PC Anti-Virus Protection 2011

Total Page:16

File Type:pdf, Size:1020Kb

PC Anti-Virus Protection 2011 PC Anti-Virus Protection 2011 12 POPULAR ANTI-VIRUS PROGRAMS COMPARED FOR EFFECTIVENESS Dennis Technology Labs, 03/08/2010 www.DennisTechnologyLabs.com This test aims to compare the effectiveness of the most recent releases of popular anti-virus software1. The products include those from Kaspersky, McAfee, Microsoft, Norton (Symantec) and Trend Micro, as well as free versions from Avast, AVG and Avira. Other products include those from BitDefender, ESET, G-Data and K7. The tests were conducted between 07/07/2010 and 22/07/2010 using the most up to date versions of the software available. A total of 12 products were exposed to genuine internet threats that real customers could have encountered during the test period. Crucially, this exposure was carried out in a realistic way, reflecting a customer’s experience as closely as possible. For example, each test system visited real, infected websites that significant numbers of internet users were encountering at the time of the test. These results reflect what would have happened if those users were using one of the seven products tested. EXECUTIVE SUMMARY Q Products that block attacks early tended to protect the system more fully The nature of web-based attacks means that the longer malware has access to a system, the more chances it has of downloading and installing further threats. Products that blocked the malicious and infected websites from the start reduced the risk of compromise by secondary and further downloads. Q 100 per cent protection is rare This test recorded an average protection rate of 87.5 per cent. New threats appear online frequently and it is inevitable that there will be times when specific security products are unable to protect from some of these threats. Q The products rarely blocked the installation of legitimate applications There were a number of cases in which the anti-virus programs warned against allowing legitimate applications full access to the system and the network. However, they rarely blocked these applications from installing . Simon Edwards, Dennis Technology Labs 1 The latest available products were used in the test: Avast! Free AntiVirus 5 K7 Total Security 10 AVG Anti-Virus Free Edition 9 Kaspersky Internet Security 2011 Avira Personal - Free Antivirus 10 McAfee Internet Security 2010 BitDefender Internet Security 2010 Microsoft Security Essentials ESET Smart Security 4 Norton Internet Security 2011 G Data InternetSecurity 2011 Trend Micro Internet Security 2010 PC Anti-Virus Protection 2011 Page 1 of 60 CONTENTS Executive summary ........................................................................................................................................ 1 Contents ......................................................................................................................................................... 2 1. Overall Accuracy ........................................................................................................................................ 3 2. Overall Protection ...................................................................................................................................... 5 3. Protection Details ....................................................................................................................................... 7 4. False Positives ............................................................................................................................................. 9 5. The tests ................................................................................................................................................... 14 6. Test details ................................................................................................................................................ 16 7. Conclusions .............................................................................................................................................. 20 Appendix A: Terms ...................................................................................................................................... 21 Appendix B: Legitimate Samples .................................................................................................................. 22 Appendix C: Threat report .......................................................................................................................... 26 Appendix D: Tools ....................................................................................................................................... 59 Appendix E: Terms of the test ..................................................................................................................... 60 PC Anti-Virus Protection 2011 Page 2 of 60 1. OVERALL ACCURACY Each product has been scored for its accuracy in detecting and handling malware. We awarded two points for defending against a threat, one for neutralizing it and deducted two points every time a product allowed the system to be compromised. The reason behind this score weighting is to give credit to products that deny malware an opportunity to tamper with the system and to penalize those that allow malware to damage it. In some of our test cases a compromised system was made unstable, or even unusable without expert knowledge. Even if active malware was removed, we considered such damaged systems to count as being compromised. The Norton product defended against all threats so it scores a full 80 marks. It was the only product to avoid being compromised by the internet threats. Kaspersky's product came