Classification and Phylogeny of the Superfamily Platanistoidea, with Notes on Evidence of the Monophyly of the Cetacea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2017 377 Encyclopedia of Whales, Dolphins and Porpoises
2017 BOOK REVIEWS 377 Encyclopedia of Whales, Dolphins and Porpoises By Erich Hoyt. 2017. Firefly Books. 300 pages, 49.95 CAD, Cloth. Written by a British-based, dual-citizen Canadian tion that individual animals could be photographed and who is a research scientist, conservationist, and author, identified by distinctive species-specific features, such the Encyclopedia of Whales, Dolphins and Porpoises as flukes, dorsal fins, pigmentation patterns, scars, and provides an interesting and beautiful global overview wounds. this led to great advances in previously dif- of cetaceans. Part pictorial guide, part research over - ficult areas to research such as migration, distribution, view, part coffee table book, and part call to action, and social behaviour. In a general book such as this and brimming with incredibly beautiful photographs obviously not all biological facts can be provided, but showing cetaceans in action, this book will appeal to it does provide an interesting and sometimes astound- many readers in its attractive, easy-to-read format. ing array of biological information. It is quite enlight- the reader will learn a great deal. the book contains ening how little is still known about some cetacean many interesting facts about this hugely popular yet species, even breeding areas and species taxonomy, mystical group of marine mammals. In recounting the and how recently much of the known scientific infor- history of cetacean research and monitoring, the author mation has been gathered. It was sobering to learn that emphasized the major progress made with the realiza- almost half of all cetaceans globally are considered 378 THE CANADIAN FIELD -N ATURALIST Vol. -
The Gonads of the South American Dolphins, Inia Geoffrensis, Pontoporia Blainvillei, and Sotalia Fluviatilis
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 5-1971 The Gonads of the South American Dolphins, Inia geoffrensis, Pontoporia blainvillei, and Sotalia fluviatilis Richard J. Harrison Robert L. Brownell Jr. US Fish and Wildlife Service, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Part of the Environmental Sciences Commons Harrison, Richard J. and Brownell, Robert L. Jr., "The Gonads of the South American Dolphins, Inia geoffrensis, Pontoporia blainvillei, and Sotalia fluviatilis" (1971). Publications, Agencies and Staff of the U.S. Department of Commerce. 92. https://digitalcommons.unl.edu/usdeptcommercepub/92 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Mammalogy, Vol. 52, No. 2 (May, 1971), pp. 413-419 THE GONADS OF THE SOUTH AMERICAN DOLPHINS, INIA GEOFFRENSIS, PONTOPORIA BLAINVILLEI, AND SOTALIA FLUVIATILIS RICHARD J. HARRISON AND ROBERT L. BROWNELL, JR. ABSTRACT.-Theappearances of the gonads are described in males and females of 18 Inia geoffrensis, 11 Pontoporia blainvillei, and eight Sotalia fluviatilis from South America. Males of I. geoffrensis become sexually active at a length of about 228 centimeters, females at 175 to 180 centimeters. Length at birth is 76 to 80 centimeters; parturition occurs from about July to September in the upper Amazon. -
Living Between Rapids: Genetic Structure and Hybridization in Botos (Cetacea: Iniidae: Inia Spp.) of the Madeira River, Brazil
bs_bs_banner Biological Journal of the Linnean Society, 2015, 114, 764–777. With 5 figures Living between rapids: genetic structure and hybridization in botos (Cetacea: Iniidae: Inia spp.) of the Madeira River, Brazil WALESKA GRAVENA1,2*, VERA M. F. DA SILVA2, MARIA N. F. DA SILVA3, IZENI P. FARIAS1 and TOMAS HRBEK1 1Laboratório de Evolução e Genética Animal (LEGAL), Departamento de Genética, Universidade Federal do Amazonas, Av. General Rodrigo Otávio Jordão, 3000, 69077-000, Manaus, Amazonas, Brazil 2Laboratório de Mamíferos Aquáticos, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, 69011-970, Manaus, Amazonas, Brazil 3Coleção de Mamíferos, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, 69011-970, Manaus, Amazonas, Brazil Received 2 September 2014; revised 14 November 2014; accepted for publication 15 November 2014 Until the recent construction of hydroelectric dams, a series of 18 rapids divided the upper and lower Madeira River, and these rapids were thought to separate two species of Amazonian freshwater dolphins (boto): Inia boliviensis (above) and I. geoffrensis (below). Some reports and articles, however, mention the occurrence of botos within the rapids region and that they occasionally cross the rapids, but without mentioning the species concerned. Based on our previous studies, it is likely that I. boliviensis occurs in the region of the rapids. To test this supposition, we sampled 18 individuals from this region, and collected mitochondrial (control region, cytochrome b and cytochrome oxidase I) and nuclear (10 microsatellite loci) DNA data, in order to test if there is connectivity between the dolphins that were found within the rapids region and dolphins collected upstream and downstream of the rapids, and investigate population structuring between these localities. -
