Dispersion of Few-Layer Black Phosphorus in Binary Polymer Blend and Block Copolymer Matrices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shape-Memory Polymeric Artificial Muscles Stress That Is Applied to the Polymer [8,70]
molecules Review Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges 1, 1, 1, , 1 2 2 Yujie Chen y , Chi Chen y, Hafeez Ur Rehman * y, Xu Zheng , Hua Li , Hezhou Liu and Mikael S. Hedenqvist 3,* 1 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (Y.C.); [email protected] (C.C.); [email protected] (X.Z.) 2 Collaborative Innovation Centre for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (H.L.); [email protected] (H.L.) 3 Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden * Correspondence: [email protected] (H.U.R.); [email protected] (M.S.H.) These authors contributed equally to this work. y Academic Editor: Laura Peponi Received: 7 July 2020; Accepted: 3 September 2020; Published: 16 September 2020 Abstract: Shape-memory materials are smart materials that can remember an original shape and return to their unique state from a deformed secondary shape in the presence of an appropriate stimulus. This property allows these materials to be used as shape-memory artificial muscles, which form a subclass of artificial muscles. The shape-memory artificial muscles are fabricated from shape-memory polymers (SMPs) by twist insertion, shape fixation via Tm or Tg, or by liquid crystal elastomers (LCEs). The prepared SMP artificial muscles can be used in a wide range of applications, from biomimetic and soft robotics to actuators, because they can be operated without sophisticated linkage design and can achieve complex final shapes. -
Electronic Structure of Graphene– and BN–Supported Phosphorene
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Electronic structure of graphene– and BN–supported phosphorene Kistanov, Andrey A.; Saadatmand, Danial; Dmitriev, Sergey V.; Zhou, Kun; Korznikova, Elena A.; Davletshin, Artur R.; Ustiuzhanina, Svetlana V. 2018 Davletshin, A. R., Ustiuzhanina, S. V., Kistanov, A. A., Saadatmand, D., Dmitriev, S. V., Zhou, K., & Korznikova, E. A. (2018). Electronic structure of graphene– and BN–supported phosphorene. Physica B: Condensed Matter, 534, 63‑67. doi:10.1016/j.physb.2018.01.039 https://hdl.handle.net/10356/90092 https://doi.org/10.1016/j.physb.2018.01.039 © 2018 Elsevier B.V. All rights reserved. This paper was published in Physica B: Condensed Matter and is made available with permission of Elsevier B.V. Downloaded on 02 Oct 2021 11:03:45 SGT Electronic structure of graphene– and BN–supported phosphorene Artur R. Davletshin1, Svetlana V. Ustiuzhanina2, *Andrey A. Kistanov2, 3 , 4, Danial Saadatmand5, Sergey V. Dmitriev2, 6, Kun Zhou3 and Elena A. Korznikova2 1Ufa State Petroleum Technological University, Ufa 450000, Russia 2Institute for Metals Superplasticity Problems, Russian Academy of Sciences, Ufa 450001, Russia 3School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore 4Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632, Singapore 5Department of Physics, University of Sistan and Baluchestan, Zahedan, Iran 6National Research Tomsk State University, Tomsk 634050, Russia Abstract By using first–principles calculations, the effects of graphene and boron nitride (BN) substrates on the electronic properties of phosphorene are studied. Graphene–supported phosphorene is found to be metallic, while the BN–supported phosphorene is a semiconductor with a moderate band gap of 1.02 eV. -
Technology and Applications of 2D Materials in Micro- and Macroscale Electronics
Technology and Applications of 2D Materials in Micro- and Macroscale Electronics by Marek Hempel B.S., RWTH Aachen University (2010) M.S., RWTH Aachen University (2013) Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 © Massachusetts Institute of Technology 2020. All rights reserved. Author ……………………………………………………………………………………………………………………………………………………… Department of Electrical Engineering and Computer Science May 15, 2020 Certified by ………………………………………………………………………………………………………………………………………………. Tomás Palacios Professor of Electrical Engineering and Computer Science Thesis Supervisor Certified by ………………………………………………………………………………………………………………………………………………. Jing Kong Professor