a close second, losing points due to neutralizing two threats and being compromised by one. Accuracy Scores 80 70 60 50 40 30 20 10 0 The Symantec (Norton) product was the only one to protect against all the internet threats used. PC Anti-Virus Protection 2011 Page 3 of 60 ACCURACY SCORES Target Target Target Overall Product Defended Neutralized Compromised Accuracy Norton Internet Security 2011 40 0 0 80 Kaspersky Internet Security 2011 37 2 1 74 ESET Smart Security 4 34 4 2 68 Avast! Free AntiVirus 5 35 2 3 66 G Data InternetSecurity 2011 32 3 5 57 Avira Personal - Free Antivirus 10 29 4 7 48 Trend Micro Internet Security 2010 23 11 6 45 AVG Anti-Virus Free Edition 9 23 11 6 45 BitDefender Internet Security 2010 29 2 9 42 McAfee Internet Security 23 6 11 30 Microsoft Security Essentials 22 4 14 20 K7 Total Security 10 20 5 15 15 PC Anti-Virus Protection 2011 Page 4 of 60 2. OVERALL PROTECTION The following illustrates the general level of protection provided by each of the security products, combining the defended and neutralized incidents into an overall figure. This figure is not weighted with an arbitrary scoring system as it was in 1. Overall accuracy. The average protection levels afforded by the tested products, when exposed to the threats used in this test, was 87.5 per cent. Above average products included those from Symantec (Norton), Kaspersky, ESET, Avast! And G Data. Only one of these was free (Avast). Overall Protection Scores 40 30 20 10 0 The only free product that performed above average was Avast! Free AntiVirus 5. PC Anti-Virus Protection 2011 Page 5 of 60 OVERALL PROTECTION SCORES Product Protected Incidents Percentage of incidents Norton Internet Security 2011 40 100% Kaspersky Internet Security 2011 39 98% ESET Smart Security 4 38 95% Avast! Free AntiVirus 5 37 93% G Data InternetSecurity 2011 35 88% AVG Anti-Virus Free Edition 9 34 85% Trend Micro Internet Security 2010 34 85% Avira Personal - Free Antivirus 10 33 83% BitDefender Internet Security 2010 31 78% McAfee Internet Security 29 73% Microsoft Security Essentials 26 65% K7 Total Security 10 25 63% (Average: 87.5 per cent) PC Anti-Virus Protection 2011 Page 6 of 60 3. PROTECTION DETAILS The security products provided different levels of protection. When a product defended against a threat, it prevented the malware from gaining a foothold on the target system. A threat might have been able to infect the system and, in some cases, the product neutralized it later. When it couldn’t, the system was compromised. The graph below shows that the most successful products tended to defend, rather than neutralize, the threats. Between them the top five products only neutralized 11 threats, while they defended a total of 178. They were compromised 11 times. The five least effective products, on the other hand, neutralized 21 threats and defended just 123. They were compromised a total of 56 times. Protection Details 40 35 30 25 20 15 10 5 0 Target Compromised Target Neutralized Target Defended The most successful products tended to defend rather than neutralize, blocking the threats early in the attack. PC Anti-Virus Protection 2011 Page 7 of 60 PROTECTION DETAILS Product Target Defended Target Neutralized Target Compromised Norton Internet Security 2011 40 0 0 Kaspersky Internet Security 37 2 1 2011 ESET Smart Security 4 34 4 2 Avast! Free AntiVirus 5 35 2 3 G Data InternetSecurity 2011 32 3 5 AVG Anti-Virus Free Edition 23 11 6 9 Trend Micro Internet Security 23 11 6 2010 Avira Personal - Free 29 4 7 Antivirus 10 BitDefender Internet Security 29 2 9 2010 McAfee Internet Security 23 6 11 Microsoft Security Essentials 22 4 14 K7 Total Security 10 20 5 15 PC Anti-Virus Protection 2011 Page 8 of 60 P Whenlegitimate work properly. productneedstobeableprotectthesystem A security levels 4.1 Falsepositive 4. into twomaingroupsbecausetheprod The graph below includes the number and type and includesthenumber The graphbelow This
Recommended publications
  • Fortinet's March Threatscape Report Shows Domination of Ransomware and Troublesome Zero-Day
    Fortinet's March Threatscape Report Shows Domination of Ransomware and Troublesome Zero-Day Rise of Ransomware Is Primarily Driven by Bredolab and Pushdo Botnets SUNNYVALE, CA, Apr 01, 2010 (MARKETWIRE via COMTEX News Network) -- Fortinet(R) (NASDAQ: FTNT) -- a leading network security provider and worldwide leader of unified threat management (UTM) solutions -- today announced its March 2010 Threatscape report showed domination of ransomware threats with nine of the detections in the malware top ten list resulting in either scareware or ransomware infesting the victim's PC. Fortinet observed the primary drivers behind these threats to be two of the most notorious botnet "loaders" -- Bredolab and Pushdo. Another important finding is the aggressive entrance of a new zero-day threat in FortiGuard's top ten attack list, MS.IE.Userdata.Behavior.Code.Execution, which accounted for 25 percent of the detected activity last month. Key threat activities for the month of March include: -- SMS-based Ransomware High Activity: A new ransomware threat -- W32/DigiPog.EP -- appeared in Fortinet's top ten malware list. DigiPog is an SMS blocker using Russian language, locking out a system and aggressively killing off popular applications like Internet Explorer and Firefox until an appropriate code is entered into a field provided to the user. To obtain the code, a user must send an SMS message to the provided number, receiving a code in return. Upon execution, DigiPog registers the user's MAC address with its server. It is the first time that SMS-based ransomware enters Fortinet's top ten list, showing that the rise of ransomware is well on its way.