List of Marine Mammal Species and Subspecies Written by The
List of Marine Mammal Species and Subspecies Written by the Committee on Taxonomy The Ad-Hoc Committee on Taxonomy , chaired by Bill Perrin, has produced the first official SMM list of marine mammal species and subspecies. Consensus on some issues was not possible; this is reflected in the footnotes. This list will be revisited and possibly revised every few months reflecting the continuing flux in marine mammal taxonomy. This list can be cited as follows: “Committee on Taxonomy. 2009. List of marine mammal species and subspecies. Society for Marine Mammalogy, www.marinemammalscience.org, consulted on [date].” This list includes living and recently extinct species and subspecies. It is meant to reflect prevailing usage and recent revisions published in the peer-reviewed literature. Author(s) and year of description of the species follow the Latin species name; when these are enclosed in parentheses, the species was originally described in a different genus. Classification and scientific names follow Rice (1998), with adjustments reflecting more recent literature. Common names are arbitrary and change with time and place; one or two currently frequently used in English and/or a range language are given here. Additional English common names and common names in French, Spanish, Russian and other languages are available at www.marinespecies.org/cetacea/ . The cetaceans genetically and morphologically fall firmly within the artiodactyl clade (Geisler and Uhen, 2005), and therefore we include them in the order Cetartiodactyla, with Cetacea, Mysticeti and Odontoceti as unranked taxa (recognizing that the classification within Cetartiodactyla remains partially unresolved -- e.g., see Spaulding et al ., 2009) 1. -
List of Marine Mammal Species and Subspecies
List of Marine Mammal Species and Subspecies Introduction The Committee on Taxonomy, chaired by Patricia Rosel, produced the first official Society for Marine Mammalogy list of marine mammal species and subspecies in 2010. Consensus on some issues has not been possible; this is reflected in the footnotes. The list is updated at least annually. The current version was updated in May 2020. This list can be cited as follows: “Committee on Taxonomy. 2019. List of marine mammal species and subspecies. Society for Marine Mammalogy, www.marinemammalscience.org, consulted on [date].” This list includes living and recently extinct (within historical times) species and subspecies. It is meant to reflect prevailing usage and recent revisions published in the peer-reviewed literature. Classification and scientific names follow Rice (1998), with adjustments reflecting more recent literature. Author(s) and year of description of each taxon follow the Latin (scientific) species name; when these are enclosed in parentheses, the taxon was originally described in a different genus. The Committee annually considers and evaluates new, peer-reviewed literature that proposes taxonomic changes. The Committee’s focus is on alpha taxonomy (describing and naming taxa) and beta taxonomy primarily at lower levels of the hierarchy (subspecies, species and genera), although it may evaluate issues at higher levels if deemed necessary. Proposals for new, taxonomically distinct taxa require a formal, peer-reviewed study and should provide robust evidence that some subspecies or species criterion was met. For review of species concepts, see Reeves et al. (2004), Orr and Coyne (2004), de Queiroz (2007), Perrin (2009) and Taylor et al. -
THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost. -
Cetaceans: Whales and Dolphins
