alexander Terrane is incorporated 17 - Plate sizes, plate and continent speeds and trench migration patterns are analysed 18 19 20 21 22 23 24 25 26 27 28 Abstract 29 Many aspects of deep-time Earth System models, including mantle convection, paleoclimatology, 30 paleobiogeography and the deep Earth carbon cycle, require high-resolution plate models that include the 31 evolution of the mosaic of plate boundaries through time. We present the first continuous late Paleozoic to 32 present-day global plate model with evolving plate boundaries, building on and extending two previously 33 published models for the late Paleozoic (410–250 Ma) and Mesozoic-Cenozoic (230–0 Ma). We ensure 34 continuity during the 250–230 Ma transition period between the two models, update the absolute 35 reference frame of the Mesozoic-Cenozoic model and add a new Paleozoic reconstruction for the Baltica- 36 derived Alexander Terrane, now accreted to western North America.