DOGAMI OGI-2, Subsurface Geology of the Lower Columbia and Willamette Basins, Oregon

Total Page:16

File Type:pdf, Size:1020Kb

DOGAMI OGI-2, Subsurface Geology of the Lower Columbia and Willamette Basins, Oregon SU BSURFACE GEOLO GY OF THE LOW ER COLUMBIA AND WILLAMETTE BASINS. OREGON Oil and Gas Investigations No.2 Published by State of Oregon Deportment of Geology and Mineral Industries STAT E OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1069 State Office Bui I ding Portland Oregon - 97201 SUBSURFACE GEOLOGY OF THE LOWER COLUMBIA AND WILLAMETTE BASINS, OREGON Oil and Gas Investi gati ons No . 2 by V. C. New ton , J r . 1969 Governing Board Fayette I. Bri stol, Chairman Rogue River R. W. deWeese Portland Haro ld Banta Baker R. E. Corcoran State Geologist FOREWORD This is the second in a series of pu blications of the State of Oregon Department of Geology and Mi neral Industries that discusses the petroleum potential in various parts of Oregon . The first report, published in 1963, covered part of the Snake River basin along th e eastern border of the state near Vale and Ontar­ io, where several test wells encou ntered large bu t discontinuous "shows" of gas. The present report is concerned with northwestern Oregon, particularly th e lower Columbia and Wi llamette basi ns . The northwestern part of Oregon has been an area of petroleum exploration for more than 40 years, but most of th e important dri lling activity has been confined to two brief periods -- the middle 1940's dur­ ing and shortly after World War II and the late 1950's and early 1960's , resulting from the gas and oi I showings in the Barr No . 1 wel l near Lebanon . Although no commercial production developed after th is explorational effort, the work has shown that th ick sections of marine rocks exist in this region and that in some areas porous and permeable sands are present . The study presents all avai I able su bsu rface data that the author was ab le to obtain, largely through the kind cooperation of the various oi l compani es that have worked in the state . Most of th e information was derived from 25 test wells, the preponderant num­ ber of which were drilled within th e last 20 years . From th is information the author is ab le to show that northwestern Oregon has the requisite geologic environment in regard to potenti al source beds , reservoir beds, and structures suitable for th e entrapment of commercial quanti ti es of oil and gas . It is hoped th at reports of th is type, giving geologic details of a basin region, wi II encourage future fi eld and laborato ry studies by private industry . R. E. Corcoran State Geologist October, 1969 ii CONTENTS Foreword ii Abstract . Introduction 3 Purpose and scope 3 Location and geography of study area 3 Ac know I edgments 4 Prospective areas summarized 5 Historical geology . 7 Pre-Tertiary 7 Tertiary . 7 Eocene Epoch 8 Oligocene Epoch 10 Miocene Epoch . 10 Pliocene Epoch • 11 Quaternary 11 Structural development 12 Strati graphy of subsurface sections 13 Astoria basin area 13 Nehalem basi n area 16 Tualati n basin - northern Willamette Valley 19 Central Wi llamette Val ley 21 Southern Wi llamette Valley 24 Discussion of prospects 27 Lower Columbia Val ley 28 Tualatin Va lley • 28 Wi llamette Va lley 28 Selected references 30 Appendix . " 37 Paleonto logic examination of four deep wells, by R. E. Thoms 39 Table 1. Drilling and test information. 47 Table 2. Description of well cuttings and cores 53 Table 3. Gas analyses 121 Table 4. Water analyses . 121 iii ILL USTRATIONS Figure 1 . Index map of Oregon showing area of subsurface study . 4 Figure 2. Seismic crew ou tlining objec tives for deep drilling in the southwestern Wi llamette Valley, 1963 5 Figure 3. General structural features of western Oregon and Washi ngton . 6 Figure 4. Sketch map of western Oregon showing extent of Tertiary seas . 6 Figure 5. Correlation chart for the Lower Co lumbia and Willamette regions . 9 Figure 6. Generalized geologic column for the Astoria basin 14 Figure 7. Generalized geologic column for the Nehalem basin . 17 Figure 8. Generalized geologic column for the Tualatin basin - northern Wi llamette Valley 20 Figure 9. Generalized geologic column for the central Willamette Valley . 22 Figure 10. Hu mble "Wicks 1," 1962, Mo ntgomery Dri I ling Co,, contractor, using National 130 rig 24 Figure 11 . Generalized geologic column for the southern Wi llamette Val ley . 25 Figure 12. Reserve "Esmond 1 , " 1962. Montgomery Dri IIi ng Co ., contractor, using National 75 rig . 