CHARACTERIZATION of the CASZ1-DEPENDENT MECHANISMS ESSENTIAL for CARDIOMYOCYTE DEVELOPMENT Kerry M. Dorr a Dissertation Submitte

Total Page:16

File Type:pdf, Size:1020Kb

CHARACTERIZATION of the CASZ1-DEPENDENT MECHANISMS ESSENTIAL for CARDIOMYOCYTE DEVELOPMENT Kerry M. Dorr a Dissertation Submitte CHARACTERIZATION OF THE CASZ1-DEPENDENT MECHANISMS ESSENTIAL FOR CARDIOMYOCYTE DEVELOPMENT Kerry M. Dorr A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Genetics and Molecular Biology in the School of Medicine. Chapel Hill 2015 Approved by: Frank Conlon Terry Magnuson Li Qian Joan Taylor Andy Wessels © 2015 Kerry M. Dorr ALL RIGHTS RESERVED ii ABSTRACT Kerry M. Dorr: Characterization of the Casz1-Dependent Mechanisms Essential for Cardiomyocyte Development (Under the direction of Frank L. Conlon) The heart is one of the first structures to form during development and is required for embryonic growth and survival. The four-chambered mammalian heart arises from a series of complex processes during embryonic development that includes the specification and differentiation of the different cardiac cell types within the heart, proliferation, and morphological movements of the early heart fields. Early development of the heart is governed by hyperplastic growth in which cardiac cells undergo mitogen- dependent activation during the G1-phase of the cell cycle. Though numerous growth factor signals have been shown to be required for cardiomyocyte proliferation, genetic studies have only identified a limited number of transcription factors that act to regulate the entry of cardiomyocytes into S-phase. Casz1 is an evolutionarily conserved transcription factor that is essential for heart development; however, there are vast deficiencies in our understanding of the mechanism by which Casz1 regulates aspects of cardiac development. Here we report that Casz1 is expressed in, and gives rise to, cardiomyocytes in the first and second heart fields. We show through the generation of a cardiac conditional null mutation that Casz1 is required for the proper development and growth iii of the cardiac chambers. We further demonstrate that Casz1 is essential for the proliferation of cardiomyocytes in both heart fields and that loss of Casz1 leads to severe cardiac hypoplasia, ventricular septal defects, and a decrease in cardiomyocyte cell number. Additionally, we report that the loss of Casz1 leads to a prolonged or arrested S-phase, a decrease in DNA synthesis, an increase in phosphorylated-Rb, and a concomitant decrease in the cardiac mitotic index. Taken together these studies establish a role for Casz1 in mammalian heart development and cardiomyocyte cell cycle progression. iv To my wonderful boys, I couldn’t have done it without you. Thank you for illuminating my life. v ACKNOWLEDGEMENTS There are many people that have been critical to the success of my graduate studies. I would first like to thank current and past members of the Conlon Lab for helpful discussions, advice, support, and technical know-how: Kathleen Christine, Chris Showell, Panna Tandon, Erin Kaltenbrun, Lauren Kuchenbrod, Lauren Waldron, Nirav Amin, Stephen Sojka, Kerry Dorr, Marta Charpentier, Chris Slagle, Michelle Villasmil, Leslie Kennedy, and Carrie Wilczewski. Special thanks to Chris Showell for being an excellent mentor and friend my first few years in the lab, and to Erin Kaltenbrun for being my lab BFF. This experience would not have been the same without her sarcastic and charming wit. I cannot thank or acknowledge Frank Conlon enough. He has been so supportive of my career and of me as a person. Frank has a remarkable ability to build me up when I am down and push me when I need it. He has been enthusiastic throughout this very difficult and time-consuming project, always available when I needed to bounce ideas around, and has allowed me an enormous amount of independence. This mentoring has helped me to grow as a scientist and a professional and for that I am forever grateful. It is also a joy to work for someone that truly cares about the people in his lab, not only from a scientific perspective, but also on a personal level. For this reason, the morale in the Conlon Lab is extremely high and there is a lot of camaraderie, qualities that have made coming to work a pleasure even when science wasn’t going so well. vi I would also like to thank my committee members Terry Magnuson, Li Qian, Joan Taylor, and Andy Wessels. I am so grateful for the mentorship and support that I have received from each of them. One of the things that drew me to UNC was the faculty commitment to good training, and my committee has demonstrated this commitment throughout my graduate experience. I am extremely appreciative for their insights and helpful discussions on my work. Finally, I would like to thank my family and friends for their support, encouragement, and friendship. My parents have given me their unwavering support and have always made me feel loved and appreciated. My father is an amazing, well- accomplished scientist and I think it was all of those Saturdays I spent with him at work playing with Eppendorf tubes that made me gain a passion for science. I would especially like to thank my wonderful husband, Mark, whose companionship, wisdom, patience, tolerance, and love have uplifted me every day that we have been together. We rode the bus together our very first day of graduate school and have been inseparable ever since. I also thank our wonderful baby, Maxwell, who has uplifted my life to heights I never thought I would attain and is truly the best developmental biology experiment I ever undertook. Thanks also to our other baby boy, “soon to be named”. I can’t wait to meet you. vii TABLE OF CONTENTS LIST OF FIGURES ......................................................................................................... xii LIST OF TABLES ........................................................................................................... xv LIST OF ABBREVIATIONS ........................................................................................... xvi CHAPTER 1: INTRODUCTION The cardiomyocyte cell cycle ................................................................................ 