Research Collection
Total Page:16
File Type:pdf, Size:1020Kb
Research Collection Doctoral Thesis Inhomogeneous Deformations of Thermoplastics for Physically Adaptive Soft Matter Robots Author(s): Culha, Utku Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010735372 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 23592 Inhomogeneous Deformations of Thermoplastics for Physically Adaptive Soft Matter Robots A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by UTKU CULHA M.Sc., Bilkent University born on 1 January 1988 citizen of Republic of Turkey accepted on the recommendation of Prof. Dr. Fumiya Iida, examiner Prof. Dr. Dario Floreano, co-examiner Prof. Dr. Roger Gassert, co-examiner 2016 Inhomogeneous Deformations of Thermoplastics for Physically Adaptive Soft Matter Robots Utku Culha 2016 Bio-Inspired Robotics Lab Institute of Robotics and Intelligent Systems ETH Zurich Switzerland © 2016 Utku Culha. All rights reserved. Abstract In recent years robotics researchers have started using soft materials to build robots inspired from simple organisms, plants and animals which demonstrate impressive physical and behavioural adaptations originating from their soft and deformable body structures. Unlike rigid materi- als used in conventional robots, soft materials such as polymers and gels are continuum and visco-elastic mediums which can exhibit large deformations in many directions. Usage of these materials enables robotic systems to perform adaptive interactions with uncertain and unstruc- tured environments during various tasks such as locomotion, manipulation and inspection. In biology, many important functions emerge from the formation of well-defined structures as a result of symmetry breaking in the cellular scale. In symmetry breaking, the non-uniform distribution of initiating stimuli around the soft and deformable cells contributes to the gen- eration of asymmetric body forms. These asymmetric formations play important roles in the development of physical adaptations which are essential for survival. The contracting motion of muscle fibres (cell motility), growth and morphogenesis (cell division), healing (cell fusion) and specialisation of neuron axons (cell polarity) are several examples to the adaptive functions based on symmetry breaking. The mechanisms, conditions and physics of the formation asym- metric forms which lead to adaptive functions are well established and investigated in biology. However, there has been no clear theory and systematic investigation so far to discuss how defor- mation of soft continuum structures can be used for the emergence of physical and behavioural adaptations in autonomous robotic systems. This dissertation proposes a systematic investigation on the utilisation of inhomogeneous deformations of soft materials for the generation of physical and behavioural adaptations on robotic platforms. Inhomogeneous deformations take place in a non-uniform manner through- out a continuum body which can result in generating asymmetric forms similar to examples in biology. Soft materials present similarities to the collective behaviours of highly distributed neighbouring cells due to their molecular structure and physical properties under the influence of various stimuli. Especially thermoplastics provide suitable conditions to exhibit inhomogeneous deformations through the application of thermal and mechanical stimuli combinations. There- fore, this dissertation proposes different mechanisms to generate asymmetric forms by inducing inhomogeneous deformations on thermoplastic materials. These asymmetric forms can be used for the generation of sensing and motion functions which are crucial in an autonomous system to exhibit physical and behavioural adaptations. The conceptual discussion on physical adaptation is realised with four case studies which demonstrate the three contributions of this dissertation: regulation of plasticity for structural adaptation, differential stiffness for the emergence of motions, and sensing of soft deformations using adjustable morphology. The case studies present robotic platforms which demonstrate sensing of deformations on robot’s own body, sensing of softness and temperature of unknown objects in the environment, locomotion in free space by fabricating draglines, and adaptive manipulation with anthropomorphic and compliant joint designs. Regulation of plasticity for structural adaptation is used commonly in all of the case studies where thermoplastic materials are moulded into asymmetric forms with mechanisms that firstly regulate their plasticity via heat induction and secondly deform those using mechanical stimuli. The emergence of motion from the differential