of Electrical Engineering and Computer Science Thesis Supervisor Accepted by ……………………………………………………………………………………………………………………………………………… Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science Chair, Department Committee on Graduate Students 1 2 Technology and Applications of 2D-Materials in Micro- and Macroscale Electronics by Marek Hempel Submitted to the Department of Electrical Engineering and Computer Science on May 15, 2020, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Abstract: Over the past 50 years, electronics has truly revolutionized our lives. Today, many everyday objects rely on electronic circuitry from gadgets such as wireless earbuds, smartphones and -
Arxiv:1407.5880V3 [Cond-Mat.Mes-Hall] 14 Aug 2014
Oxygen defects in phosphorene A. Ziletti,1 A. Carvalho,2 D. K. Campbell,3 D. F. Coker,1, 4 and A. H. Castro Neto2, 3 1Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston Massachusetts 02215, USA 2Graphene Research Centre and Department of Physics, National University of Singapore, 117542, Singapore 3Department of Physics, Boston University, 590 Commonwealth Avenue, Boston Massachusetts 02215, USA 4Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, D-79104, Freiburg, Germany Surface reactions with oxygen are a fundamental cause of the degradation of phosphorene. Using first-principles calculations, we show that for each oxygen atom adsorbed onto phosphorene there is an energy release of about 2 eV. Although the most stable oxygen adsorbed forms are electrically inactive and lead only to minor distortions of the lattice, there are low energy metastable forms which introduce deep donor and/or acceptor levels in the gap. We also propose a mechanism for phosphorene oxidation and we suggest that dangling oxygen atoms increase the hydrophilicity of phosphorene. PACS numbers: 73.20.At,73.20.Hb Phosphorene, a single layer of black phosphorus[1, 2], phosphorene is exoenergetic and leads to the formation of has revealed extraordinary functional properties which neutral defects, as well as to metastable electrically active make it a promising material not only for exploring novel defect forms. We also discuss the conditions necessary for physical phenomena but also for practical applications. extensive oxidation and propose strategies to control it. In contrast to graphene, which is a semi-metal, phospho- Oxygen defects were modeled using first-principles cal- rene is a semiconductor with a quasiparticle band gap of 2 culations based on density functional theory (DFT), as eV. -
Conductive Nanocomposite Fabrication by Graphene Enriched Polypropylene Master Batch
© 2015 IJEDR | Volume 3, Issue 4 | ISSN: 2321-9939 Conductive Nanocomposite fabrication by Graphene enriched Polypropylene Master Batch 1M.Naushad Ali, 2H.Alamri, 3Abdul Wahab 1 Bottom Up Technologies Corporation, Jharkhand, India 2Physics Deptt, Umm Al-Qura University, Makkah, KSA 3Engineering Grad Trainee, Jharkhand Rai UniversitSy, Ranchi, India ________________________________________________________________________________________________________ Abstract - The nanocomposites are the most attentive topic of the study currently in the material science world which is likely to bring the industrial revolution. Graphene reinforced polypropylene nanocomposite was fabricated in the balanced formulation of filler & carrier additives through melt mixing process at the trend of industrial practices. The concept of molecular arrangement was hypothesized and executed out practically. The master batch was prepared as the primary preparatory work using Twin Screw Extruder and the finished product was obtained by using the same master batch through injection molding. The percolation threshold was considered to be 5% wt. Graphene in finished product which has been proved as the innovative product line. A series of destructive and non-destructive tests and characterization techniques were conducted, analyzed and presented. First time the entire range of properties has been explored including electrical, thermal, gas barrier & mechanical properties. The resulted product has proven to be used at the industrial scale immediately and has opened the new directions in making use of other class of polymers innovatively. Key words - Nanocomposite, Electrical conductivity, Graphene, Polypropylene, Industrial applications, Nanotechnology I. Introduction Nanomaterials own the Quantum confinement which consequences the exceptional outstanding properties and lead to the enormous range of revolutionary applications. In this regard, the discovery of graphene and graphene-based polymer nanocomposites is playing a vital role in modern science and technology [1]. -