27 Plates Plate I . Astoria basin subsurface section In Pocket Plate II. Nehalem basi n subsurface section In Pocket Plate Ill. Tualati n basin - northern Wi llamette Va lley subsurface section In Pocket Plate IV. Central Willamette Va lley (Salem) subsurface section In Pocket Plate V. Central Willamette Va lley (Albany) subsurface section In Pocket Plate VI . Southern Wi llamette Valley subsurface section . In Pocket Plate VII. Subsurface geologic map of northwestern Oregon . In Pocket iv ABSTRAC T The Pacific margin of North America, including western Oregon, was part of a mobile tectonic belt which is believed to have been covered by the sea many times in geologic hist ory . How ever, the pre-Tertiary history is not well understood in the area of this re­ port, because these older rocks are not exposed outside the Klamath Mountains in south ­ western Oregon and none of the deep dri llings made thus far have reached the older rocks . During early and middle Tertiary time the sea covered most of western Oregon to a depth of severa l thousand feet . Vast outpourings of basic lava and vo lcanic ash accompanied marine deposition in the Tertiary eugeosyncline of western Oregon; th e volcanic piles at times rose above the level of the sea to form low islands . Two main areas of marine depo­ si tion deve loped in the eugeosync line, namely the lower Columbia basin and the Wi l lam­ ette basin. The basi ns were deepened by diastrophisms in late Eocene and early Miocene time. The region was raised above sea level by the end of middle Miocene time and was never again inundated . Pli ocene-Pleistocene diastrophism folded th e Coast Ra,nge sedimentary and volcan­ ic rock into a north-trending anticlinorium while, to the east, volc-anism formed the High Cascade Mountains . The Wi llamette low land separated the two mountain ranges and on occasion was the site of large lakes during the Pleistocene . Northwesterly and northeasterly trending structures in western Oregon are bel ieved to have originated during middle Miocene diastrophism . A northerly structural terrane was superimposed upon the older fo lds duri ng late Pl iocene-early Pleistocene upheaval . Major faulting parallels the regiona l structural trend except for a large transverse fau lt which cuts the Coast Range along the southern border of the vo lcanic highlands in the northwest portion of the state . Information from 25 deep exploratory dri llings was used in maki ng the subsurface study . Formations penetrated included porous sands which were fo und to be saturated with sa lt water in every test. Stratigraph ic units are related to faunal zones in a paleontologic report contained in the appendix. Subsurface corre lation showed Tertiary rocks to be at least 10,000 feet th ick in northwestern Oregon and perhaps as much as 20,000 feet th ick in some places . East-dipping early and middle Eocene marine beds are believed to extend for a distance beneath the Cascade Mou ntains, while younger sedi ments apparently change to a volcanic facies along the western margin of the Cascade Range . Unusually high­ pressure sa l t-water zones were found in two deep drillings in the central Wi llamette Valley, but structural and hydrologic information is too limited to allow speculation as to whether or not production cou ld be fo und at nearby locations . A 4900-foot hole on the east side of the Willamette Va lley encountered hydrocarbon shows along what is though t to be the upper Eocene strand line . Severa l locations appear to have merit as dri lling prospects in the Wi llamette and lower Columbia basins where structural and stratigraphic conditions are favorable. More deep drilling is needed to exp lore the basin areas . SUBSURFACE GEOLO GY OF THE LOW ER COLUMBIA AND WILLAMETTE BASINS, OR EGON Vernon C. Newton, Jr. Introduction Purpose and scope This study is intended to correlate subsurface with surface stratigraphy of the lower Columbia-Wi llamette region in northwestern Oregon on the bases of litho logy, paleonto logy, and electric logs of deep oi I drillings (figure 1). The 25 test holes (table 1 in the appendix) that provided subsurface data for the re­ port generally represent two periods of drilling activity: that in the post-warboom fo llow ing World War II and that resu lting from reported oi l and gas shows in the Linn County Oi l Development Co .'s wildcat drilled near the tow n of Lebanon in 1958 . The latter period of activity, often referred to as the "Wi llam­ ette Val ley play," includes the dri lling of five more deep holes between 1960 and 1963 (fi gure 2). The general plan of this report is to present, first, a summary of prospects in the study area and, second, the historical and structural development of the region . These are to be fo llowed by a discussion of subsurface sections, each of which is illustrated graphically (pl ates 1 through 6) in order to show gen­ eral litho logic character and explain stratigraphic re lationships. The text is concluded by a discussion of petroleum prospects .
