ATP5D Shrna (M) Lentiviral Particles: Sc-141346-V

Total Page:16

File Type:pdf, Size:1020Kb

ATP5D Shrna (M) Lentiviral Particles: Sc-141346-V SANTA CRUZ BIOTECHNOLOGY, INC. ATP5D shRNA (m) Lentiviral Particles: sc-141346-V BACKGROUND APPLICATIONS Mitochondrial ATP synthase is composed of two multi-subunit complexes ATP5D shRNA (m) Lentiviral Particles is recommended for the inhibition of that utilize an inner membrane electrochemical gradient to catalyze the syn- ATP5D expression in mouse cells. thesis of ATP during oxidative phosphorylation. The two multi-subunit com- plexes are designated F1 and F0, the former of which comprises the soluble SUPPORT REAGENTS catalytic core and the latter of which comprises the membrane-spanning Control shRNA Lentiviral Particles: sc-108080. Available as 200 µl frozen proton channel of ATP synthase. F1 consists of five distinct subunits, desig- viral stock containing 1.0 x 106 infectious units of virus (IFU); contains an nated ATP5A, ATP5B, ATP5C1, ATP5D and ATP5E, while F0 consists of ten shRNA construct encoding a scrambled sequence that will not lead to the subunits, designated ATP5H, ATP5G1, ATP5I, ATP5G2, ATP5J2, ATP5J, specific degradation of any known cellular mRNA. ATP5G3, ATP5S, ATP5F1 and ATP5L. ATP5D (ATP synthase, H+ transporting, δ mitochondrial F1 complex, subunit) is a 168 amino acid protein that local- RT-PCR REAGENTS izes to the mitochondrial inner membrane and is encoded by a gene that maps to human chromosome 19p13.3. Semi-quantitative RT-PCR may be performed to monitor ATP5D gene expres- sion knockdown using RT-PCR Primer: ATP5D (m)-PR: sc-141346-PR (20 µl). REFERENCES Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C. 1. Jordan, E.M., et al. 1992. Molecular cloning of an import precursor of the δ -subunit of the human mitochondrial ATP synthase complex. Biochim. BIOSAFETY Biophys. Acta 1130: 123-126. Lentiviral particles can be employed in standard Biosafety Level 2 tissue 2. Aggeler, R., et al. 2002. A functionally active human F1F0 ATPase can be culture facilities (and should be treated with the same level of caution as purified by immunocapture from heart tissue and fibroblast cell lines. with any other potentially infectious reagent). Lentiviral particles are repli- Subunit structure and activity studies. J. Biol. Chem. 277: 33906-33912. cation-incompetent and are designed to self-inactivate after transduction 3. Hong, S., et al. 2003. ATP synthases: insights into their motor functions and integration of shRNA constructs into genomic DNA of target cells. from sequence and structural analyses. J. Bioenerg. Biomembr. 35: 95-120. RESEARCH USE 4. Cross, R.L. 2004. Molecular motors: turning the ATP motor. Nature 427: 407-408. The purchase of this product conveys to the buyer the nontransferable right to use the purchased amount of the product and all replicates and derivatives 5. Itoh, H., et al. 2004. Mechanically driven ATP synthesis by F1-ATPase. for research purposes conducted by the buyer in his laboratory only (whether Nature 427: 465-468. the buyer is an academic or for-profit entity). The buyer cannot sell or other- 6. Online Mendelian Inheritance in Man, OMIM™. 2004. Johns Hopkins wise transfer (a) this product (b) its components or (c) materials made using University, Baltimore, MD. MIM Number: 603150. World Wide Web URL: this product or its components to a third party, or otherwise use this product http://www.ncbi.nlm.nih.gov/omim/ or its components or materials made using this product or its components for Commercial Purposes. CHROMOSOMAL LOCATION PROTOCOLS Genetic locus: Atp5d (mouse) mapping to 10 C1. See our web site at www.scbt.com for detailed protocols and support PRODUCT products. ATP5D shRNA (m) Lentiviral Particles is a pool of concentrated, transduc- tion-ready viral particles containing 2 target-specific constructs that encode 19-25 nt (plus hairpin) shRNA designed to knock down gene expression. Each vial contains 200 µl frozen stock containing 1.0 x 106 infectious units of virus (IFU) in Dulbecco’s Modified Eagle’s Medium with 25 mM HEPES pH 7.3. Suitable for 10-20 transductions. Also see ATP5D siRNA (m): sc-141346 and ATP5D shRNA Plasmid (m): sc-141346-SH as alternate gene silencing products. STORAGE Store lentiviral particles at -80º C. Stable for at least one year from the date of shipment. Once thawed, particles can be stored at 4º C for up to one week. Avoid repeated freeze thaw cycles. Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com.