    [Show full text]
  • Symantec Report on Rogue Security Software July 08 – June 09
    REPORT: SYMANTEC ENTERPRISE SECURITY SYMANTEC REPORT: Symantec Report on Rogue Security Software July 08 – June 09 Published October 2009 Confidence in a connected world. White Paper: Symantec Enterprise Security Symantec Report on Rogue Security Software July 08 – June 09 Contents Introduction . 1 Overview of Rogue Security Software. 2 Risks . 4 Advertising methods . 7 Installation techniques . 9 Legal actions and noteworthy scam convictions . 14 Prevalence of Rogue Security Software . 17 Top reported rogue security software. 17 Additional noteworthy rogue security software samples . 25 Top rogue security software by region . 28 Top rogue security software installation methods . 29 Top rogue security software advertising methods . 30 Analysis of Rogue Security Software Distribution . 32 Analysis of Rogue Security Software Servers . 36 Appendix A: Protection and Mitigation. 45 Appendix B: Methodologies. 48 Credits . 50 Symantec Report on Rogue Security Software July 08 – June 09 Introduction The Symantec Report on Rogue Security Software is an in-depth analysis of rogue security software programs. This includes an overview of how these programs work and how they affect users, including their risk implications, various distribution methods, and innovative attack vectors. It includes a brief discussion of some of the more noteworthy scams, as well as an analysis of the prevalence of rogue security software globally. It also includes a discussion on a number of servers that Symantec observed hosting these misleading applications. Except where otherwise noted, the period of observation for this report was from July 1, 2008, to June 30, 2009. Symantec has established some of the most comprehensive sources of Internet threat data in the world through the Symantec™ Global Intelligence Network.
    [Show full text]
  • Rootkit- Rootkits.For.Dummies 2007.Pdf
    01_917106 ffirs.qxp 12/21/06 12:04 AM Page i Rootkits FOR DUMmIES‰ 01_917106 ffirs.qxp 12/21/06 12:04 AM Page ii 01_917106 ffirs.qxp 12/21/06 12:04 AM Page iii Rootkits FOR DUMmIES‰ by Larry Stevenson and Nancy Altholz 01_917106 ffirs.qxp 12/21/06 12:04 AM Page iv Rootkits For Dummies® Published by Wiley Publishing, Inc. 111 River Street Hoboken, NJ 07030-5774 www.wiley.com Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana Published by Wiley Publishing, Inc., Indianapolis, Indiana Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit- ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions. Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission.
    [Show full text]
  • The Most Common Blunder People Make When the Topic of a Computer Virus Arises Is to Refer to a Worm Or Trojan Horse As a Virus
    Trojan And Email Forging 1) Introduction To Trojan&viruses: A Trojan horse, or Trojan, in computing is a generally non-self-replicating type of malware program containing malicious code that, when executed, carries out actions determined by the nature of the Trojan, typically causing loss or theft of data, and possible system harm. The term is derived from the story of the wooden horse used to trick defenders of Troy into taking concealed warriors into their city in ancient Anatolia, because computer Trojans often employ a form of social engineering, presenting themselves as routine, useful, or interesting in order to persuade victims to install them on their computers.[1][2][3][4][5] A Trojan often acts as a backdoor, contacting a controller which can then have unauthorized access to the affected computer.[6] While Trojans and backdoors are not easily detectable by themselves, computers may appear to run slower due to heavy processor or network usage. Malicious programs are classified as Trojans if they do not attempt to inject themselves into other files (computer virus) or otherwise propagate themselves (worm).[7] A computer may host a Trojan via a malicious program a user is duped into executing (often an e-mail attachment disguised to be unsuspicious, e.g., a routine form to be filled in) or by drive-by download. The Difference Between a Computer Virus, Worm and Trojan Horse The most common blunder people make when the topic of a computer virus arises is to refer to a worm or Trojan horse as a virus. One common mistake that people make when the topic of a computer virus arises is to refer to a worm or Trojan horse as a virus.