3 Cardiomyocyte cell cycle control and growth ........................................................ 5 Proliferation ................................................................................................ 6 Binucleation ............................................................................................... 9 Hypertrophy ............................................................................................. 12 Growth factors and signaling pathways that regulate proliferation...................... 15 Hippo ....................................................................................................... 15 Wnt .......................................................................................................... 17 Insulin-like growth factor .......................................................................... 20 Neuregulin ............................................................................................... 21 Periostin ................................................................................................... 22 Fibroblast Growth Factor ......................................................................... 23 MicroRNAs regulate cardiomyocyte proliferation ................................................ 26 Transcription factors that regulate cardiomyocyte proliferation ........................... 28 Foxp1 ....................................................................................................... 28 viii Jumonji .................................................................................................... 29 Hopx ........................................................................................................ 30 Meis1 ....................................................................................................... 31 Tbx1 ......................................................................................................... 32 Tbx5 ......................................................................................................... 32 Tbx20 ....................................................................................................... 33 Casz1-Dependent Mechanisms ............................................................... 34 Dissertation Goals .............................................................................................. 35 References ......................................................................................................... 42 CHAPTER 2: CASZ1 IS REQUIRED FOR CARDIOMYOCYTE G1-TO-S PROGRESSION DURING MAMMALIAN CARDIAC DEVELOPMENT INTRODUCTION ................................................................................................ 77 MATERIALS AND METHODS ............................................................................ 79 RESULTS ........................................................................................................... 88 Casz1 is expressed in the developing myocardium ................................. 88 Casz1-expressing cells give rise to first and second heart field derivatives ................................................................................................ 90 Casz1 is essential for cardiac development ............................................. 91 Casz1 is required for growth of the cardiac chambers ............................. 93 Casz1 embryonic nulls phenocopy Casz1f/f;Nkx2.5Cre/+ embryos ............ 93 Casz1 is essential in the second heart field ............................................
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Characterization of the ING1 Candidate Tumor Suppressor Gene in Breast Cancer Cells
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies Legacy Theses 2001 Characterization of the ING1 candidate tumor suppressor gene in breast cancer cells Nelson, Rebecca Nelson, R. (2001). Characterization of the ING1 candidate tumor suppressor gene in breast cancer cells (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/11964 http://hdl.handle.net/1880/41031 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca The author of this thesis has granted the University of Calgary a non-exclusive license to reproduce and distribute copies of this thesis to users of the University of Calgary Archives. Copyright remains with the author. Theses and dissertations available in the University of Calgary Institutional Repository are solely for the purpose of private study and research. They may not be copied or reproduced, except as permitted by copyright laws, without written authority of the copyright owner. Any commercial use or publication is strictly prohibited. The original Partial Copyright License attesting to these terms and signed by the author of this thesis may be found in the original print version of the thesis, held by the University of Calgary Archives. The thesis approval page signed by the examining committee may also be found in the original print version of the thesis held in the University of Calgary Archives.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • ING1 Induces Apoptosis Through Direct Effects at the Mitochondria