Recommended publications
  • Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach
    Mafalda Rita Avó Bacalhau Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach Tese de doutoramento do Programa de Doutoramento em Ciências da Saúde, ramo de Ciências Biomédicas, orientada pela Professora Doutora Maria Manuela Monteiro Grazina e co-orientada pelo Professor Doutor Henrique Manuel Paixão dos Santos Girão e pela Professora Doutora Lee-Jun C. Wong e apresentada à Faculdade de Medicina da Universidade de Coimbra Julho 2017 Faculty of Medicine Establishing the pathogenicity of novel mitochondrial DNA sequence variations: a cell and molecular biology approach Mafalda Rita Avó Bacalhau Tese de doutoramento do programa em Ciências da Saúde, ramo de Ciências Biomédicas, realizada sob a orientação científica da Professora Doutora Maria Manuela Monteiro Grazina; e co-orientação do Professor Doutor Henrique Manuel Paixão dos Santos Girão e da Professora Doutora Lee-Jun C. Wong, apresentada à Faculdade de Medicina da Universidade de Coimbra. Julho, 2017 Copyright© Mafalda Bacalhau e Manuela Grazina, 2017 Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os direitos de autor são pertença do autor da tese e do orientador científico e que nenhuma citação ou informação obtida a partir dela pode ser publicada sem a referência apropriada e autorização. This copy of the thesis has been supplied on the condition that anyone who consults it recognizes that its copyright belongs to its author and scientific supervisor and that no quotation from the
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Datasheet: VPA00673 Product Details
    Datasheet: VPA00673 Description: RABBIT ANTI ATP5D Specificity: ATP5D Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation Rabbit polyclonal antibody purified by affinity chromatography Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide Stabilisers 2% Sucrose Immunogen Synthetic peptide encompassing part of the middle region of human ATP5D External Database Links UniProt: P30049 Related reagents Entrez Gene: 513 ATP5D Related reagents Specificity Rabbit anti Human ATP5D antibody recognizes ATP synthase subunit delta, mitochondrial, also known as ATP synthase subunit delta mitochondrial, F-ATPase delta subunit, mitochondrial ATP Page 1 of 2 synthase complex delta-subunit precusor, or mitochondrial ATP synthase, delta subunit. ATP5D gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation.
    [Show full text]
  • Proteomics Provides Insights Into the Inhibition of Chinese Hamster V79
    www.nature.com/scientificreports OPEN Proteomics provides insights into the inhibition of Chinese hamster V79 cell proliferation in the deep underground environment Jifeng Liu1,2, Tengfei Ma1,2, Mingzhong Gao3, Yilin Liu4, Jun Liu1, Shichao Wang2, Yike Xie2, Ling Wang2, Juan Cheng2, Shixi Liu1*, Jian Zou1,2*, Jiang Wu2, Weimin Li2 & Heping Xie2,3,5 As resources in the shallow depths of the earth exhausted, people will spend extended periods of time in the deep underground space. However, little is known about the deep underground environment afecting the health of organisms. Hence, we established both deep underground laboratory (DUGL) and above ground laboratory (AGL) to investigate the efect of environmental factors on organisms. Six environmental parameters were monitored in the DUGL and AGL. Growth curves were recorded and tandem mass tag (TMT) proteomics analysis were performed to explore the proliferative ability and diferentially abundant proteins (DAPs) in V79 cells (a cell line widely used in biological study in DUGLs) cultured in the DUGL and AGL. Parallel Reaction Monitoring was conducted to verify the TMT results. γ ray dose rate showed the most detectable diference between the two laboratories, whereby γ ray dose rate was signifcantly lower in the DUGL compared to the AGL. V79 cell proliferation was slower in the DUGL. Quantitative proteomics detected 980 DAPs (absolute fold change ≥ 1.2, p < 0.05) between V79 cells cultured in the DUGL and AGL. Of these, 576 proteins were up-regulated and 404 proteins were down-regulated in V79 cells cultured in the DUGL. KEGG pathway analysis revealed that seven pathways (e.g.
    [Show full text]
  • Warning Sines: Alu Elements, Evolution of the Human Brain, and the Spectrum of Neurological Disease
    Chromosome Res (2018) 26:93–111 https://doi.org/10.1007/s10577-018-9573-4 ORIGINAL ARTICLE Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease Peter A. Larsen & Kelsie E. Hunnicutt & Roxanne J. Larsen & Anne D. Yoder & Ann M. Saunders Received: 6 December 2017 /Revised: 14 January 2018 /Accepted: 15 January 2018 /Published online: 19 February 2018 # The Author(s) 2018. This article is an open access publication Abstract Alu elements are a highly successful family of neurological networks are potentially vulnerable to the primate-specific retrotransposons that have fundamen- epigenetic dysregulation of Alu elements operating tally shaped primate evolution, including the evolution across the suite of nuclear-encoded mitochondrial genes of our own species. Alus play critical roles in the forma- that are critical for both mitochondrial and CNS func- tion of neurological networks and the epigenetic regu- tion. Here, we highlight the beneficial neurological as- lation of biochemical processes throughout the central pects of Alu elements as well as their potential to cause nervous system (CNS), and thus are hypothesized to disease by disrupting key cellular processes across the have contributed to the origin of human cognition. De- CNS. We identify at least 37 neurological and neurode- spite the benefits that Alus provide, deleterious Alu generative disorders wherein deleterious Alu activity has activity is associated with a number of neurological been implicated as a contributing factor for the manifes- and neurodegenerative disorders. In particular, tation of disease, and for many of these disorders, this activity is operating on genes that are essential for proper mitochondrial function.
