4.5. Harmful Algal Bloom Events in the Canary Current Large Marine Ecosystem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
- 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]]. -
Save the Reef
Save the Reef A member group of Lock the Gate Alliance www.savethereef.net.au Committee Secretary Senate Standing Committees on Environment and Communications PO Box 6100 Parliament House Canberra ACT 2600 Phone: +61 2 6277 3526 Fax: +61 2 6277 5818 [email protected] Submission to the Senate Inquiry on The adequacy of the Australian and Queensland Governments’ efforts to stop the rapid decline of the Great Barrier Reef, including but not limited to: Points a–k. Save the Reef would like to thank this committee for the opportunity to make a submission and would also like to speak further if there is an opportunity at any public hearings. The Great Barrier Reef is Australia’s greatest natural asset. It is a tourism mecca, a 6 billion dollar economic boon as well as a scientific wonderland. It is a World Heritage Listed property and an acknowledged world wonder. The Great Barrier Reef is part of Australia’s very identity. We are failing to protect the Great Barrier Reef. The efforts to stop the rapid decline of the Great Barrier Reef are grossly inadequate. It demonstrates that our current system for protecting the environment is broken. Environmental impact statements, conditions, offsets, regulations, enforcement and even the EPBC act, processes meant to protect the environment are being subverted and the impact is apparent. The holes in the “Swiss Cheese” are lining up and have allowed and are continuing to allow further destruction of the Great Barrier Reef when it needs our protection the most. The recent developments in Gladstone are a clear demonstration of the failure of our systems. -
Sample Chapter Algal Blooms
ALGAL BLOOMS 7 Observations and Remote Sensing. http://dx.doi.org/10.1109/ energy and material transport through the food web, and JSTARS.2013.2265255. they also play an important role in the vertical flux of Pack, R. T., Brooks, V., Young, J., Vilaca, N., Vatslid, S., Rindle, P., material out of the surface waters. These blooms are Kurz, S., Parrish, C. E., Craig, R., and Smith, P. W., 2012. An “ ” overview of ALS technology. In Renslow, M. S. (ed.), Manual distinguished from those that are deemed harmful. of Airborne Topographic Lidar. Bethesda: ASPRS Press. Algae form harmful algal blooms, or HABs, when either Sithole, G., and Vosselman, G., 2004. Experimental comparison of they accumulate in massive amounts that alone cause filter algorithms for bare-Earth extraction from airborne laser harm to the ecosystem or the composition of the algal scanning point clouds. ISPRS Journal of Photogrammetry and community shifts to species that make compounds Remote Sensing, 59,85–101. (including toxins) that disrupt the normal food web or to Shan, J., and Toth, C., 2009. Topographic Laser Ranging and Scanning: Principles and Processes. Boca Raton: CRC Press. species that can harm human consumers (Glibert and Slatton, K. C., Carter, W. E., Shrestha, R. L., and Dietrich, W., 2007. Pitcher, 2001). HABs are a broad and pervasive problem, Airborne laser swath mapping: achieving the resolution and affecting estuaries, coasts, and freshwaters throughout the accuracy required for geosurficial research. Geophysical world, with effects on ecosystems and human health, and Research Letters, 34,1–5. on economies, when these events occur. This entry Wehr, A., and Lohr, U., 1999. -
Trophic Diversity of Plankton in the Epipelagic and Mesopelagic Layers of the Tropical and Equatorial Atlantic Determined with Stable Isotopes
diversity Article Trophic Diversity of Plankton in the Epipelagic and Mesopelagic Layers of the Tropical and Equatorial Atlantic Determined with Stable Isotopes Antonio Bode 1,* ID and Santiago Hernández-León 2 1 Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, Apdo 130, 15080 A Coruña, Spain 2 Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de las Palmas de Gran Canaria, Campus de Taliarte, Telde, Gran Canaria, 35214 Islas Canarias, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-981205362 Received: 30 April 2018; Accepted: 12 June 2018; Published: 13 June 2018 Abstract: Plankton living in the deep ocean either migrate to the surface to feed or feed in situ on other organisms and detritus. Planktonic communities in the upper 800 m of the tropical and equatorial Atlantic were studied using the natural abundance of stable carbon and nitrogen isotopes to identify their food sources and trophic diversity. Seston and zooplankton (>200 µm) samples were collected with Niskin bottles and MOCNESS nets, respectively, in the epipelagic (0–200 m), upper mesopelagic (200–500 m), and lower mesopelagic layers (500–800 m) at 11 stations. Food sources for plankton in the productive zone influenced by the NW African upwelling and the Canary Current were different from those in the oligotrophic tropical and equatorial zones. In the latter, zooplankton collected during the night in the mesopelagic layers was enriched in heavy nitrogen isotopes relative to day samples, supporting the active migration of organisms from deep layers. Isotopic niches showed also zonal differences in size (largest in the north), mean trophic diversity (largest in the tropical zone), food sources, and the number of trophic levels (largest in the equatorial zone). -