Non-Covalent Interactions on Polymer-Graphene Nanocomposites and Their Effects on the Electrical Conductivity
polymers Article Non-Covalent Interactions on Polymer-Graphene Nanocomposites and Their Effects on the Electrical Conductivity Jorge Luis Apátiga 1, Roxana Mitzayé del Castillo 1 , Luis Felipe del Castillo 2, Alipio G. Calles 1, Raúl Espejel-Morales 1, José F. Favela 3 and Vicente Compañ 4,* 1 Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Interior s/n, Ciudad Universitaria, Mexico City 04510, Mexico; [email protected] (J.L.A.); [email protected] or [email protected] (R.M.d.C.); [email protected] (A.G.C.); [email protected] (R.E.-M.) 2 Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Interior s/n, Ciudad Universitaria, Mexico City 04510, Mexico; [email protected] 3 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Interior s/n, Ciudad Universitaria, Mexico City 04510, Mexico; [email protected] 4 Departamento de Termodinámica Aplicada, Escuela Técnica Superior de Ingenieros Industriales (ETSII), Campus de Vera s/n, Universitat Politécnica de Valencia, 46020 Valencia, Spain * Correspondence: [email protected]; Tel.: +34-963-879-328 Abstract: It is well known that a small number of graphene nanoparticles embedded in polymers enhance the electrical conductivity; the polymer changes from being an insulator to a conductor. The Citation: Apátiga, J.L.; del Castillo, graphene nanoparticles induce several quantum effects, non-covalent interactions, so the percola- R.M.; del Castillo, L.F.; Calles, A.G.; tion threshold is accelerated. We studied five of the most widely used polymers embedded with Espejel-Morales, R.; Favela, J.F.; graphene nanoparticles: polystyrene, polyethylene-terephthalate, polyether-ketone, polypropylene, Compañ, V. -
Reconfigurable Polarizer Based on Bulk Dirac Semimetal Metasurface
crystals Article Reconfigurable Polarizer Based on Bulk Dirac Semimetal Metasurface Yannan Jiang, Jing Zhao and Jiao Wang * Guangxi Key Laboratory of Wireless Wideband Communication & Signal Processing, Guilin 541000, China; [email protected] (Y.J.); [email protected] (J.Z.) * Correspondence: [email protected] Received: 22 February 2020; Accepted: 16 March 2020; Published: 21 March 2020 Abstract: In this paper, we propose a reflective polarizer in terahertz regime, which utilizes the Bulk-Dirac-Semimetal (BDS) metasurface can be dynamically tuned in broadband. The proposed polarizer is capable of converting the linear polarized wave into the circular polarized or the cross polarized waves by adjusting the Fermi energy (EF) of the BDS. In the frequency range of 0.51 THz and 1.06 THz, the incident linear polarized wave is converted into a circular polarized wave with an axial ratio (AR) less than 3 dB when EF = 30 meV. When EF = 45 meV, the cross-polarization conversion is achieved with the polarization conversion ratio (PCR) greater than 90% in the band of 0.57 1.12 THz. Meanwhile, the conversion efficiencies for both polarization conversions are in − excess of 90%. Finally, the physical mechanism is revealed by the decomposition of two orthogonal components and the verification is presented by the interference theory. Keywords: reconfigurable polarizer; tunable metasurface; broadband; Bulk-Dirac-Semimetal 1. Introduction In recent years, terahertz (THz) technology has developed rapidly in many fields, such as sensing [1], imaging [2] and radar [3] because terahertz waves have very low photon energy, strong penetrability, and obvious characteristic absorption peaks, making terahertz technology show significant research value and great prospects in material detection, security inspection, military, and wireless communications. -
Template-Assisted Electrochemical Synthesis of Cdse Quantum Dots—Polypyrrole Composite Nanorods