    [Show full text]
  • Diapositiva 1
    Feliciano Intini Responsabile dei programmi di Sicurezza e Privacy di Microsoft Italia • NonSoloSecurity Blog: http://blogs.technet.com/feliciano_intini • Twitter: http://twitter.com/felicianointini 1. Introduction - Microsoft Security Intelligence Report (SIR) 2. Today‘s Threats - SIR v.8 New Findings – Italy view 3. Advancements in Software Protection and Development 4. What the Users and Industry Can Do The 8th volume of the Security Intelligence Report contains data and intelligence from the past several years, but focuses on the second half of 2009 (2H09) Full document covers Malicious Software & Potentially Unwanted Software Email, Spam & Phishing Threats Focus sections on: Malware and signed code Threat combinations Malicious Web sites Software Vulnerability Exploits Browser-based exploits Office document exploits Drive-by download attacks Security and privacy breaches Software Vulnerability Disclosures Microsoft Security Bulletins Exploitability Index Usage trends for Windows Update and Microsoft Update Microsoft Malware Protection Center (MMPC) Microsoft Security Response Center (MSRC) Microsoft Security Engineering Center (MSEC) Guidance, advice and strategies Detailed strategies, mitigations and countermeasures Fully revised and updated Guidance on protecting networks, systems and people Microsoft IT ‗real world‘ experience How Microsoft IT secures Microsoft Malware patterns around the world with deep-dive content on 26 countries and regions Data sources Malicious Software and Potentially Unwanted Software MSRT has a user base
    [Show full text]
  • CONTENTS in THIS ISSUE Fighting Malware and Spam
    AUGUST 2010 Fighting malware and spam CONTENTS IN THIS ISSUE 2 COMMENT EXPLOIT KITS UNDER SCRUTINY Apple pie order? Mark Davis documents how to create LAMP and WAMP servers and how to approach the study of 3 NEWS exploit kits in a local lab. page 8 VB2010 call for last-minute papers VB seminar DETECTING PHISHING All change Marius Tibeica describes an automated method of detecting phishing at the browser level based on the 3 VIRUS PREVALENCE TABLE tag structure of the HTML. page 11 4 TECHNICAL FEATURE VB100 CERTIFICATION ON Anti-unpacker tricks – part eleven WINDOWS VISTA With another epic haul of 54 8 TUTORIAL products to test this month, the VB Advanced exploit framework lab set-up test team could have done without Aug 2010 the bad behaviour of a number FEATURES of products: terrible product 11 HTML structure-based proactive phishing design, lack of accountability for detection activities, blatant false alarms in major software, numerous 15 What’s the deal with sender authentication? Part 3 problems detecting the WildList set, and some horrendous instability under pressure. Happily, there were also some good performances 21 COMPARATIVE REVIEW to balance things out. John Hawes has the details. Windows Vista Business Edition Service page 21 Pack 2 60 END NOTES & NEWS ISSN 1749-7027 COMMENT ‘Over 40% [of I’d contend that while ‘somewhat vulnerable’ might be about right for systems/application vulnerabilities computer users] and exposure to current malware, the fi gures would be think [that Macs are] more alarming if the survey were more focused on the vulnerability of users rather than systems.