    Citation: Cell Death and Disease (2013) 4, e837; doi:10.1038/cddis.2013.398 & 2013 Macmillan Publishers Limited All rights reserved 2041-4889/13 www.nature.com/cddis Corrigendum ING1 induces apoptosis through direct effects at the mitochondria P Bose, S Thakur, S Thalappilly, BY Ahn, S Satpathy, X Feng, K Suzuki, SW Kim and K Riabowol The ING family of tumor suppressors acts as readers and writers of the histone epigenetic code, affecting DNA repair, chromatin remodeling, cellular senescence, cell cycle regulation and apoptosis. The best characterized member of the ING family, ING1, interacts with the proliferating cell nuclear antigen (PCNA) in a UV-inducible manner. ING1 also interacts with members of the 14-3-3 family leading to its cytoplasmic relocalization. Overexpression of ING1 enhances expression of the Bax gene and was reported to alter mitochondrial membrane potential in a p53-dependent manner. Here we show that ING1 translocates to the mitochondria of primary fibroblasts and established epithelial cell lines in response to apoptosis inducing stimuli, independent of the cellular p53 status. The ability of ING1 to induce apoptosis in various breast cancer cell lines correlates well with its degree of translocation to the mitochondria after UV treatment. Endogenous ING1 protein specifically interacts with the pro-apoptotic BCL2 family member BAX, and colocalizes with BAX in a UV-inducible manner. Ectopic expression of a mitochondria-targeted ING1 construct is more proficient in inducing apoptosis than the wild type ING1 protein. Bioinformatic analysis of the yeast interactome indicates that yeast ING proteins interact with 64 mitochondrial proteins. Also, sequence analysis of ING1 reveals the presence of a BH3-like domain.
    [Show full text]
  • Thymic Transcriptome Analysis After Newcastle Disease Virus Inoculation in Chickens and the Influence of Host Small Rnas On
    www.nature.com/scientificreports OPEN Thymic transcriptome analysis after Newcastle disease virus inoculation in chickens and the infuence of host small RNAs on NDV replication Liangxing Guo1, Zhaokun Mu2, Furong Nie1, Xuanniu Chang1, Haitao Duan1, Haoyan Li3, Jingfeng Zhang1, Jia Zhou1, Yudan Ji1 & Mengyun Li1* Newcastle disease (ND), caused by virulent Newcastle disease virus (NDV), is a contagious viral disease afecting various birds and poultry worldwide. In this project, diferentially expressed (DE) circRNAs, miRNAs and mRNAs were identifed by high-throughput RNA sequencing (RNA-Seq) in chicken thymus at 24, 48, 72 or 96 h post LaSota NDV vaccine injection versus pre-inoculation group. The vital terms or pathways enriched by vaccine-infuenced genes were tested through KEGG and GO analysis. DE genes implicated in innate immunity were preliminarily screened out through GO, InnateDB and Reactome Pathway databases. The interaction networks of DE innate immune genes were established by STRING website. Considering the high expression of gga-miR-6631-5p across all the four time points, DE circRNAs or mRNAs with the possibility to bind to gga-miR-6631-5p were screened out. Among DE genes that had the probability to interact with gga-miR-6631-5p, 7 genes were found to be related to innate immunity. Furthermore, gga-miR-6631-5p promoted LaSota NDV replication by targeting insulin induced gene 1 (INSIG1) in DF-1 chicken fbroblast cells. Taken together, our data provided the comprehensive information about molecular responses to NDV LaSota vaccine in Chinese Partridge Shank Chickens and elucidated the vital roles of gga-miR-6631-5p/ INSIG1 axis in LaSota NDV replication.
    [Show full text]
  • Xo GENE PANEL
    xO GENE PANEL Targeted panel of 1714 genes | Tumor DNA Coverage: 500x | RNA reads: 50 million Onco-seq panel includes clinically relevant genes and a wide array of biologically relevant genes Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4
    [Show full text]
  • Maternal Exposure to High-Fat Diet Induces Long-Term Derepressive Chromatin Marks in the Heart
    nutrients Article Maternal Exposure to High-Fat Diet Induces Long-Term Derepressive Chromatin Marks in the Heart Guillaume Blin 1, Marjorie Liand 1, Claire Mauduit 2, Hassib Chehade 1, Mohamed Benahmed 2, 1, 1, , Umberto Simeoni y and Benazir Siddeek * y 1 Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland; [email protected] (G.B.); [email protected] (M.L.); [email protected] (H.C.); [email protected] (U.S.) 2 INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, 06204 Nice, France; [email protected] (C.M.); [email protected] (M.B.) * Correspondence: [email protected]; Tel.: +41-21-314-32-12 BS and US contributed equally to this work. y Received: 28 November 2019; Accepted: 7 January 2020; Published: 9 January 2020 Abstract: Heart diseases are a leading cause of death. While the link between early exposure to nutritional excess and heart disease risk is clear, the molecular mechanisms involved are poorly understood. In the developmental programming field, increasing evidence is pointing out the critical role of epigenetic mechanisms. Among them, polycomb repressive complex 2 (PRC2) and DNA methylation play a critical role in heart development and pathogenesis. In this context, we aimed at evaluating the role of these epigenetic marks in the long-term cardiac alterations induced by early dietary challenge. Using a model of rats exposed to maternal high-fat diet during gestation and lactation, we evaluated cardiac alterations at adulthood.