Recommended publications
  • I I 71-15,061 CAMERON, Christopher Paul, 1940- PALEOMAGNETISM of SHEMYA and ADAK ISLANDS, ALEUTIAN ISLANDS, ALASKA. University O
    Paleomagnetism Of Shemya And Adak Islands, Aleutian Islands, Alaska Item Type Thesis Authors Cameron, Christopher Paul Download date 23/09/2021 14:56:00 Link to Item http://hdl.handle.net/11122/9194 I I 71-15,061 CAMERON, Christopher Paul, 1940- PALEOMAGNETISM OF SHEMYA AND ADAK ISLANDS, ALEUTIAN ISLANDS, ALASKA. University of Alaska, Ph.D., 1970 Geology University Microfilms, A XEROX Company, Ann Arbor, Michigan tutc nTCCTDTATTOM MAC HTTM MTPROFIT.MFD F.VAPTT.Y AS RF.OF.TVF.D Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PALE01IAGNETISM OF SHEMYA AMD ADAK ISLAUDS, ALEUTIAN ISLANDS, ALASKA A DISSERTATION Presented to the Faculty of the University of Alaska in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Christopher P/" Cameron B. S. College, Alaska May, 1970 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PALEOilAGNETISM OF SHEMYA AND ADAK ISLANDS, ALEUTIAN ISLANDS, ALASKA APPROVED: f t l ‘y l .V" ■i. n ■ ■< < ; N w 1 T *W -C ltc-JL It / _ _ ____ /vx... , ~ ~ 7 YdSV Chairman APPPvOVED: dai£ 3 / 3 0 / 7 0 Dean of the College of Earth Sciences and Mineral Industry Vice President for Research and Advanced Study Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT Paleomagnetic results are presented for Tertiary and Quaternary volcanic rocks from Shemya and Adak Islands, Aleutian Islands, Alaska. The specimens were collected and measured using standard paleomagnetic methods. Alternating field demagnetization techniques were applied to test the stability of the remanence and to remove unwanted secondary components of magnetization.
    [Show full text]
  • Geologic History of Siletzia, a Large Igneous Province in the Oregon And
    Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig.