The Canary Current Temperatures from Portugal to Cape Most Reliable Indicators
V. Sediments and benthos Rapp. P.-v. Réun. Cons. int. Explor. Mer, 180: 315-322. 1982. Sediments in up welling areas, particularly off Northwest Africa Eugen Seibold Geologisch-Paläontologisches Institut der Universität Kiel Olshausenstrasse 40/60, 2300 Kiel 1, Bundesrepublik Deutschland Introduction Oceanic upwelling supplies water from subsurface lay with sediments, however, most of these variations, ers to the surface layer and may occur as a persistent together with biological production cycles, are aver process anywhere, although it is a particularly con aged out, as even the uppermost centimetre of sedi spicuous phenomenon along western coasts of conti ment normally includes events spanning a century or nents where prevailing winds drive the surface water more. Most of the indicators employed are of organic from the coast (Smith, 1973). origin. It is well established that typical upwelling This paper discusses indicators of coastal upwelling water masses are several degrees cooler than nearby revealed in the underlying sediments off Northwest waters, are less saline, show a relatively low oxygen Africa and makes some comparisons with upwelling content, and have higher nutrient concentrations, effects in sediments from the coastal area off Southwest increasing primary production in the photic zone. At Africa. From these results it will be attempted to present only lowered temperatures as preserved in reconstruct periods of upwelling during the last 20 mil planktonic organisms tests can be used as clear indi lion years off Northwest Africa. Some of these prob cators for upwelling, although higher productivity may lems have been treated generally in the classic paper of provide additional hints. -
The Coastal-Ocean Transition Zone in the Canary Current System S Hernández-León1([email protected]), J.M
The coastal-ocean transition zone in the Canary Current system s Hernández-León1([email protected]), J.M. Rodríguez2, M. Moyano1and J. Arístegui1 1Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain 21nstituto Español de Oceanografía, Gijón, Asturias, Spain During the last decade, the institutions engaged in marine upwelling filaments in the transport of zooplankton and fish science in the Canary Islands have collaborated in the larvae from the northwest African shelf to the islands, 6) the development of a science strategy related to GLOBEC. The distribution and evaluation of fish biomass using acoustics objectives attained were 1) the retrospective analysis of data around oceanic islands, and 7) the interplay between the about zooplankton taxonomy, abundance and biomass, 2) the physical variability and predation by the deep scattering layers development of new methods for the study of zooplankton and fish on the development of fish stocks in the area. growth and metabolism, 3) the study of the role of the deep scattering layers in the structure of the pelagic ecosystem in The Canary Current is the easternmost branch of the North oceanic waters, 4) the mesoscale variability due to the effect Atlantic subtropical gyre flowing southward. The most important of eddies shed by the Canary Islands and their effect in the characteristic of the region is the presence of the large upwelling accumulation of zooplankton and fish larvae, 5) the effect of area off the northwest African coast. High chlorophyll and 26 GLOBEC INTERNATIONAL NEWSLETTER OCTOBER 2007 primary production normally observed in coastal waters due 0 2900 N r-------------------"'"'I' to upwelling, decrease rapidly towards the ocean. -
I-3 Canary Current: LME #27
