An Extensible Framework for Data Stream Clustering Research with R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data Mining – Intro
Data warehouse& Data Mining UNIT-3 Syllabus • UNIT 3 • Classification: Introduction, decision tree, tree induction algorithm – split algorithm based on information theory, split algorithm based on Gini index; naïve Bayes method; estimating predictive accuracy of classification method; classification software, software for association rule mining; case study; KDD Insurance Risk Assessment What is Data Mining? • Data Mining is: (1) The efficient discovery of previously unknown, valid, potentially useful, understandable patterns in large datasets (2) Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD (2) The analysis of (often large) observational data sets to find unsuspected relationships and to summarize the data in novel ways that are both understandable and useful to the data owner Knowledge Discovery Examples of Large Datasets • Government: IRS, NGA, … • Large corporations • WALMART: 20M transactions per day • MOBIL: 100 TB geological databases • AT&T 300 M calls per day • Credit card companies • Scientific • NASA, EOS project: 50 GB per hour • Environmental datasets KDD The Knowledge Discovery in Databases (KDD) process is commonly defined with the stages: (1) Selection (2) Pre-processing (3) Transformation (4) Data Mining (5) Interpretation/Evaluation Data Mining Methods 1. Decision Tree Classifiers: Used for modeling, classification 2. Association Rules: Used to find associations between sets of attributes 3. Sequential patterns: Used to find temporal associations in time series 4. Hierarchical -
Anytime Algorithms for Stream Data Mining
Anytime Algorithms for Stream Data Mining Von der Fakultat¨ fur¨ Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Informatiker Philipp Kranen aus Willich, Deutschland Berichter: Universitatsprofessor¨ Dr. rer. nat. Thomas Seidl Visiting Professor Michael E. Houle, PhD Tag der mundlichen¨ Prufung:¨ 14.09.2011 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbar.¨ Contents Abstract / Zusammenfassung1 I Introduction5 1 The Need for Anytime Algorithms7 1.1 Thesis structure......................... 16 2 Knowledge Discovery from Data 17 2.1 The KDD process and data mining tasks ........... 17 2.2 Classification .......................... 25 2.3 Clustering............................ 36 3 Stream Data Mining 43 3.1 General Tools and Techniques................. 43 3.2 Stream Classification...................... 52 3.3 Stream Clustering........................ 59 II Anytime Stream Classification 69 4 The Bayes Tree 71 4.1 Introduction and Preliminaries................. 72 4.2 Indexing density models.................... 76 4.3 Experiments........................... 87 4.4 Conclusion............................ 98 i ii CONTENTS 5 The MC-Tree 99 5.1 Combining Multiple Classes.................. 100 5.2 Experiments........................... 111 5.3 Conclusion............................ 116 6 Bulk Loading the Bayes Tree 117 6.1 Bulk loading mixture densities . 117 6.2 Experiments.......................... -
Improving Iot Data Stream Analytics Using Summarization Techniques Maroua Bahri
Improving IoT data stream analytics using summarization techniques Maroua Bahri To cite this version: Maroua Bahri. Improving IoT data stream analytics using summarization techniques. Machine Learn- ing [cs.LG]. Institut Polytechnique de Paris, 2020. English. NNT : 2020IPPAT017. tel-02865982 HAL Id: tel-02865982 https://tel.archives-ouvertes.fr/tel-02865982 Submitted on 12 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Improving IoT Data Stream Analytics Using Summarization Techniques These` de doctorat de l’Institut Polytechnique de Paris prepar´ ee´ a` Tel´ ecom´ Paris Ecole´ doctorale n◦626 Denomination´ (Sigle) Specialit´ e´ de doctorat : Informatique NNT : 2020IPPAT017 These` present´ ee´ et soutenue a` Palaiseau, le 5 juin 2020, par MAROUA BAHRI Composition du Jury : Albert Bifet Professor, Tel´ ecom´ Paris Co-directeur de these` Silviu Maniu Associate Professor, Universite´ Paris-Sud Co-directeur de these` Joao˜ Gama Professor, University of Porto President´ Cedric´ Gouy-Pailler Engineer-Researcher, CEA-LIST Examinateur Ons Jelassi -
Frequent Item Set Mining Using INC MINE in Massive Online Analysis Frame Work
Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 45 ( 2015 ) 133 – 142 International Conference on Advanced Computing Technologies and Applications (ICACTA- 2015) Frequent Item set Mining using INC_MINE in Massive Online Analysis Frame work Prof.Dr.P.K.Srimania, Mrs. Malini M. Patilb* aFormer Chairman and Director, R & D, Bangalore University, Karnataka, India bAssistant Professor , Dept of ISE , J.S.S. Academy of Technical Education, Bangalore-560060, Karnataka, India Research Scholar, Bharthiar University, Coimbatore, Tamilnadu Abstract Frequent Pattern Mining is one of the major data mining techniques, which is exhaustively studied in the past decade. The technological advancements have resulted in huge data generation, having increased rate of data distribution. The generated data is called as a 'data stream'. Data streams can be mined only by using