    [Show full text]
  • Geologic Map of the Cascade Head Area, Northwestern Oregon Coast Range (Neskowin, Nestucca Bay, Hebo, and Dolph 7.5 Minute Quadrangles)
    (a-0g) R ago (na. 96-53 14. U.S. DEPARTMENT OF THE INTERIOR , U.S. GEOLOGICAL SURVEY Alatzi2/6 (Of (c,c) - R qo rite 6/6-53y Geologic Map of the Cascade Head Area, Northwestern Oregon Coast Range (Neskowin, Nestucca Bay, Hebo, and Dolph 7.5 minute Quadrangles) by Parke D. Snavely, Jr.', Alan Niem 2 , Florence L. Wong', Norman S. MacLeod 3, and Tracy K. Calhoun 4 with major contributions by Diane L. Minasian' and Wendy Niem2 Open File Report 96-0534 1996 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American stratigraphic code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1/ U.S. Geological Survey, Menlo Park, CA 94025 2/ Oregon State University, Corvallis, OR 97403 3/ Consultant, Vancouver, WA 98664 4/ U.S. Forest Service, Corvallis, OR 97339 TABLE OF CONTENTS INTRODUCTION 1 GEOLOGIC SKETCH 2 DESCRIPTION OF MAP UNITS SURFICIAL DEPOSITS 7 BEDROCK UNITS Sedimentary and Volcanic Rocks 8 Intrusive Rocks 14 ACKNOWLEDGMENTS 15 REFERENCES CITED 15 MAP SHEETS Geologic Map of the Cascade Head Area, Northwestern Oregon Coast Range, scale 1:24,000, 2 sheets. Geologic Map of the Cascade Head Area, Northwest Oregon Coast Range (Neskowin, Nestucca Bay, Hebo, and Dolph 7.5 minute Quadrangles) by Parke D. Snavely, Jr., Alan Niem, Florence L. Wong, Norman S. MacLeod, and Tracy K. Calhoun with major contributions by Diane L. Minasian and Wendy Niem INTRODUCTION The geology of the Cascade Head (W.W.
    [Show full text]
  • Geologic History of Siletzia, a Large Igneous Province in the Oregon and Washington Coast Range: Correlation to the Geomagnetic
    Downloaded from geosphere.gsapubs.org on May 12, 2015 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig. 1). These volcanic complexes Siletzia is a basaltic Paleocene and Eocene Farallon and/or Resurrection-Farallon ridge include the Siletz River Volcanics (SRV) of Ore- large igneous province in coastal Oregon, between 60 and 50 Ma. In this confi guration, gon, the Crescent Formation of Washington, and Washington, and southern Vancouver Island the YHS could have provided a 56–49 Ma the Metchosin igneous complex of southern Van- that was accreted to North America in the source on the Farallon plate for Siletzia, couver Island.
    [Show full text]
  • Paleontology and Stratigraphy of Eocene Rocks at Pulali Point, Jefferson County, Eastern Olympic Peninsula, Washington
    PALEONTOLOGY AND STRATIGRAPHY OF EOCENE ROCKS AT PULALI POINT, JEFFERSON COUNTY, EASTERN OLYMPIC PENINSULA, WASHINGTON by RICHARD L. SQUIRES, JAMES L. GOEDERT, and KEITH L. KALER WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES REPORT OF INVESTIGATIONS 31 1992 ., WASHINGTON STATE DEPARTMENT OF Natural Resources Brian Boyle • Commhstoner of Public Lands An Steo_r0$ - Superv1sor Division ol Geology and Earth Resources Raymond Lcmnanls. State Geologlsl PALEONTOLOGY AND STRATIGRAPHY OF EOCENE ROCKS AT PULALI POINT, JEFFERSON COUNTY, EASTERN OLYMPIC PENINSULA, WASHINGTON by RICHARD L. SQUIRES, JAMES L. GOEDERT, AND KEITH L. KALER WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES REPORT OF INVESTIGATIONS 31 1992 W>.SHING'TON STAT1r OEPARTMDIT or Natural Resources 8ncll) Bov,. · COmmmioner ot Pu!xk: tancb M $i.atni; S\lp$1'WOJ' DtY!llcn 01 Gtology ahCS £artti ~ Raymond l.mlMn.:I ~Geologist Cover: From left, ?Falsifusus marysvillensis; Pachycrommium clarki; large bivalve, Veneri­ cardia hornii s.s.; Delectopecten cf. D. vancouverensis sanjuanensis; Turritella uvasana hendoni. These specimens are shown at 150 percent of the dimensions on Plates 1 and 3. Use of trade, product, or firm names in this report is for descriptive purposes only and does not consitute endorsement by the Washington Division of Geology and Earth Resources. This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 1.85 Tax (Stale residenl.t only) .15 Total $ 2.00 Mail orders must be prepaid; please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources.