I-3 Canary Current: LME #27 S. Heileman and M. Tandstad The Canary Current LME is a major upwelling region off the coast of northwest Africa, bordered by Morocco, Mauritania, Senegal, Guinea-Bissau, the Canary Islands (Spain), Gambia, Cape Verde and Western Sahara (a disputed, non-self governing territory). It is strongly influenced by the Canary Current, which flows along the African coast from north to south between 30° N – 10° N and offshore to 20° W (Barton 1998). The surface waters of the Canary Current are relatively cool as a result of the entrainment of upwelled water from the coast as it flows southwards (Mittelstaedt 1991). Several drainage systems in this region flow only seasonally because of the high seasonal variation in rainfall, e.g., the Senegal and Gambia Rivers. The LME has an area of about 1.1 million km2, of which 0.77% is protected, and contains 0.12% of the world’s sea mounts and 0.01% of the world’s coral reefs (Sea Around Us 2007). There are 7 major estuaries and river systems draining into the LME including the Casamance, Senegal and Gambia. Books, book chapters and reports pertaining to the LME include Bas (1993), Prescott (1993), Roy & Cury (2003), Chavance et al. (2004) and UNEP (2005). I. Productivity The Canary Current LME is a Class I, highly productive ecosystem (>300 gCm-2y-1). Hydrographic and climatic conditions play a major role in driving the dynamics of this LME, which shows seasonal and longer-term variations (Bas 1993, Roy & Cury 2003). Climatic variability is the primary driving force, with intensive fishing being the secondary driving force, of biomass changes in the LME (FAO 2003, Sherman 2003). -
Harmful Algal Bloom Response Program
What are HABs? • Blue-green algae are bacteria that grow in water, contain chlorophyll, and can photosynthesize. They are not a new occurrence. WHEN IN DOUBT, STAY OUT! Kansas Department of Health • When these bacteria reproduce rapidly, For additional information: and Environment it can create a Harmful Algal Bloom (HAB). Please visit • HABs can sometimes produce toxins www.kdheks.gov/algae-illness. Harmful that affect people, pets, livestock, and Or call the KDHE HAB Hotline at wildlife. The toxins can affect the skin, 785-296-1664. liver, and nervous system. Algal Bloom • People and animals may be exposed to toxins via ingestion, skin contact, or Response inhalation of contaminated water. Program • The most common human health effects from HABs can include vomiting, diarrhea, skin rashes, eye irritation, and respiratory symptoms. • Boiling water does not remove or Department of Health inactivate toxins from blue-green algae, and Environment and there is no known antidote. • Animal deaths due to HAB toxins have Department of Health been documented, so: and Environment When in doubt, stay out! To protect and improve the health and environment of all Kansans. How else is KDHE working to What causes HABs? HAB Advisory Levels prevent HABs? Blue-green algae are a natural part of water- Threshold Levels based ecosystems. They become a problem Harmful Algal Blooms thrive in the presence when nutrients (phosphorus and nitrogen) are Watch Warning Closure of excess nutrients such as nitrogen and present in concentrations above what would phosphorus. Thus, KDHE continually works to occur naturally. Under these conditions, algae blue green reduce nutrient input and improve overall can grow very quickly to extreme numbers, cell counts 80,000 250,000 10,000,000 water quality through a series of interrelated resulting in a Harmful Algal Bloom. -
Harmful Algal Bloom Online Resources
Harmful Algal Bloom Online Resources General Information • CDC Harmful Algal Bloom-Associated Illnesses Website • CDC Harmful Algal Blooms Feature • EPA CyanoHABs Website • EPA Harmful Algal Blooms & Cyanobacteria Research Website • NOAA Harmful Algal Bloom Website • NOAA Harmful Algal Bloom and Hypoxia Research Control Act Harmful Algal Bloom Monitoring and Tracking • EPA Cyanobacteria Assessment Network (CyAN) Project • NCCOS Harmful Algal Bloom Research Website • NOAA Harmful Algal Bloom Forecasts • USGS Summary of Cyanobacteria Monitoring and Assessments in USGS Water Science Centers • WHO Toxic Cyanobacteria in water: A guide to their public health consequences, monitoring, and management Harmful Algal Blooms and Drinking Water • AWWA Assessment of Blue-Green Algal Toxins in Raw and Finished Drinking Water • EPA Guidelines and Recommendations • EPA Harmful Algal Bloom & Drinking Water Treatment Website • EPA Algal Toxin Risk Assessment and Management Strategic Plan for Drinking Water Document • USGS Drinking Water Exposure to Chemical and Pathogenic Contaminants: Algal Toxins and Water Quality Website Open Water Resources • CDC Healthy Swimming Website - Oceans, Lakes, Rivers • EPA State Resources Website • EPA Beach Act Website • EPA Beach Advisory and Closing On-line Notification (BEACON) • USG Guidelines for Design and Sampling for Cyanobacterial Toxin and Taste-and-Odor Studies in Lakes and Reservoirs • NALMS Inland HAB Program • NOAA Illinois-Indiana and Michigan Sea Grant Beach Manager’s Manual • USGS Field and Laboratory Guide -
Habs in UPWELLING SYSTEMS