stiffness is observed in the dragline forming mobile robot and the robotic i Abstract hand with compliant joints, which exploit inhomogeneous deformations caused by the non- uniform stiffness distribution in the soft material compositions. And sensing of soft deformations with adjustable morphology is utilised in the first two robotic platforms which can distinguish different stimuli, and adjust their sensitivity by only changing the morphology of the sensors they are fabricating. The case studies in this dissertation demonstrate working examples of physical and behavioural adaptation on robotic platforms by using inhomogeneous deformation of soft materials. The suggested systematic investigation and the findings in the dissertation contribute to the development of robotic platforms which can autonomously adapt to their environments by changing their body structures. These autonomous and physically adaptive soft robots can be useful in areas such as search and rescue, invasive surgery, rehabilitation and prosthetics, inspection and exploration, and human machine interaction. Further, suggested investigation can allow the realisation of concepts such as morphogenesis, healing or growth, which are unachievable with conventional methods or materials, and provide experimental aid to a better understanding of neuroscience, evolution and emergent behaviours. ii Kurzfassung In den letzten Jahren haben Forscher in der Robotik angefangen weiche Materialien zum Bau von Robotern einzusetzen, welche von einfachen Organismen, Pflanzen und Tieren inspiriert sind und eindrucksvolle Anpassungen ihrer Form und ihres Verhaltens zeigen, deren Ursprung in wei- chen und verformbaren K¨orperstrukturen liegt. Im Gegensatz zu steifen Materialien, welche in konventionellen Robotern eingesetzt werden, sind weiche Materialien wie Polymere und Gels Kontinua und visko-elastische Medien, die grosse Verformungen in alle Richtungen aufweisen k¨onnen. Die Benutzung dieser Materialien erm¨oglicht es Robotersystemen in unbekannten und unstrukturierten Umgebungen adaptive Interaktionen auszufuhren¨ um unterschiedlicher Aufga- ben wie Fortbewegung, Manipulation oder Inspektion durchzufuhren.¨ In der Biologie ergeben sich viele wichtige Funktionen durch die Bildung von wohldefinierten Strukturen aufgrund von Symmetriebrechung auf Zellebene. Bei der Symmetriebrechung tr¨agt die nicht-uniforme Verteilung initiierender Stimuli auf weiche und verformbare Zellen zur Bil- dung asymmetrischer K¨orperformen bei. Diese asymmetrischen Formen spielen wichtige Rollen bei der Entwicklung physischer Anpassungen welche essentiell furs¨ Uberleben¨ sind. Das Zusam- menziehen von Muskelfasern (Zellmotilit¨at), Wachstum und Morphogenese (Zellteilung), Heilung (Zellfusionierung) und die Spezialisierung von neuronalen Axonen (Zellpolarit¨at) sind mehrere Beispiele fur¨ die adaptiven Funktionen welche auf Symmetriebrechung basieren. Die Mechanis- men, Bedingungen und die Physik der Bildung asymmetrischer Formen welche zu adaptiven Funktionen fuhren¨ sind etabliert und werden in der Biologie untersucht. Bislang fehlen jedoch eine klare Theorie und systematische Untersuchungen wie die Verformung von weichen Konti- nua genutzt werden kann fur¨ die Emergenz physischer und Verhaltensanpassungen in autonomen Robotersystemen. In dieser Dissertation wird eine systematische Untersuchung der Anwendung von inhomoge- nen Deformationen von weichen Materialien zur Schaffung physischer und Verhaltensanpassun- gen von Roboterplattformen vorgenommen. Inhomogene Verformungen finden in nicht-uniformer Art in Kontinuumsk¨orpern statt, welche in der Schaffung asymmetrischer Formen ¨ahnlich zu bio- logischen Beispielen resultieren k¨onnen. Weiche Materialen weisen, aufgrund ihrer molekulare Struktur und physischen Eigenschaften unter verschiedenen Einflussen,¨ Ahnlichkeiten¨ zum kol- lektiven Verhalten von verteilten Nachbarzellen auf. Insbesondere Thermoplaste verfugen¨ uber¨ geeignete Eigenschaften um inhomogene Verformungen unter kombinierten thermischen und mechanischen Einflussen¨ aufzuzeigen. Deshalb werden in dieser Dissertation unterschiedliche Mechanismen aufgezeigt, um asymmetrische Formen durch das Einbringen inhomogener Defor- mationen in thermoplastischen Materialien zu generieren. Diese asymmetrischen Formen k¨onnen fur¨ die Bildung von Sensor- und Aktorfunktionen genutzt werden, welche fur¨ autonome Systeme elementar sind um physische und Verhaltensanpassungen auszufuhren.¨ Die konzeptionelle Diskussion physischer Anpassung ist in vier Fallstudien umgesetzt, wel- che die drei Beitr¨age dieser Dissertation aufzeigen: Die Regulation von Plastizit¨at fur¨ struktu- relle Anpassungen, differentielle