CETACEANS: WHALES AND DOLPHINS By Anna Plattner Objective Students will explore the natural history of whales and dolphins around the world. Content will be focused on how whales and dolphins are adapted to the marine environment, the differences between toothed and baleen whales, and how whales and dolphins communicate and find food. Characteristics of specific species of whales will be presented throughout the guide. What is a cetacean? A cetacean is any marine mammal in the order Cetaceae. These animals live their entire lives in water and include whales, dolphins, and porpoises. There are 81 known species of whales, dolphins, and porpoises. The two suborders of cetaceans are mysticetes (baleen whales) and odontocetes (toothed whales). Cetaceans are mammals, thus they are warm blooded, give live birth, have hair when they are born (most lose their hair soon after), and nurse their young. How are cetaceans adapted to the marine environment? Cetaceans have developed many traits that allow them to thrive in the marine environment. They have streamlined bodies that glide easily through the water and help them conserve energy while they swim. Cetaceans breathe through a blowhole, located on the top of their head. This allows them to float at the surface of the water and easily exhale and inhale. Cetaceans also have a thick layer of fat tissue called blubber that insulates their internals organs and muscles. The limbs of cetaceans have also been modified for swimming. A cetacean has a powerful tailfin called a fluke and forelimbs called flippers that help them steer through the water. Most cetaceans also have a dorsal fin that helps them stabilize while swimming. -
Marine Mammal Noise Exposure Criteria: Updated Scientific Recommendations for Residual Hearing Effects Brandon L
Aquatic Mammals 2019, 45(2), 125-232, DOI 10.1578/AM.45.2.2019.125 Marine Mammal Noise Exposure Criteria: Updated Scientific Recommendations for Residual Hearing Effects Brandon L. Southall,1, 2 James J. Finneran,3 Colleen Reichmuth,2 Paul E. Nachtigall,4 Darlene R. Ketten,5, 6 Ann E. Bowles,7 William T. Ellison,8 Douglas P. Nowacek,9, 10 and Peter L. Tyack5, 11 1Southall Environmental Associates, Inc., 9099 Soquel Drive #8, Aptos, CA 95003, USA E-mail: [email protected] 2Institute of Marine Sciences, Long Marine Laboratory, University of California, Santa Cruz, Santa Cruz, CA 95060, USA 3U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, CA 92152, USA 4Hawaii Institute of Marine Biology, University of Hawaii, 46-007 Lilipuna Road, Kaneohe, HI 96744, USA 5Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 6Harvard Medical School, Department of Otology and Laryngology, Boston, MA 02114, USA 7Hubbs-SeaWorld Research Institute, 2595 Ingraham Street, San Diego, CA 92109, USA 8Marine Acoustics, Inc., 2 Corporate Place, Middletown, RI 02840, USA 9 Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 28516, USA 10Pratt School of Engineering, Duke University, Durham, NC 27708, USA 11Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB, Scotland This publication is dedicated with great respect and admiration to Dr. Jeanette Thomas who was an original panel member, valued colleague, and dear friend. Jeanette was a champion of marine mammal science who set higher standards for all in terms of scholarship, integrity, and professionalism. -
Food Consumption and Body Measurements of Amazon River Dolphins (Inia Geoffrensis)
Aquatic Mammals 1999, 25.3, 173–182 Food consumption and body measurements of Amazon river dolphins (Inia geoffrensis) R. A. Kastelein1, B. Neurohr2, S. H. Nieuwstraten1 and P. R. Wiepkema3 1Harderwijk Marine Mammal Park, Strandboulevard Oost 1, 3841 AB Harderwijk, The Netherlands 2Tiergarten Nu¨rnberg, Am Tiergarten 30, D90480 Nu¨rnberg, Germany 3Emeritus Professor of Ethology, Wageningen Agricultural University, Stationsweg 1, 6861 EA Oosterbeek, The Netherlands Abstract dolphin is the most widespread freshwater dolphin in the world, its distribution is limited compared to This report is on the food consumption of 3 male that of most marine odontocetes and it is therefore Amazon river dolphins which were housed in water very likely to become a threatened species. For the of between 27 and 29 C at Duisburg Zoo, management of Amazon river dolphins in the wild, Germany. The food consumption of 2 animals was information is needed about the population size, recorded for 17 successive complete calendar years, age composition and sex ratio, seasonal distribu- that of the third animal for 3 complete successive tion, diet, energy requirements relative to seasonal years. In male 002 the total annual food intake prey distribution and density, and about competi- increased to 1280 kg at the age of 10 years, after tion with other animals and with fisheries. This which it decreased slightly and stabilised at around information could facilitate prey management 1170 kg/year. Male 001 was adult on arrival at the to allow for a certain number of Amazon river zoo. His annual food intake fluctuated at around dolphins in their distribution area. -
Global Patterns in Marine Mammal Distributions
