Anytime Algorithms for Stream Data Mining

Total Page:16

File Type:pdf, Size:1020Kb

Anytime Algorithms for Stream Data Mining Anytime Algorithms for Stream Data Mining Von der Fakultat¨ fur¨ Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Informatiker Philipp Kranen aus Willich, Deutschland Berichter: Universitatsprofessor¨ Dr. rer. nat. Thomas Seidl Visiting Professor Michael E. Houle, PhD Tag der mundlichen¨ Prufung:¨ 14.09.2011 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbar.¨ Contents Abstract / Zusammenfassung1 I Introduction5 1 The Need for Anytime Algorithms7 1.1 Thesis structure......................... 16 2 Knowledge Discovery from Data 17 2.1 The KDD process and data mining tasks ........... 17 2.2 Classification .......................... 25 2.3 Clustering............................ 36 3 Stream Data Mining 43 3.1 General Tools and Techniques................. 43 3.2 Stream Classification...................... 52 3.3 Stream Clustering........................ 59 II Anytime Stream Classification 69 4 The Bayes Tree 71 4.1 Introduction and Preliminaries................. 72 4.2 Indexing density models.................... 76 4.3 Experiments........................... 87 4.4 Conclusion............................ 98 i ii CONTENTS 5 The MC-Tree 99 5.1 Combining Multiple Classes.................. 100 5.2 Experiments........................... 111 5.3 Conclusion............................ 116 6 Bulk Loading the Bayes Tree 117 6.1 Bulk loading mixture densities . 117 6.2 Experiments........................... 122 6.3 Conclusion............................ 127 7 The Classifier Family: Learn from your Relatives 129 7.1 Introduction........................... 129 7.2 Learning from Relatives .................... 131 7.3 Experiments........................... 141 7.4 Conclusion............................ 150 8 Application: Anytime Classification in HealthNet Scenarios 151 8.1 Scenario and Prototype..................... 152 8.2 Summary ............................ 157 9 Anytime Algorithms on Constant Streams 159 9.1 Introduction........................... 160 9.2 Novel Approaches for Constant Data Streams . 161 9.3 Experiments........................... 169 9.4 Conclusion............................ 180 10 Future Work 181 III Anytime Stream Clustering 183 11 Self-adaptive Anytime Stream Clustering 185 11.1 The ClusTree Algorithm .................... 186 11.2 Analysis and experiments ................... 196 11.3 Conclusion............................ 205 CONTENTS iii 12 Exploiting additional time in the ClusTree 207 12.1 Alternative descent strategies . 207 12.2 Evaluation of descent strategies . 213 12.3 Conclusion............................ 215 13 Robust Anytime Stream Clustering 217 13.1 The LiarTree........................... 217 13.2 Experiments........................... 229 13.3 Conclusion............................ 235 14 Application: Using Modeling for Anytime Outlier Detection 237 14.1 Introduction........................... 237 14.2 Related work .......................... 238 14.3 Detecting outliers in streaming data . 240 14.4 Experiments........................... 243 14.5 Conclusion............................ 250 15 MOA and CMM 251 15.1 The MOA Framework...................... 252 15.2 Evaluation Measures for Stream Clustering . 260 16 Future Work 263 IV Summary and Outlook 265 V AppendicesI Bibliography III Statement of Originality XLI List of Publications XLIII Curriculum Vitae XLVII Abstract Data is collected and stored everywhere, be it images or audio files on private computers, customer data in traditional or electronic businesses, per- formance or control data in production sites, web traffic and click streams at internet providers, statistical data at government agencies, sensor mea- surements in scientific experimentation, surveillance data, etc. There are countless examples, and the amount of data is tremendous. Data mining is the process of finding useful and previously unknown patterns in data. In the examples listed above, data mining can be used for automated recommen- dation of audio files, business analysis and target marketing, or performance optimization and hazard warnings. While early mining algorithms only con- sidered static data sets, research and practice in data mining must nowadays deal with continuous, possible infinite streams of data, which are prevalent in most real world applications and scenarios. Anytime algorithms constitute a special type of algorithm that is well suited to work on data streams. They inherit their name from their ability to provide a result after any amount of processing time. The amount of time available is not known to the algorithm in advance: anytime algorithms quickly compute an initial result and strive to improve it as long as time remains. When interrupted they deliver the best result obtained until that point in time. In this thesis anytime classification is studied in depth for the Bayesian approach. New algorithmic solutions for anytime classification are devel- oped and evaluated in extensive experimentation. The first anytime stream clustering algorithm is proposed, and an application to anytime outlier de- tection is presented. In addition to the algorithmic contributions, new meta- approaches are described that significantly widen the area of applications for anytime algorithms. The solutions and results of this thesis contribute to the state of the art in anytime algorithms and stream data mining research. 