    [Show full text]
  • Microsoft Security Intelligence Report
    Microsoft Security Intelligence Report Volume 12 July through December, 2011 www.microsoft.com/sir Microsoft Security Intelligence Report This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT. This document is provided “as-is.” Information and views expressed in this document, including URL and other Internet website references, may change without notice. You bear the risk of using it. Copyright © 2012 Microsoft Corporation. All rights reserved. The names of actual companies and products mentioned herein may be the trademarks of their respective owners. JULY–DECEMBER 2011 i Authors Dennis Batchelder David Felstead Ken Malcolmson Tim Rains Microsoft Protection Bing Microsoft Trustworthy Microsoft Trustworthy Technologies Computing Computing Paul Henry Shah Bawany Wadeware LLC Nam Ng Frank Simorjay Microsoft Windows Safety Microsoft Trustworthy Microsoft Trustworthy Platform Nitin Kumar Goel Computing Computing Microsoft Security Joe Blackbird Response Center Mark Oram Holly Stewart Microsoft Malware Microsoft Trustworthy Microsoft Malware Protection Center Jeff Jones Computing Protection Center Microsoft Trustworthy Eve Blakemore Computing Daryl Pecelj Matt Thomlinson Microsoft Trustworthy Microsoft IT Information Microsoft Trustworthy Computing Jimmy Kuo Security and Risk Computing Microsoft Malware Management Joe Faulhaber Protection Center Scott Wu Microsoft Malware Dave Probert Microsoft Malware Protection Center Marc Lauricella Microsoft
    [Show full text]
  • Implementing Rootkits to Identify Vulnerabilities
    Implementing Rootkits to Address Operating System Vulnerabilities Manuel Corregedor and Sebastiaan Von Solms Academy of Computer Science and Software Engineering, University of Johannesburg Johannesburg, South Africa {mrcorregedor, basievs}@uj.ac.za Abstract—Statistics show that although malware detection A rootkit is a malicious program or set of programs that techniques are detecting and preventing malware, they do not tries to hide its existence on an infected computer by attacking guarantee a 100% detection and / or prevention of malware. the Operating System (OS) by using one or a combination of This is especially the case when it comes to rootkits that can the following: modifying program binaries, hooking call tables manipulate the operating system such that it can distribute other such as the System Service Descriptor Table (SSDT) and the malware, hide existing malware, steal information, hide itself, Interrupt Descriptor Table (IDT) to hijack the kernel's control disable anti-malware software etc all without the knowledge of flow, modifying legitimate code to force a call to rootkit code the user. This paper will demonstrate the steps required in order or by using DKOM (Direct Kernel Object Manipulation) [9] to create two rootkits. We will demonstrate that by [10][11][12][13]. Rootkits are designed to fundamentally implementing rootkits or any other type of malware a researcher subvert the OS kernel and are capable of obtaining and will be able to better understand the techniques and maintaining unrestricted control and access within the vulnerabilities used by an attacker. Such information could then compromised system without even being detected by anti- be useful when implementing anti-malware techniques.
    [Show full text]
  • Microsoft Security Intelligence Report
    Microsoft Security Intelligence Report Volume 20 | July through December, 2015 Norway This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT. This document is provided “as-is.” Information and views expressed in this document, including URL and other Internet Web site references, may change without notice. You bear the risk of using it. Copyright © 2016 Microsoft Corporation. All rights reserved. The names of actual companies and products mentioned herein may be the trademarks of their respective owners. 2 NORWAY Norway The statistics presented here are generated by Microsoft security programs and services running on computers in Norway in 4Q15 and previous quarters. This data is provided from administrators or users who choose to opt in to provide data to Microsoft, using IP address geolocation to determine country or region. On computers running real-time security software, most attempts by malware to infect computers are blocked before they succeed. Therefore, for a comprehensive understanding of the malware landscape, it’s important to consider infection attempts that are blocked as well as infections that are removed. For this reason, Microsoft uses two different metrics to measure malware prevalence: Encounter rate is simply the percentage of computers running Microsoft real-time security products that report a malware encounter, whether the infection attempt succeds or not. Computers cleaned per mille, or CCM, is an infection rate metric that is defined as the number of computers cleaned for every 1,000 unique computers executing the Malicious Software Removal Tool (MSRT), a free tool distributed through Microsoft update services that removes more than 200 highly prevalent or serious threats from computers.