    [Show full text]
  • S41467-020-18249-3.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible.
    [Show full text]
  • Low Abundance of the Matrix Arm of Complex I in Mitochondria Predicts Longevity in Mice
    ARTICLE Received 24 Jan 2014 | Accepted 9 Apr 2014 | Published 12 May 2014 DOI: 10.1038/ncomms4837 OPEN Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice Satomi Miwa1, Howsun Jow2, Karen Baty3, Amy Johnson1, Rafal Czapiewski1, Gabriele Saretzki1, Achim Treumann3 & Thomas von Zglinicki1 Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. 1 Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 2 Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 3 Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK. Correspondence and requests for materials should be addressed to T.v.Z.
    [Show full text]
  • Recombinant Human ATP Synthase Subunit Delta, Mitochondrial(ATP5D)
    Product Datasheet Recombinant Human ATP synthase subunit delta, mitochondrial(ATP5D) Catalog No: #AP77823 Orders: [email protected] Package Size: #AP77823-1 20ug #AP77823-2 100ug #AP77823-3 500ug Support: [email protected] Description Product Name Recombinant Human ATP synthase subunit delta, mitochondrial(ATP5D) Brief Description Recombinant Protein Host Species Yeast Purification Greater than 85% as determined by SDS-PAGE. Immunogen Description Expression Region:23-168aaSequence Info:Full Length of Mature Protein Other Names F-ATPase delta subunit Accession No. P30049 Calculated MW 18 kDa Tag Info C-terminal Myc-tagged and C-terminal 6xHis-tagged Target Sequence AEAAAAPAAASGPNQMSFTFASPTQVFFNGANVRQVDVPTLTGAFGILAAHVPTLQVLRPGLVVVHAEDGTTS KYFVSSGSIAVNADSSVQLLAEEAVTLDMLDLGAAKANLEKAQAELVGTADEATRAEIQIRIEANEALVKALE Formulation Tris-based buffer50% glycerol Storage The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself. Generally, the shelf life of liquid form is 6 months at -20°C,-80°C. The shelf life of lyophilized form is 12 months at -20°C,-80°C.Notes:Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week. Background Mitochondrial membrane ATP synthase (F1F0 ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F1 - containing the extramembraneous catalytic core, and F0 - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP turnover in the catalytic domain of F1 is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Systematic Proteome and Proteostasis Profiling in Human Trisomy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Repository and Bibliography - Luxembourg ARTICLE DOI: 10.1038/s41467-017-01422-6 OPEN Systematic proteome and proteostasis profiling in human Trisomy 21 fibroblast cells Yansheng Liu 1, Christelle Borel2,LiLi3, Torsten Müller1, Evan G. Williams1, Pierre-Luc Germain4, Marija Buljan1, Tatjana Sajic1, Paul J. Boersema5, Wenguang Shao1, Marco Faini1, Giuseppe Testa4,6, Andreas Beyer 3, Stylianos E. Antonarakis2,7 & Ruedi Aebersold 1,8 Down syndrome (DS) is mostly caused by a trisomy of the entire Chromosome 21 (Trisomy 21, T21). Here, we use SWATH mass spectrometry to quantify protein abundance and protein turnover in fibroblasts from a monozygotic twin pair discordant for T21, and to profile protein expression in 11 unrelated DS individuals and matched controls. The integration of the steady- state and turnover proteomic data indicates that protein-specific degradation of members of stoichiometric complexes is a major determinant of T21 gene dosage outcome, both within and between individuals. This effect is not apparent from genomic and transcriptomic data. The data also reveal that T21 results in extensive proteome remodeling, affecting proteins encoded by all chromosomes. Finally, we find broad, organelle-specific post-transcriptional effects such as significant downregulation of the mitochondrial proteome contributing to T21 hallmarks. Overall, we provide a valuable proteomic resource to understand the origin of DS phenotypic manifestations. 1 Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland. 2 Department of Genetic Medicine and Development, University of Geneva Medical School, and University Hospitals of Geneva, 1211 Geneva, Switzerland.
    [Show full text]