1 Zusammenfassung Die rasante Entwicklung der Informationstechnologie hat zur Folge, dass in allen Bereichen der Gesellschaft und des taglichen¨ Lebens große Mengen an Daten erzeugt und gespeichert werden. Beispiele reichen von Multimedia- Daten auf privaten Computern bis hin zu Messdaten in wissenschaftlichen Experimenten. Data Mining beschreibt die Aufgabe, in solchen Daten neue und interessante Muster zu finden. Diese konnen¨ beispielsweise zur automa- tischen Empfehlung von Filmen genutzt werden oder helfen neue Zusam- menhange¨ aufzudecken und Prozesse zu verstehen. Seit Beginn der Data Mining Forschung wachst¨ die Große¨ der zu verarbeitenden Datensatze.¨ Wahrend¨ Datensatze¨ zunachst¨ als statisch und vollstandig¨ gegeben angenom- men wurden, generieren viele Anwendungen heute kontinuierliche und teil- weise unendliche Datenstrome.¨ Anytime-Algorithmen stellen eine Klasse von Algorithmen dar, welche sich besonders gut zum Einsatz auf Datenstromen¨ eignet. Ihr Name ruhrt¨ von ihrer Eigenschaft her, zu jeder Zeit ein Ergebnis liefern zu konnen.¨ Die zur Verfugung¨ stehende Zeit ist dem Algorithmus dabei nicht bekannt: er berechnet ein initiales Ergebnis und verbessert dieses solange zusatzliche¨ Rechenzeit vorhanden ist. Wird der Algorithmus unterbrochen, so liefert er das beste Ergebnis zuruck,¨ welches bis zu diesem Zeitpunkt erzielt wurde. In dieser Dissertation werden neue Anytime-Verfahren fur¨ die Bayes Klassifikation entwickelt, intensiv untersucht und evaluiert. Der erste Anytime-Algorithmus zum Clustern von Datenstromen¨ wird vorgestellt und eine Anwendung fur¨ die Erkennung von Ausreißern wird diskutiert. Neben neuen Algorithmen werden zwei ubergeordnete¨ Verfahren entwickelt, die den Anwendungsbereich fur¨ Anytime-Algorithmen signifikant erweitern. Die in dieser Dissertation vorgestellten Ansatze¨ und Resultate tragen zum Stand der Forschung im Bereich Anytime-Algorithmen und Data Mining auf Daten- stromen¨ bei. 3 Part I Introduction 5 Chapter 1 The Need for Anytime Algorithms The rapid development of computer and information technology fundamen- tally changed many processes in science, industry and daily life. Systems for collecting, storing and managing data evolved from primitive file processing systems to sophisticated and powerful database systems. The tremendous amounts of data soon exceeded the human ability of comprehension and thus called for advanced tools for analysis, compression and exploration. Knowledge discovery from data bases (KDD), or data mining, emerged as an interdisciplinary research field from the areas of data bases, machine learn- ing, statistics, visualization and other areas. Many mining algorithms were invented that helped reducing data, automatically classifying new objects based on historical data or extracting rules and correlations that exhibit novel patterns and useful knowledge. In early days of data mining research data sets were often considered static and given as a whole. This assumption allowed mining algorithms to perform random access on the data and to process objects multiple times during execution. With ever growing amounts of data the need for efficient processing yielded single pass algorithms and general solutions for fast ac- cess to large data sets were developed. A data stream is a continuous, possibly endless sequence of data items that must be processed as they arrive. Many real world applications can be associated with data streams as large amounts of data must be processed 7 8 The Need for Anytime Algorithms every day, hour, minute or even second. Examples include business/market data in companies, medical data in hospitals, statistical data in governmental institutions, experimental data in scientific laboratories, click streams in the world wide web, traffic/network data at web hosts or telecommunications companies, financial/stock market data in banking institutions, transaction/ customer profile data in e-commerce companies, etc. Mining on data streams can basically perform the same tasks as mining on static data sets. Summarization
Recommended publications
  • Data Streams and Applications in Computer Science
    Data Streams and Applications in Computer Science David P. Woodruff IBM Research Almaden [email protected] Abstract This is a short survey of my work in data streams and related appli- cations, such as communication complexity, numerical linear algebra, and sparse recovery. The goal is give a non-technical overview of results in data streams, and highlight connections between these different areas. It is based on my Presburger lecture award given at ICALP, 2014. 1 The Data Stream Model Informally speaking, a data stream is a sequence of data that is too large to be stored in available memory. The data may be a sequence of numbers, points, edges in a graph, and so on. There are many examples of data streams, such as internet search logs, network traffic, sensor networks, and scientific data streams (such as in astronomics, genomics, physical simulations, etc.). The abundance of data streams has led to new algorithmic paradigms for processing them, which often impose very stringent requirements on the algorithm’s resources. Formally, in the streaming model, there is a sequence of elements a1;:::; am presented to an algorithm, where each element is drawn from a universe [n] = f1;:::; ng. The algorithm is allowed a single or a small number of passes over the stream. In network applications, the algorithm is typically only given a single pass, since if data on a network is not physically stored somewhere, it may be impossible to make a second pass over it. In other applications, such as when data resides on external memory, it may be streamed through main memory a small number of times, each time constituting a pass of the algorithm.