sophisticated techniques. The paper aims at carrying out frequent pattern mining on data streams. Stream mining has great challenges due to high memory usage and computational costs. Massive online analysis frame work is a software environment used to perform frequent pattern mining using INC_MINE algorithm. The algorithm uses the method of closed frequent mining. The data sets used in the analysis are Electricity data set and Airline data set. The authors also generated their own data set, OUR-GENERATOR for the purpose of analysis and the results are found interesting. In the experiments five samples of instance sizes (10000, 15000, 25000, 35000, 50000) are used with varying minimum support and window sizes for determining frequent closed itemsets and semi frequent closed itemsets respectively. The present work establishes that association rule mining could be performed even in the case of data stream mining by INC_MINE algorithm by generating closed frequent itemsets which is first of its kind in the literature. -
Data Stream Clustering Techniques, Applications, and Models: Comparative Analysis and Discussion
big data and cognitive computing Review Data Stream Clustering Techniques, Applications, and Models: Comparative Analysis and Discussion Umesh Kokate 1,*, Arvind Deshpande 1, Parikshit Mahalle 1 and Pramod Patil 2 1 Department of Computer Engineering, SKNCoE, Vadgaon, SPPU, Pune 411 007 India; [email protected] (A.D.); [email protected] (P.M.) 2 Department of Computer Engineering, D.Y. Patil CoE, Pimpri, SPPU, Pune 411 007 India; [email protected] * Correspondence: [email protected]; Tel.: +91-989-023-9995 Received: 16 July 2018; Accepted: 10 October 2018; Published: 17 October 2018 Abstract: Data growth in today’s world is exponential, many applications generate huge amount of data streams at very high speed such as smart grids, sensor networks, video surveillance, financial systems, medical science data, web click streams, network data, etc. In the case of traditional data mining, the data set is generally static in nature and available many times for processing and analysis. However, data stream mining has to satisfy constraints related to real-time response, bounded and limited memory, single-pass, and concept-drift detection. The main problem is identifying the hidden pattern and knowledge for understanding the context for identifying trends from continuous data streams. In this paper, various data stream methods and algorithms are reviewed and evaluated on standard synthetic data streams and real-life data streams. Density-micro clustering and density-grid-based clustering algorithms are discussed and comparative analysis in terms of various internal and external clustering evaluation methods is performed. It was observed that a single algorithm cannot satisfy all the performance measures. -
Performance Analysis of Hoeffding Trees in Data Streams by Using Massive Online Analysis Framework
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ePrints@Bangalore University Int. J. Data Mining, Modelling and Management, Vol. 7, No. 4, 2015 293 Performance analysis of Hoeffding trees in data streams by using massive online analysis framework P.K. Srimani R & D Division, Bangalore University Jnana Bharathi, Mysore Road, Bangalore-560056, Karnataka, India Email: [email protected] Malini M. Patil* Department of Information Science and Engineering, J.S.S. Academy of Technical Education, Uttaralli-Kengeri Main Road, Mylasandra, Bangalore-560060, Karnataka, India Email: [email protected] *Corresponding author Abstract: Present work is mainly concerned with the understanding of the problem of classification from the data stream perspective on evolving streams using massive online analysis framework with regard to different Hoeffding trees. Advancement of the technology both in the area of hardware and software has led to the rapid storage of data in huge volumes. Such data is referred to as a data stream. Traditional data mining methods are not capable of handling data streams because of the ubiquitous nature of data streams. The challenging task is how to store, analyse and visualise such large volumes of data. Massive data mining is a solution for these challenges. In the present analysis five different Hoeffding trees are used on the available eight dataset generators of massive online analysis framework and the results predict that stagger generator happens to be the best performer for different classifiers. Keywords: data mining; data streams; static streams; evolving streams; Hoeffding trees; classification; supervised learning; massive online analysis; MOA; framework; massive data mining; MDM; dataset generators. -
Massive Online Analysis, a Framework for Stream Classification and Clustering