SUPPLEMENTARY INFORMATION I. TAXONOMIC DECISIONS In this work we followed Wilson and Reeder (2005) and Reeves, Stewart, and Clapham’s (2002) taxonomy. In the last 20 years several new species have been described such as Mesoplodon perrini (Dalebout 2002), Orcaella heinsohni (Beasley 2005), and the recognition of several species have been proposed for orcas (Perrin 1982, Pitman et al. 2007), Bryde's whales (Kanda et al. 2007), Blue whales (Garrigue et al. 2003, Ichihara 1996), Tucuxi dolphin (Cunha et al. 2005, Caballero et al. 2008), and other marine mammals. Since we used the conservation status of all species following IUCN (2011), this work is based on species recognized by this IUCN to keep a standardized baseline. II. SPECIES LIST List of the species included in this paper, indicating their conservation status according to IUCN (2010.4) and its range area. Order Family Species IUCN 2010 Freshwater Range area km2 Enhydra lutris EN A2abe 1,084,750,000,000 Mustelidae Lontra felina EN A3cd 996,197,000,000 Odobenidae Odobenus rosmarus DD 5,367,060,000,000 Arctocephalus australis LC 1,674,290,000,000 Arctocephalus forsteri LC 1,823,240,000,000 Arctocephalus galapagoensis EN A2a 167,512,000,000 Arctocephalus gazella LC 39,155,300,000,000 Arctocephalus philippii NT 163,932,000,000 Arctocephalus pusillus LC 1,705,430,000,000 Arctocephalus townsendi NT 1,045,950,000,000 Carnivora Otariidae Arctocephalus tropicalis LC 39,249,100,000,000 Callorhinus ursinus VU A2b 12,935,900,000,000 Eumetopias jubatus EN A2a 3,051,310,000,000 Neophoca cinerea -
Vaquitas and Gillnets: Mexico’S Ultimate Cetacean Conservation Challenge
Vol. 21: 77–87, 2013 ENDANGERED SPECIES RESEARCH Published online July 3 doi: 10.3354/esr00501 Endang Species Res Contribution to the Theme Section: ‘Techniques for reducing bycatch of marine mammals in gillnets’ FREEREE ACCESSCCESS Vaquitas and gillnets: Mexico’s ultimate cetacean conservation challenge Lorenzo Rojas-Bracho1,*, Randall R. Reeves2 1Coordinación de Investigación y Conservación de Mamíferos Marinos, Instituto Nacional de Ecología y Cambio Climático, C/o CICESE Carretera Ensenada-Tijuana 3918, Ensenada BC 22860, México 2Okapi Wildlife Associates, 27 Chandler Lane, Hudson, Quebec J0P 1H0, Canada ABSTRACT: There is a high risk that incidental mortality (bycatch) in gillnets will lead to extinc- tion of the vaquita Phocoena sinus, a small porpoise endemic to Mexico’s northern Gulf of Califor- nia. A zoned Biosphere Reserve established in 1993 proved ineffective at slowing the population’s decline, and in 2005, a Vaquita Refuge was declared. The Refuge Program included a ban on gill- netting and trawling in certain areas with relatively high densities of vaquitas. However, it was not until 2008, with the introduction of a Species Conservation Action Plan for Vaquita (PACE- Vaquita), that a comprehensive protection and recovery effort was introduced. Unfortunately, valuable time was lost as officials first needed to bring order to a poorly managed fishery manage- ment system. Also, the voluntary nature of fisherman participation and the chronic deficiency of enforcement have limited PACE’s effectiveness. Although efforts to implement the plan probably slowed the vaquita’s decline, the goal of eliminating gillnets (and thus most vaquita bycatch) by 2012 was not reached. This example shows the difficulty of achieving conservation when the pro- gram’s rationale centers on the preservation of biodiversity with less emphasis on meeting com- munity aspirations. -
An Introduction to Marine Mammals: with a Focus on India
An Introduction to Marine Mammals: With a focus on India Mridula Srinivasan, Ph.D. Terra Marine Research Institute 2/14/2014 2013 Timi-Kurm Festival 1 Roadmap Marine Mammal Basics Why Marine Mammals are Unique Marine Mammal Types Cetaceans Cetaceans of India Studying Marine Mammals 2/14/2014 2 Mammals BASICS Nurse young Have hair Warm blooded Four-chambered heart Parental Care Lungs to breathe Same core body temperature 2/14/2014 3 Marine Mammal BASICS Nurse young Have hair Warm blooded Four-chambered heart Parental Care Lungs to breathe Same core body temperature 2/14/2014 4 Marine Mammal Basics Cont.… Gestation period range: 10-17.5 months 1 – 3 year birth interval breeding – migration (only whales) – feeding – calving – lactation – weaning – resting/playing 2/14/2014 5 Hippopotamus - Whales & Dolphins Bears - Seals Manatees & Dugongs - ELEPHANTS 2/14/2014 6 Whale Evolution VIDEO 2/14/2014 7 What makes marine mammals unique ? Breath holding (High Myoglobin) Live and reproduce for the most part in water Deep divers May drink salt water, get water from prey Longest migrations Blubber/fur (insulation) 2/14/2014 8 • Above and below water • No eyelashes • More rods then cones/some color vision http://2/14/2014cetus.ucsd.edu/voicesinthesea_org/videos/videos.html (VOICES OF THE SEA) 9 ~78 SPECIES OF WHALES, DOLPHINS, PORPOISES 2/14/2014 10 4 species (manatees and dugong) 2/14/2014 11 ~33 species of seals, sea lions, walrus 2/14/2014 12 Sea Otters Polar Bears Marine - related to weasels, Depend on ocean for food badgers,2/14/2014 river otters