    [Show full text]
  • Misexpression of Cancer/Testis (Ct) Genes in Tumor Cells and the Potential Role of Dream Complex and the Retinoblastoma Protein Rb in Soma-To-Germline Transformation
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2019 MISEXPRESSION OF CANCER/TESTIS (CT) GENES IN TUMOR CELLS AND THE POTENTIAL ROLE OF DREAM COMPLEX AND THE RETINOBLASTOMA PROTEIN RB IN SOMA-TO-GERMLINE TRANSFORMATION SABHA M. ALHEWAT Michigan Technological University, [email protected] Copyright 2019 SABHA M. ALHEWAT Recommended Citation ALHEWAT, SABHA M., "MISEXPRESSION OF CANCER/TESTIS (CT) GENES IN TUMOR CELLS AND THE POTENTIAL ROLE OF DREAM COMPLEX AND THE RETINOBLASTOMA PROTEIN RB IN SOMA-TO- GERMLINE TRANSFORMATION", Open Access Master's Thesis, Michigan Technological University, 2019. https://doi.org/10.37099/mtu.dc.etdr/933 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Cancer Biology Commons, and the Cell Biology Commons MISEXPRESSION OF CANCER/TESTIS (CT) GENES IN TUMOR CELLS AND THE POTENTIAL ROLE OF DREAM COMPLEX AND THE RETINOBLASTOMA PROTEIN RB IN SOMA-TO-GERMLINE TRANSFORMATION By Sabha Salem Alhewati A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Biological Sciences MICHIGAN TECHNOLOGICAL UNIVERSITY 2019 © 2019 Sabha Alhewati This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Biological Sciences. Department of Biological Sciences Thesis Advisor: Paul Goetsch. Committee Member: Ebenezer Tumban. Committee Member: Zhiying Shan. Department Chair: Chandrashekhar Joshi. Table of Contents List of figures .......................................................................................................................v
    [Show full text]
  • ING1 and ING2: Multi-Faceted Tumor Suppressor Genes Claire Guérillon, Delphine Larrieu, Rémy Pedeux
    ING1 and ING2: Multi-Faceted Tumor Suppressor Genes Claire Guérillon, Delphine Larrieu, Rémy Pedeux To cite this version: Claire Guérillon, Delphine Larrieu, Rémy Pedeux. ING1 and ING2: Multi-Faceted Tumor Sup- pressor Genes. Cellular and Molecular Life Sciences, Springer Verlag, 2013, 70 (20), pp.3753-3772. 10.1007/s00018-013-1270-z. hal-00867345 HAL Id: hal-00867345 https://hal-univ-rennes1.archives-ouvertes.fr/hal-00867345 Submitted on 28 Sep 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Guérillon et al., 2013 ING1 and ING2: Multi-Faceted Tumor Suppressor Genes Claire Guérillon1, 2, Delphine Larrieu4, and Rémy Pedeux1, 2, 3, * 1INSERM U917, Microenvironnement et Cancer, Rennes, France, 2Université de Rennes 1, Rennes, France, 3Etablissement Français du Sang, Rennes, France, 4The Welcome Trust and Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. *Corresponding author: Rémy Pedeux INSERM U917, Faculté de Médecine de Rennes Building 2, Room 117, 2 avenue du Professeur Léon Bernard 35043 Rennes France Tel: 33 (0)2 23 23 47 02 Fax: 33 (0)2 23 23 49 58 Email: [email protected] Short Title: ING1 and ING2: Multi-Faceted Tumor Suppressor Genes Keywords: ING1, ING2, tumor suppressor gene, p53, H3K4Me3 1 Guérillon et al., 2013 Abstract ING1 (Inhibitor of Growth 1) was identified and characterized as a “candidate” tumor suppressor gene in 1996.