MOA: Massive Online Analysis, a Framework for Stream Classification and Clustering. Albert Bifet1, Geoff Holmes1, Bernhard Pfahringer1, Philipp Kranen2, Hardy Kremer2, Timm Jansen2, and Thomas Seidl2 1 Department of Computer Science, University of Waikato, Hamilton, New Zealand fabifet, geoff, [email protected] 2 Data Management and Exploration Group, RWTH Aachen University, Germany fkranen, kremer, jansen, [email protected] Abstract. In today's applications, massive, evolving data streams are ubiquitous. Massive Online Analysis (MOA) is a software environment for implementing algorithms and running experiments for online learn- ing from evolving data streams. MOA is designed to deal with the chal- lenging problems of scaling up the implementation of state of the art algorithms to real world dataset sizes and of making algorithms compa- rable in benchmark streaming settings. It contains a collection of offline and online algorithms for both classification and clustering as well as tools for evaluation. Researchers benefit from MOA by getting insights into workings and problems of different approaches, practitioners can easily compare several algorithms and apply them to real world data sets and settings. MOA supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analysis, and is released under the GNU GPL license. Besides providing algorithms and measures for evaluation and comparison, MOA is easily extensible with new contri- butions and allows the creation of benchmark scenarios through storing and sharing setting files. 1 Introduction Nowadays data is generated at an increasing rate from sensor applications, mea- surements in network monitoring and traffic management, log records or click- streams in web exploring, manufacturing processes, call detail records, email, blogging, twitter posts and others. -
Adaptive Learning and Mining for Data Streams and Frequent Patterns
Adaptive Learning and Mining for Data Streams and Frequent Patterns Doctoral Thesis presented to the Departament de Llenguatges i Sistemes Informatics` Universitat Politecnica` de Catalunya by Albert Bifet April 2009 Revised version with minor revisions. Advisors: Ricard Gavalda` and Jose´ L. Balcazar´ Abstract This thesis is devoted to the design of data mining algorithms for evolving data streams and for the extraction of closed frequent trees. First, we deal with each of these tasks separately, and then we deal with them together, developing classification methods for data streams containing items that are trees. In the data stream model, data arrive at high speed, and the algorithms that must process them have very strict constraints of space and time. In the first part of this thesis we propose and illustrate a framework for devel- oping algorithms that can adaptively learn from data streams that change over time. Our methods are based on using change detectors and estima- tor modules at the right places. We propose an adaptive sliding window algorithm ADWIN for detecting change and keeping updated statistics from a data stream, and use it as a black-box in place or counters or accumula- tors in algorithms initially not designed for drifting data. Since ADWIN has rigorous performance guarantees, this opens the possibility of extending such guarantees to learning and mining algorithms. We test our method- ology with several learning methods as Na¨ıve Bayes, clustering, decision trees and ensemble methods. We build an experimental framework for data stream mining with concept drift, based on the MOA framework, similar to WEKA, so that it will be easy for researchers to run experimental data stream benchmarks. -
Online Learning for Big Data Analytics
Online Learning for Big Data Analytics Irwin King, Michael R. Lyu and Haiqin Yang Department of Computer Science & Engineering The Chinese University of Hong Kong Tutorial presentation at IEEE Big Data, Santa Clara, CA, 2013 1 Outline • Introduction (60 min.) – Big data and big data analytics (30 min.) – Online learning and its applications (30 min.) • Online Learning Algorithms (60 min.) – Perceptron (10 min.) – Online non-sparse learning (10 min.) – Online sparse learning (20 min.) – Online unsupervised learning (20. min.) • Discussions + Q & A (5 min.) 2 Outline • Introduction (60 min.) – Big data and big data analytics (30 min.) – Online learning and its applications (30 min.) • Online Learning Algorithms (60 min.) – Perceptron (10 min.) – Online non-sparse learning (10 min.) – Online sparse learning (20 min.) – Online unsupervised learning (20. min.) • Discussions + Q & A (5 min.) 3 What is Big Data? • There is not a consensus as to how to define Big Data “A collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications.” - wikii “Big data exceeds the reach of commonly used hardware environments and software tools to capture, manage, and process it with in a tolerable elapsed time for its user population.” - Tera- data magazine article, 2011 “Big data refers to data sets whose size is beyond the ability of typical database software tools to capture, store, manage and analyze.” - The McKinsey Global Institute, 2011i 4 What is Big Data? Activity: Activity: IOPS File/Object Size, Content Volume Big Data refers to datasets grow so large and complex that it is difficult to capture, store, manage, share, analyze and visualize within current computational architecture. -
MOA: a Real-Time Analytics Open Source Framework