    [Show full text]
  • Efficient Semi-Streaming Algorithms for Local Triangle Counting In
    Efficient Semi-streaming Algorithms for Local Triangle Counting in Massive Graphs ∗ Luca Becchetti Paolo Boldi Carlos Castillo “Sapienza” Università di Roma Università degli Studi di Milano Yahoo! Research Rome, Italy Milan, Italy Barcelona, Spain [email protected] [email protected] [email protected] Aristides Gionis Yahoo! Research Barcelona, Spain [email protected] ABSTRACT Categories and Subject Descriptors In this paper we study the problem of local triangle count- H.3.3 [Information Systems]: Information Search and Re- ing in large graphs. Namely, given a large graph G = (V; E) trieval we want to estimate as accurately as possible the number of triangles incident to every node v 2 V in the graph. The problem of computing the global number of triangles in a General Terms graph has been considered before, but to our knowledge this Algorithms, Measurements is the first paper that addresses the problem of local tri- angle counting with a focus on the efficiency issues arising Keywords in massive graphs. The distribution of the local number of triangles and the related local clustering coefficient can Graph Mining, Semi-Streaming, Probabilistic Algorithms be used in many interesting applications. For example, we show that the measures we compute can help to detect the 1. INTRODUCTION presence of spamming activity in large-scale Web graphs, as Graphs are a ubiquitous data representation that is used well as to provide useful features to assess content quality to model complex relations in a wide variety of applica- in social networks. tions, including biochemistry, neurobiology, ecology, social For computing the local number of triangles we propose sciences, and information systems.
    [Show full text]
  • Streaming Quantiles Algorithms with Small Space and Update Time
    Streaming Quantiles Algorithms with Small Space and Update Time Nikita Ivkin Edo Liberty Kevin Lang [email protected] [email protected] [email protected] Amazon Amazon Yahoo Research Zohar Karnin Vladimir Braverman [email protected] [email protected] Amazon Johns Hopkins University ABSTRACT An approximate version of the problem relaxes this requirement. Approximating quantiles and distributions over streaming data has It is allowed to output an approximate rank which is off by at most been studied for roughly two decades now. Recently, Karnin, Lang, εn from the exact rank. In a randomized setting, the algorithm and Liberty proposed the first asymptotically optimal algorithm is allowed to fail with probability at most δ. Note that, for the for doing so. This manuscript complements their theoretical result randomized version to provide a correct answer to all possible by providing a practical variants of their algorithm with improved queries, it suffices to amplify the success probability by running constants. For a given sketch size, our techniques provably reduce the algorithm with a failure probability of δε, and applying the 1 the upper bound on the sketch error by a factor of two. These union bound over O¹ ε º quantiles. Uniform random sampling of ¹ 1 1 º improvements are verified experimentally. Our modified quantile O ε 2 log δ ε solves this problem. sketch improves the latency as well by reducing the worst-case In network monitoring [16] and other applications it is critical 1 1 to maintain statistics while making only a single pass over the update time from O¹ ε º down to O¹log ε º.