    [Show full text]
  • Drainage Basin Morphology in the Central Coast Range of Oregon
    AN ABSTRACT OF THE THESIS OF WENDY ADAMS NIEM for the degree of MASTER OF SCIENCE in GEOGRAPHY presented on July 21, 1976 Title: DRAINAGE BASIN MORPHOLOGY IN THE CENTRAL COAST RANGE OF OREGON Abstract approved: Redacted for privacy Dr. James F. Lahey / The four major streams of the central Coast Range of Oregon are: the westward-flowing Siletz and Yaquina Rivers and the eastward-flowing Luckiamute and Marys Rivers. These fifth- and sixth-order streams conform to the laws of drain- age composition of R. E. Horton. The drainage densities and texture ratios calculated for these streams indicate coarse to medium texture compa- rable to basins in the Carboniferous sandstones of the Appalachian Plateau in Pennsylvania. Little variation in the values of these parameters occurs between basins on igneous rook and basins on sedimentary rock. The length of overland flow ranges from approximately i mile to i mile. Two thousand eight hundred twenty-five to 6,140 square feet are necessary to support one foot of channel in the central Coast Range. Maximum elevation in the area is 4,097 feet at Marys Peak which is the highest point in the Oregon Coast Range. The average elevation of summits in the thesis area is ap- proximately 1500 feet. The calculated relief ratios for the Siletz, Yaquina, Marys, and Luckiamute Rivers are compara- ble to relief ratios of streams on the Gulf and Atlantic coastal plains and on the Appalachian Piedmont. Coast Range streams respond quickly to increased rain- fall, and runoff is rapid. The Siletz has the largest an- nual discharge and the highest sustained discharge during the dry summer months.
    [Show full text]
  • (Gastropoda: Cypraeidae) from the Western Hemisphere, with a Description of a New Species from the Eocene of Washington
    THE NAUTILUS 109(4):113-116, 1995 Page 113 First Report of the Genus Proadusta Sacco, 1894 (Gastropoda: Cypraeidae) from the Western Hemisphere, with a Description of a New Species from the Eocene of Washington Lindsey T. Groves Richard L. Squires Malacology Section Department of Geological Sciences Natural History Museum of Los California State University Angeles County 18111 Nordhoff Street 900 Exposition Boulevard Northridge, California 91330-8266 Los Angeles, California 90007 USA USA ABSTRACT Fossil-bearing rocks at both localities consist of a thin section of richly fossiliferous and conglomeratic silty A new species of cypraeid gastropod, Proadusta goedertorum mudstone interbedded with basalt. Extrusion of the ba- n. sp., is reported from the middle lower Eocene ("Capay Stage") upper part of the Crescent Formation, Thurston Coun- salt caused shoaling and the establishment of a rocky ty, Washington. This new species was found at two localities shoreline community where gastropod and bivalved mol- where shallow-water marine deposits are interbedded with rocky lusks lived with colonial corals and abundant coralline shoreline-forming basalt flows. Proadusta Sacco, 1894 was pre- algae. Shells were transported a short distance seaward viously known only from the lower Eocene to lower Miocene where they were deposited as a matrix of coquina that of Europe, Myanmar (= Burma), and Indonesia. infilled spaces between basalt boulders. Many of the shells Key words: Proadusta, Cypraeidae, Western Hemisphere, Eo- in the coquina are small to minute, and their size pre- cene, Washington. vented them from being destroyed during transport. Within the coquina are a few larger shells, like those of the new species, that apparently lived in the shallow- subtidal environment where coquina accumulation took INTRODUCTION place (Squires & Goedert, 1994; in press).