MOA: A Real-Time Analytics Open Source Framework Albert Bifet1,GeoffHolmes1, Bernhard Pfahringer1, Jesse Read1, Philipp Kranen2, Hardy Kremer2,TimmJansen2, and Thomas Seidl2 1 Department of Computer Science, University of Waikato, Hamilton, New Zealand {abifet,geoff,bernhard,jmr30}@cs.waikato.ac.nz 2 Data Management and Exploration Group, RWTH Aachen University, Germany {kranen,kremer,jansen,seidl}@cs.rwth-aachen.de Abstract. Massive Online Analysis (MOA) is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA is designed to deal with the challeng- ing problems of scaling up the implementation of state of the art algo- rithms to real world dataset sizes and of making algorithms comparable in benchmark streaming settings. It contains a collection of offline and online algorithms for classification, clustering and graph mining as well as tools for evaluation. For researchers the framework yields insights into advantages and disadvantages of different approaches and allows for the creation of benchmark streaming data sets through stored, shared and repeatable settings for the data feeds. Practitioners can use the frame- work to easily compare algorithms and apply them to real world data sets and settings. MOA supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analysis. Besides providing al- gorithms and measures for evaluation and comparison, MOA is easily extensible with new contributions and allows for the creation of bench- mark scenarios. 1 Introduction In data stream scenarios data arrives at high speed strictly constraining pro- cessing algorithms in space and time. To adhere to these constraints, specific requirements have to be fulfilled by the stream processing algorithms, that are different from traditional batch processing settings. -
Efficient Clustering of Big Data Streams Efficient
4 ERGEBNISSE AUS DER INFORMATIK Recent advances in data collecting devices and data storage systems are continuously offering cheaper possibilities for gathering and storing increasingly bigger volumes of data. Similar improvements in the processing power and data bases enabled the acces- sibility to a large variety of complex data. Data mining is the task of extracting useful patterns and previously unknown knowledge out of this voluminous, various data. This thesis focuses on the data mining task of clustering, i.e. grouping objects into clusters such that similar objects are assigned to the same cluster while dissimilar ones are as- signed to different clusters. While traditional clustering algorithms merely considered static data, today’s applications and research issues in data mining have to deal with Marwan Hassani continuous, possibly infinite streams of data, arriving at high velocity. Web traffic data, click streams, surveillance data, sensor measurements, customer profile data and stock trading are only some examples of these daily-increasing applications. Since the growth of data sizes is accompanied by a similar raise in their dimensionalities, clusters cannot be expected to completely appear when considering all attributes to- Efficient Clustering of Big Data gether. Subspace clustering is a general approach that solved that issue by automatically finding the hidden clusters within different subsets of the attributes rather than consi- Streams dering all attributes together. In this thesis, novel methods for an efficient subspace clustering of high-dimensional data streams are presented and deeply evaluated. Approaches that efficiently combine the anytime clustering concept with the stream subspace clustering paradigm are inten- sively studied. -
Semi-Supervised Hybrid Windowing Ensembles for Learning from Evolving Streams
Semi-Supervised Hybrid Windowing Ensembles for Learning from Evolving Streams Sean Louis Alan FLOYD Thesis submitted in partial fulfilment of the requirements for the Master of Science in Computer Science School of Electrical Engineering and Computer Science Faculty of Engineering University of Ottawa c Sean Louis Alan FLOYD, Ottawa, Canada, 2019 ii Abstract In this thesis, learning refers to the intelligent computational extraction of knowl- edge from data. Supervised learning tasks require data to be annotated with labels, whereas for unsupervised learning, data is not labelled. Semi-supervised learning deals with data sets that are partially labelled. A major issue with su- pervised and semi-supervised learning of data streams is late-arriving or miss- ing class labels. Assuming that correctly labelled data will always be available and timely is often unfeasible, and, as such, supervised methods are not directly applicable in the real world. Therefore, real-world problems usually require the use of semi-supervised or unsupervised learning techniques. For instance, when considering a spam detection task, it is not reasonable to assume that all spam will be identified (correctly labelled) prior to learning. Additionally, in semi- supervised learning, "the instances having the highest [predictive] confidence are not necessarily the most useful ones" [41]. We investigate how self-training performs without its selective heuristic in a streaming setting. This leads us to our contributions. We extend an existing concept drift detec- tor to operate without any labelled data, by using a sliding window of our en- semble’s prediction confidence, instead of a boolean indicating whether the en- semble’s predictions are correct.