applied sciences Article Template-Assisted Electrochemical Synthesis of CdSe Quantum Dots—Polypyrrole Composite Nanorods Won-Seok Kang 1, Taegon Oh 2, Gwang-Hyeon Nam 1, Hyo-Sop Kim 1, Ki-Suk Kim 3, Sun-Hyun Park 3, Jae-Ho Kim 1,* and Jae-Hyeok Lee 3,* 1 Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; [email protected] (W.-S.K.); [email protected] (G.-H.N.); [email protected] (H.-S.K.) 2 Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea; [email protected] 3 R&D Center for Advanced Pharmaceuticals & Evaluation, Korea Institute of Toxicology, Daejeon 34114, Korea; [email protected] (K.-S.K.); [email protected] (S.-H.P.) * Correspondence: [email protected] (J.-H.K.); [email protected] (J.-H.L.); Tel.: +82-31-219-2517 (J.-H.K.); +82-42-610-8338 (J.-H.L.) Received: 26 July 2020; Accepted: 26 August 2020; Published: 28 August 2020 Abstract: Luminescent nanoparticles have reached a high level of maturity in materials and spectral tunability for optics and optoelectronics. However, the lack of facile methodology for heterojunction formation of the nanoparticles provides many challenges for scalability. In this paper we demonstrate a simple procedure to synthesize a nanoparticle-embedded polymer nanorod hybrid structure via a template-based electrochemical method using anodic aluminum oxide membranes. This method enables the formation of interactive nanostructures wherein the interface area between the two components is maximized. As a proof of concept, semiconducting CdSe nanoparticles were embedded in polypyrrole nanorods with dimensions that can be finely tuned. -
An Unexplored 2D Semiconductor with a High Hole Mobility Han Liu Purdue University, Birck Nanotechnology Center, [email protected]
Purdue University Purdue e-Pubs Birck and NCN Publications Birck Nanotechnology Center 4-2014 Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility Han Liu Purdue University, Birck Nanotechnology Center, [email protected] Adam T. Neal Purdue University, Birck Nanotechnology Center, [email protected] Zhen Zhu Michigan State University Xianfan Xu Purdue University, Birck Nanotechnology Center, [email protected] David Tomanek Michigan State University See next page for additional authors Follow this and additional works at: http://docs.lib.purdue.edu/nanopub Part of the Nanoscience and Nanotechnology Commons Liu, Han; Neal, Adam T.; Zhu, Zhen; Xu, Xianfan; Tomanek, David; Ye, Peide D.; and Luo, Zhe, "Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility" (2014). Birck and NCN Publications. Paper 1584. http://dx.doi.org/10.1021/nn501226z This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Authors Han Liu, Adam T. Neal, Zhen Zhu, Xianfan Xu, David Tomanek, Peide D. Ye, and Zhe Luo This article is available at Purdue e-Pubs: http://docs.lib.purdue.edu/nanopub/1584 ARTICLE Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility Han Liu,†,‡ Adam T. Neal,†,‡ Zhen Zhu,§ Zhe Luo,‡,^ Xianfan Xu,‡,^ David Toma´ nek,§ and Peide D. Ye†,‡,* †School of Electrical and Computer Engineering and ‡Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States, §Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824, United States, and ^School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States ABSTRACT We introduce the 2D counterpart of layered black phosphorus, which we call phosphorene, as an unexplored p-type semiconducting material. -
Science & Technology Trends 2020-2040
Science & Technology Trends 2020-2040 Exploring the S&T Edge NATO Science & Technology Organization DISCLAIMER The research and analysis underlying this report and its conclusions were conducted by the NATO S&T Organization (STO) drawing upon the support of the Alliance’s defence S&T community, NATO Allied Command Transformation (ACT) and the NATO Communications and Information Agency (NCIA). This report does not represent the official opinion or position of NATO or individual governments, but provides considered advice to NATO and Nations’ leadership on significant S&T issues. D.F. Reding J. Eaton NATO Science & Technology Organization Office of the Chief Scientist NATO Headquarters B-1110 Brussels Belgium http:\www.sto.nato.int Distributed free of charge for informational purposes; hard copies may be obtained on request, subject to availability from the NATO Office of the Chief Scientist. The sale and reproduction of this report for commercial purposes is prohibited. Extracts may be used for bona fide educational and informational purposes subject to attribution to the NATO S&T Organization. Unless otherwise credited all non-original graphics are used under Creative Commons licensing (for original sources see https://commons.wikimedia.org and https://www.pxfuel.com/). All icon-based graphics are derived from Microsoft® Office and are used royalty-free. Copyright © NATO Science & Technology Organization, 2020 First published, March 2020 Foreword As the world Science & Tech- changes, so does nology Trends: our Alliance. 