GEOHAB CORE RESEARCH PROJECT: HABs IN UPWELLING SYSTEMS 1 GEOHAB GLOBAL ECOLOGY AND OCEANOGRAPHY OF HARMFUL ALGAL BLOOMS GEOHAB CORE RESEARCH PROJECT: HABS IN UPWELLING SYSTEMS AN INTERNATIONAL PROGRAMME SPONSORED BY THE SCIENTIFIC COMMITTEE ON OCEANIC RESEARCH (SCOR) AND THE INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION (IOC) OF UNESCO EDITED BY: G. PITCHER, T. MOITA, V. TRAINER, R. KUDELA, P. FIGUEIRAS, T. PROBYN BASED ON CONTRIBUTIONS BY PARTICIPANTS OF THE GEOHAB OPEN SCIENCE MEETING ON HABS IN UPWELLING SYSTEMS AND THE GEOHAB SCIENTIFIC STEERING COMMITTEE February 2005 3 This report may be cited as: GEOHAB 2005. Global Ecology and Oceanography of Harmful Algal Blooms, GEOHAB Core Research Project: HABs in Upwelling Systems. G. Pitcher, T. Moita, V. Trainer, R. Kudela, P. Figueiras, T. Probyn (Eds.) IOC and SCOR, Paris and Baltimore. 82 pp. This document is GEOHAB Report #3. Copies may be obtained from: Edward R. Urban, Jr. Henrik Enevoldsen Executive Director, SCOR Programme Co-ordinator Department of Earth and Planetary Sciences IOC Science and Communication Centre on The Johns Hopkins University Harmful Algae Baltimore, MD 21218 U.S.A. Botanical Institute, University of Copenhagen Tel: +1-410-516-4070 Øster Farimagsgade 2D Fax: +1-410-516-4019 DK-1353 Copenhagen K, Denmark E-mail: [email protected] Tel: +45 33 13 44 46 Fax: +45 33 13 44 47 E-mail: [email protected] This report is also available on the web at: http://www.jhu.edu/scor/ http://ioc.unesco.org/hab ISSN 1538-182X Cover photos courtesy of: Vera Trainer Teresa Moita Grant Pitcher Copyright © 2005 IOC and SCOR. -
Harmful Algal Blooms (Habs) and Desalination: a Guide to Impacts, Monitoring, and Management
Manuals and Guides 78 Harmful Algal Blooms (HABs) and Desalination: A Guide to Impacts, Monitoring, and Management Edited by: Donald M. Anderson, Siobhan F.E. Boerlage, Mike B. Dixon UNESCO Manuals and Guides 78 Intergovernmental Oceanographic Commission Harmful Algal Blooms (HABs) and Desalination: A Guide to Impacts, Monitoring and Management Edited by: Donald M. Anderson* Biology Department, Woods Hole Oceanographic Institution Woods Hole, MA 02543 USA Siobhan F. E. Boerlage Boerlage Consulting Gold Coast, Queensland, Australia Mike B. Dixon MDD Consulting, Kensington Calgary, Alberta, Canada *Corresponding Author’s email: [email protected] UNESCO 2017 Bloom prevention and control 7 BLOOM PREVENTION AND CONTROL Clarissa R. Anderson1, Kevin G. Sellner2, and Donald M. Anderson3 1University of California, Santa Cruz, Santa Cruz, CA USA 2Chesapeake Research Consortium, Edgewater MD USA 3Woods Hole Oceanographic Institution, Woods Hole MA USA 7.1 Introduction ........................................................................................................................................... 205 7.2 Bloom prevention .................................................................................................................................. 207 7.2.1 Nutrient load reduction .................................................................................................................. 207 7.2.2 Nutrient load ................................................................................................................................. -
Harmful Algal Blooms
NSF GK-12 Graduate Fellows Program Award # DGE-0139171 University of North Carolina at Wilmington Harmful Algal Blooms by Tika Knierim, Department of Chemistry This activity is aligned with the 2001 North Carolina Standard Course of Study for 8th Grade Science: Goal # 1 & 2 Algal species sometimes make their presence known as a massive “bloom” of cells that may discolor the water These “blooms” alter marine habitats Every coastal state has reported major blooms Although they are referred to as harmful algal blooms, not all HABs are toxic Toxic blooms are caused by algae that produce potent toxins that can cause massive fish kills, marine mammal deaths, and human illness There are several types of toxins produced by these harmful algae. .commonly the toxins affect the functioning of nerve and muscle cells Toxic blooms have been responsible for causing diarrhea, vomiting, numbness, dizziness, paralysis, and even death The key is how the toxins move through the food web The key to this scenario is bioaccumulation!! BIOACCUMULATION is the process by which compounds accumulate or build up in an organism at a faster rate than they can be broken down. Some organisms, such as krill, mussels, anchovies, and mackerel, have been found to retain toxins in their bodies Today we are going to do a little activity in order to better understand the concept of bioaccumulation and how toxins are transferred through the food chain. Each person will be assigned one of the following organisms: Krill: Seal: Fish: Killer Whale: There is an outbreak of a Harmful Algal Bloom within the boundaries of this classroom, and there is algae (green beads) spread all over the area.