    [Show full text]
  • Changes in Stratigraphic Nomenclature by the U.S. Geological Survey
    Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, By GEORGE V. COHEE, ROBERT G. BATES, and WILNA B. WRIGHT CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1294-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Listing of nomenclatural changes- --- ----- - - ---- -- -- -- ------ --- Ortega Quartzite and the Big Rock and Jawbone Conglomerate Members of the Kiawa Mountain Formation, Tusas Mountains, New Mexico, by Fred Barker---------------------------------------------------- Reasons for abandonment of the Portage Group, by Wallace de Witt, Jr-- Tlevak Basalt, west coast of Prince of Wales Island, southeastern Alaska, by G. Donald Eberlein and Michael Churkin, Jr Formations of the Bisbee Group, Empire Mountains quadrangle, Pima County, Arizona, by Tommy L. Finnell---------------------------- Glance Conglomerate- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Willow Canyon Formation ....................................... Apache Canyon Formation-- ................................... Shellenberger Canyon Formation- - --__----- ---- -- -- -- ----------- Turney Ranch Formation---- ------- ------ -- -- -- ---- ------ ----- Age--_------------------------------------------------------- Pantano Formation, by Tommy L. Finnell----------_-----------------
    [Show full text]
  • Geologic Formations of Western Oregon
    BULLETIN 70 GEOLOGIC fORMATION§ OF WESTERN OREGON WEST OF LONGITUDE 121° 30' STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1971 STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1069 Stal·e Office Building Portland, Oregon 97201 BULLETIN 70 GEOLOGIC FORMATIONS OF WESTERN OREGON (WEST OF LONGITUDE 12 1 °30') By John D. Beaulieu 1971 GOVERNING BOARD Fayette I. Bristol, Rogue River, Chairman R. W. deWeese, Portland Harold Banta, Baker STATE GEOLOGIST R. E. Corcoran CONTENTS Introduction . Acknowledgements 2 Geologic formations 3 Quadrang I es. 53 Corre I ation charts. 60 Bibliography. 63 ii GE OLOGIC FORMA T IONS OF WESTERN OR EGON (W E ST OF LONG ITUD E 12 1°30') By John D. Beaulieu* INTRODUCTION It is the purpose of th is publi cation to provide a concise , yet comprehensive discussion of the for­ mations of western Oregon. It is the further aim that the data for each of the formations be as current as possi ble. Consequently, the emphasis has been placed on th e recent literature . Although this paper should not be viewed as a discussion of the historical development of each of the fo rmations, the original reference for each of the units is given . Also, in cases where the historical development of the formation has a direct bearing on present-day problems it is included in the discussion . A wide variety of published literature and unpublished reports , theses, and dissertations was con­ sul ted and several professional opin ions regarding specific problems were so licited . In recent years re­ search has been concentrated in the Klamath Mountains and the southern Coast Range and for these regions literature was volumi nous.
    [Show full text]
  • Petrogenesis of Siletzia: the World’S Youngest Oceanic Plateau
    Results in Geochemistry 1 (2020) 100004 Contents lists available at ScienceDirect Results in Geochemistry journal homepage: www.elsevier.com/locate/ringeo Petrogenesis of Siletzia: The world’s youngest oceanic plateau T.Jake R. Ciborowski a,∗, Bethan A. Phillips b,1, Andrew C. Kerr b, Dan N. Barfod c, Darren F. Mark c a School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK b School of Earth and Ocean Science, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK c Natural Environment Research Council Argon Isotope Facility, Scottish Universities Environmental Research Centre, East Kilbride G75 0QF, UK a r t i c l e i n f o a b s t r a c t Keywords: Siletzia is an accreted Palaeocene-Eocene Large Igneous Province, preserved in the northwest United States and Igneous petrology southern Vancouver Island. Although previous workers have suggested that components of Siletzia were formed Geochemistry in tectonic settings including back arc basins, island arcs and ocean islands, more recent work has presented Geochemical modelling evidence for parts of Siletzia to have formed in response to partial melting of a mantle plume. In this paper, we Mantle plumes integrate geochemical and geochronological data to investigate the petrogenetic evolution of the province. Oceanic plateau Large igneous provinces The major element geochemistry of the Siletzia lava flows is used to determine the compositions of the primary magmas of the province, as well as the conditions of mantle melting. These primary magmas are compositionally similar to modern Ocean Island and Mid-Ocean Ridge lavas. Geochemical modelling of these magmas indicates they predominantly evolved through fractional crystallisation of olivine, pyroxenes, plagioclase, spinel and ap- atite in shallow magma chambers, and experienced limited interaction with crustal components.