    [Show full text]
  • UV-Induced Association of ING1 with PCNA 3457
    RESEARCH ARTICLE 3455 UV-induced binding of ING1 to PCNA regulates the induction of apoptosis Michelle Scott1, Paul Bonnefin1, Diego Vieyra1, Francois-Michel Boisvert1, Dallan Young1,2, David P. Bazett-Jones1 and Karl Riabowol1,2,* 1Departments of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 4N1, Canada 2Department of Oncology, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta T2N 4N1, Canada *Author for correspondence (e-mail: [email protected]) Accepted 15 June 2001 Journal of Cell Science 114, 3455-3462 (2001) © The Company of Biologists Ltd SUMMARY Previous studies have shown that UV-induced binding of not by p16MTS1, which has no PIP sequence. In contrast to p21WAF1 to PCNA through the PCNA-interacting protein wild-type p33ING1b, ING1 PIP mutants that do not bind (PIP) domain in p21WAF1 promotes a switch from DNA PCNA do not induce apoptosis, but protect cells from UV- replication to DNA repair by altering the PCNA protein induced apoptosis, suggesting a role for this PCNA- complex. Here we show that the p33ING1b isoform of the p33ING1b interaction in eliminating UV-damaged cells ING1 candidate tumour suppressor contains a PIP domain. through programmed cell death. These data indicate that UV rapidly induces p33ING1b to bind PCNA competitively ING1 competitively binds PCNA through a site used by through this domain, a motif also found in DNA ligase, the growth regulatory and DNA damage proteins, and may DNA repair-associated FEN1 and XPG exo/endonucleases, contribute to regulating the switch from DNA replication and DNA methyltransferase.
    [Show full text]
  • Casz1 Controls Higher-Order Nuclear Organization in Rod Photoreceptors
    Casz1 controls higher-order nuclear organization in rod photoreceptors Pierre Mattara,1,2, Milanka Stevanovica,b, Ivana Nadc, and Michel Cayouettea,b,d,e,1 aCellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada; bDepartment of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0G4, Canada; cDepartment of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; dDivision of Experimental Medicine, McGill University, Montréal, QC H3A 0G4, Canada; and eDepartment of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada Edited by Chris Q. Doe, HHMI and University of Oregon, Eugene, OR, and approved July 11, 2018 (received for review February 19, 2018) Genome organization plays a fundamental role in the gene- scattering in the retina (7). While previous studies have provided expression programs of numerous cell types, but determinants a descriptive framework for understanding rod genome organi- of higher-order genome organization are poorly understood. In zation, determinants of this organization remain largely elusive, the developing mouse retina, rod photoreceptors represent a with only the lamin B receptor (Lbr) identified so far (8). good model to study this question. They undergo a process called Here, we report that Casz1 is a determinant of rod photore- “chromatin inversion” during differentiation, in which, as opposed ceptor nuclear organization. Casz1 is a zinc finger transcription to classic nuclear organization, heterochromatin becomes localized factor required for both heart and vascular development, and its to the center of the nucleus and euchromatin is restricted to the germline inactivation causes embryonic lethality (9–11). Casz1 is periphery.
    [Show full text]
  • Program Book
    The Genetics Society of America Conferences 15th International Xenopus Conference August 24-28, 2014 • Pacific Grove, CA PROGRAM GUIDE LEGEND Information/Guest Check-In Disabled Parking E EV Charging Station V Beverage Vending Machine N S Ice Machine Julia Morgan Historic Building W Roadway Pedestrian Pathway Outdoor Group Activity Area Program and Abstracts Meeting Organizers Carole LaBonne, Northwestern University John Wallingford, University of Texas at Austin Organizing Committee: Julie Baker, Stanford Univ Chris Field, Harvard Medical School Carmen Domingo, San Francisco State Univ Anna Philpott, Univ of Cambridge 9650 Rockville Pike, Bethesda, Maryland 20814-3998 Telephone: (301) 634-7300 • Fax: (301) 634-7079 E-mail: [email protected] • Web site: genetics-gsa.org Thank You to the Following Companies for their Generous Support Platinum Sponsor Gold Sponsors Additional Support Provided by: Carl Zeiss Microscopy, LLC Monterey Convention & Gene Tools, LLC Visitors Bureau Leica Microsystems Xenopus Express 2 Table of Contents General Information ........................................................................................................................... 5 Schedule of Events ............................................................................................................................. 6 Exhibitors ........................................................................................................................................... 8 Opening Session and Plenary/Platform Sessions ............................................................................
    [Show full text]