    [Show full text]
  • Information Security Primer from Social Engineering to SQL Injection...And Everything Beginning with P
    Information Security Primer From Social Engineering to SQL Injection...and Everything Beginning with P PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 18 Aug 2009 21:14:59 UTC Contents Articles It Begins with S 1 Social engineering (security) 1 Spyware 7 SQL injection 26 Bonus Material 34 Password cracking 34 References Article Sources and Contributors 41 Image Sources, Licenses and Contributors 43 Article Licenses License 44 1 It Begins with S Social engineering (security) Social engineering is the act of manipulating people into performing actions or divulging confidential information. While similar to a confidence trick or simple fraud, the term typically applies to trickery or deception for the purpose of information gathering, fraud, or computer system access; in most cases the attacker never comes face-to-face with the victim. Social engineering techniques and terms All social engineering techniques are based on specific attributes of human decision-making known as cognitive biases.[1] These biases, sometimes called "bugs in the human hardware," are exploited in various combinations to create attack techniques, some of which are listed here: Pretexting Pretexting is the act of creating and using an invented scenario (the pretext) to persuade a targeted victim to release information or perform an action and is typically done over the telephone. It is more than a simple lie as it most often involves some prior research or set up and the use of pieces of known information (e.g. for impersonation: date of birth, Social Security Number, last bill amount) to establish legitimacy in the mind of the target.
    [Show full text]
  • New Developments in Trojan Virus Engineering Author: Mengze Li ▪ Advisor: Sonja Streuber
    The Wars in Your Machine: New Developments in Trojan Virus Engineering Author: Mengze Li ▪ Advisor: Sonja StreuBer INTRODUCTION THREE NEW TROJANS Definition: Shedun: Android Trojan Cockroach Trojan Polymorphic JavaScript Trojan The Trojan Virus is a malicious computer program that is used to • Runs on Android mobile devices; has been seen pre- • Steals the sensitive data, such as user name, • Spread as email attachments compromise a computer by fooling users about its real intent. installed on cellphones and tablets from China. password, time, date, email, and every key stroke • In different emails, the cipher, string literals • Downloads and installs adware; launches popup and emails the data back to the host. and variable names are different which • Unlike computer viruses, or worms, the Trojan does not directly advertisements • Spread among Windows PCs through USB drives. makes itself less detectable. attack operating systems • Roughly 20,000 popular Android applications • Very hard to detect with anti-virus software. • Meant to be run from disk, which gives it • Modern forms act as a backdoor to grant access without infected (Twitter, Facebook, Snapchat, etc.) permissions to attack system globally. authorization. Analysis • Help attackers to break the confidentiality, integrity and Analysis Analysis availability of data • Can cause a huge impact to both, private users and public organizations, such as exposing the user’s credit card information, or other personal identity information (PII). Method: • Variable names and string literals encoded. • In this study, we are reviewing and analyzing the actual code of three famous modern Trojans in order to learn their most • Transmit target email with Transmit.exe file.
    [Show full text]
  • SHS Branding LAUNCH
    MESSAGELABS INTELLIGENCE MESSAGELABS INTELLIGENCE FEBRUARY 2010 Spam Surges in February while Message Size Shrinks Welcome to the February edition of the MessageLabs Intelligence monthly report. This report provides the latest threat trends for February 2010 to keep you informed regarding the ongoing fight against viruses, spam and other unwelcome content. REPORT HIGHLIGHTS Spam – 89.4% in February (an increase of 5.5% since January) Viruses – One in 302.8 emails in February contained malware (an increase of 0.02% since January) Phishing – One in 456.3 emails comprised a phishing attack (an increase of 0.04% since January) Malicious websites – 4,998 websites blocked per day (an increase of 184% since January) 41.6% of all malicious domains blocked were new in February (a decrease of 0.1% since January) 13.3 of all web-based malware blocked was new in February (an increase of 1.2% since January) Grum and Rustock to Blame for February Spam Surge While Volume Grows, Spam File Size Shrinks Waledac Botnet Makes a Comeback before its Demise Olympics-Themed Targeted Malware Gumblar Update REPORT ANALYSIS Grum and Rustock to Blame for Surge in February Spam As expected this time of year, spammers launched a number of spam campaigns related to St. Valentine‟s Day, celebrated on February 14. Around this time, spammers often change their spam runs to include references to the special date. However, the 5.5% increase in spam this month cannot be completely blamed on St. Valentine‟s Day alone. Figure 1 highlights the most recent spam surges in February, and further analysis reveals the underlying cause of these increases.
    [Show full text]