2020-2040 pro- NATO adapts. vides an assess- We continue to ment of the im- work together as pact of S&T ad- a community of vances over the like-minded na- next 20 years tions, seeking to on the Alliance. -
A STUDY of POLYMER-GRAPHENE CONDUCTING THIN FILMS and THEIR PROPERTIES by DILLI RAM DHAKAL Masters of Science in Physics Tribhu
A STUDY OF POLYMER-GRAPHENE CONDUCTING THIN FILMS AND THEIR PROPERTIES By DILLI RAM DHAKAL Masters of Science in Physics Tribhuvan University Kirtipur, Kathmandu 2012 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2018 A STUDY OF POLYMER-GRAPHENE CONDUCTING THIN FILMS AND THEIR PROPERTIES Thesis Approved: Dr. Ranji Vaidyanathan Thesis Adviser Dr. Toby Nelson Dr. Do Young Kim ii ACKNOWLEDGEMENTS I would like to offer special thanks to my advisor, Dr. Vaidyanathan, for providing the opportunity to conduct research in the field of composite material under his supervision. Without his constant support, motivation and openness for discussion, this research work would not have been possible. I am particularly grateful for the trust that he kept on me during this work. I am also grateful for the opportunity provided to me toward working in the business side of this project. I am thankful to Dr. Nelson and Dr. Kim for being a part of my thesis committee and their support. I also want to add special thanks towards Dr. Nelson and his graduate students for providing the working environment in their lab. I wish to acknowledge Dr. Frank Blum and Dr. Bhishma Sedai for providing environment to work on TGA and constant support throughout the work. I extremely thankful to all my friends (Vishanth, ShawnDea, Vishal, Muthu, Ragini, Jonathan, Santosh, Malay, Ranjan) for constant support during different aspects of my master’s degree. I am forever grateful to my parents, wife Isha and daughter Sayana, who have been backbone for my strength and passion in my life. -
Modulation of Phosphorene for Optimal Hydrogen Evolution Reaction
Research Article Cite This: ACS Appl. Mater. Interfaces 2019, 11, 37787−37795 www.acsami.org Modulation of Phosphorene for Optimal Hydrogen Evolution Reaction † † † † † ‡ † § Jiang Lu, Xue Zhang, Danni Liu, Na Yang, Hao Huang, Shaowei Jin, Jiahong Wang,*, , § † Paul K. Chu, and Xue-Feng Yu † Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China ‡ National Supercomputing Center, Shenzhen, Guangdong 518055, P. R. China § Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China *S Supporting Information ABSTRACT: Economical and highly effective catalysts are crucial to the electrocatalytic hydrogen evolution reaction (HER), and few-layer black phosphorus (phosphorene) is a promising candidate because of the high carrier mobility, large specific surface area, and tunable physicochemical characteristics. However, the HER activity of phosphorene is limited by the weak hydrogen adsorption ability on the basal plane. In this work, optimal active sites are created to modulate the electronic structure of phosphorene to improve the HER activity and the effectiveness is investigated theoretically by density-functional theory calculation and verified experimentally. The edges and defects affect the electronic density of states, and a linear relationship between the HER activity and lowest unoccupied states ε ε ( LUS) is discovered. The medium LUS value corresponds to the suitable hydrogen adsorption strength. Experiments are designed and performed to verify the prediction, and our results show that a smaller phosphorene moiety with more edges and defects exhibits better HER activity and surface doping with metal adatoms improves the catalytic performance.