    [Show full text]
  • Studies in Oregon. 1976 : Bowen and Others
    APRIL 1977 VOLUME 39, No. 4 STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES The Ore Bin Published Month ly By STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTR I ES Head Office: 1069 State Office Bldg., Portland, Oregon 9nOl Telephone, [5031 229-5580 FIE LD OFFICES 2033 First Street 521 N.E. "E" Street Boker 97814 Grants Pass 97526 Subscr~tion Rates 1 year, $3. ; 3 years, $8.00 Available back issues, S.25 at counter, $ .35 moiled Second closs postoge paid at Portland, Oregon GOVERNING BOARD R. W. deWeese, Portland, Chairman Leeonne Mac:Coll, Portland Robert W. Dofy, Talent STATE GEOLOGIST Rolph S. Moson GEOLOGISTS IN CHARGE OF FIELD OFFICES Howard C. Brooks, Baker Len Ramp I Grants Pass Permission is granted to reprint information contained herein. Credit given the Stale of Oregon Department of Geology and Mineral Industries for compiling this informationwitl be appreciated. State of Oregon The ORE BIN Department of Geology and 1'1ineral Industries Volume 39, No.4 1069 State Office Bldg. April 1977 Port 1 and, Oregon 97201 FIELD GUIDE TO THE GEOLOGY OF CORVALLIS AND VICINITY, OREGON R.D. Lawrence, N.D. Livingston, S.D. Vickers, and L.B. Conyers Geology Department, Oregon State University, Corvallis Introduction and Geologic Background This field guide had its origin in a class in environmental geol­ ogy taught in the spring of 1971. The original road log has been modified so that those with an introduction to elementary geology will find it self-guiding. It emphasizes the practical aspects of local geology. It is divided into two parts, each of which provides a pleasant bicycle trip for an afternoon.
    [Show full text]
  • Magmatism and Metamorphism in the Leech River Complex
    MAGMATISM AND METAMORPHISM IN THE LEECH RIVER COMPLEX, SOUTHERN VANCOUVER ISLAND, BRITISH COLUMBIA, CANADA - IMPLICATIONS FOR EOCENE TECTONICS OF THE PAClFlC NORTHWEST by Wesley Glen Groome, B.Sc. .University of Alberta, 1998 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the OEPARTMENT OF EARTH SCIENCES, SIMON FRASER UNIVERSITY, Bumaby, BC Q Wesley Glen Groome 2000 SIMON FRASER UNIVERSITY May 2000 All rights reserved. This work may not be reproduced in Mole or in part, by photocopy or other means, without the permission of the author. The aidhar has granted a ncm- L'auteur a accordé une licence non exciusive licence allowing the exclusive permettant B la National hiof Canada to Bbiiothéque nationaie du Canada de reproduce, loan, distribute or seiî reproduire, prêter, distribuer ou copies of this thesis in microfonn, vendce des copies de cette thèse sous paper or electrdc farmats. la fmede microfichelfilm, de reproduction sur papier ou sur foxmat électronique. The author retains ownership of the L'auteur comme la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor subsîantial extracts fbm it Ni la îhèse ni des extraits substantiels may be printed or othdse de celle-ci ne doivent être imprimés reproduced without the auîhor's ou autrement reprodrnts sans son permission. autorisation. ABSTRACT The Leech River Complex of southem Vancouver Island consists of the Leech River Schist and Mesozoic and Eocene deformed igneous rocks. In the study area, the igneous rocks consist of the Walker Creek intrusions, and two previously unrecognized intrusive un&, the Tnpp Creek metabasite and the Jordan River metagranodiorite.
    [Show full text]