    [Show full text]
  • Turnstile Streaming Algorithms Might As Well Be Linear Sketches
    Turnstile Streaming Algorithms Might as Well Be Linear Sketches Yi Li Huy L. Nguyên˜ David P. Woodruff Max-Planck Institute for Princeton University IBM Research, Almaden Informatics [email protected] [email protected] [email protected] ABSTRACT Keywords In the turnstile model of data streams, an underlying vector x 2 streaming algorithms, linear sketches, lower bounds, communica- {−m; −m+1; : : : ; m−1; mgn is presented as a long sequence of tion complexity positive and negative integer updates to its coordinates. A random- ized algorithm seeks to approximate a function f(x) with constant probability while only making a single pass over this sequence of 1. INTRODUCTION updates and using a small amount of space. All known algorithms In the turnstile model of data streams [28, 34], there is an under- in this model are linear sketches: they sample a matrix A from lying n-dimensional vector x which is initialized to ~0 and evolves a distribution on integer matrices in the preprocessing phase, and through an arbitrary finite sequence of additive updates to its coor- maintain the linear sketch A · x while processing the stream. At the dinates. These updates are fed into a streaming algorithm, and have end of the stream, they output an arbitrary function of A · x. One the form x x + ei or x x − ei, where ei is the i-th standard cannot help but ask: are linear sketches universal? unit vector. This changes the i-th coordinate of x by an additive In this work we answer this question by showing that any 1- 1 or −1.
    [Show full text]
  • Finding Graph Matchings in Data Streams
    Finding Graph Matchings in Data Streams Andrew McGregor⋆ Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA [email protected] Abstract. We present algorithms for finding large graph matchings in the streaming model. In this model, applicable when dealing with mas- sive graphs, edges are streamed-in in some arbitrary order rather than 1 residing in randomly accessible memory. For ǫ > 0, we achieve a 1+ǫ 1 approximation for maximum cardinality matching and a 2+ǫ approxi- mation to maximum weighted matching. Both algorithms use a constant number of passes and O˜( V ) space. | | 1 Introduction Given a graph G = (V, E), the Maximum Cardinality Matching (MCM) problem is to find the largest set of edges such that no two adjacent edges are selected. More generally, for an edge-weighted graph, the Maximum Weighted Matching (MWM) problem is to find the set of edges whose total weight is maximized subject to the condition that no two adjacent edges are selected. Both problems are well studied and exact polynomial solutions are known [1–4]. The fastest of these algorithms solves MWM with running time O(nm + n2 log n) where n = V and m = E . | | | | However, for massive graphs in real world applications, the above algorithms can still be prohibitively computationally expensive. Examples include the vir- tual screening of protein databases. (See [5] for other examples.) Consequently there has been much interest in faster algorithms, typically of O(m) complexity, that find good approximate solutions to the above problems. For MCM, a linear time approximation scheme was given by Kalantari and Shokoufandeh [6].
    [Show full text]
  • Lecture 1 1 Graph Streaming
    CS 671: Graph Streaming Algorithms and Lower Bounds Rutgers: Fall 2020 Lecture 1 September 1, 2020 Instructor: Sepehr Assadi Scribe: Sepehr Assadi Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor. 1 Graph Streaming Motivation Massive graphs appear in most application domains nowadays: web-pages and hyperlinks, neurons and synapses, papers and citations, or social networks and friendship links are just a few examples. Many of the computing tasks in processing these graphs, at their core, correspond to classical problems such as reachability, shortest path, or maximum matching|problems that have been studied extensively for almost a century now. However, the traditional algorithmic approaches to these problems do not accurately capture the challenges of processing massive graphs. For instance, we can no longer assume a random access to the entire input on these graphs, as their sheer size prevents us from loading them into the main memory. To handle these challenges, there is a rapidly growing interest in developing algorithms that explicitly account for the restrictions of processing massive graphs. Graph streaming algorithms have been particularly successful in this regard; these are algorithms that process input graphs by making one or few sequential passes over their edges while using a small memory. Not only streaming algorithms can be directly used to address various challenges in processing massive graphs such as I/O-efficiency or monitoring evolving graphs in realtime, they are also closely connected to other models of computation for massive graphs and often lead to efficient algorithms in those models as well.
    [Show full text]
  • Streaming Algorithms
    3 Streaming Algorithms Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 Some Admin: • Deadline of Problem Set 1 is 23:59, May 14 (today)! • Students are divided into two groups for tutorials. Visit our course web- site and use Doodle to to choose your free slots. • If you find some typos or like to improve the lecture notes (e.g. add more details, intuitions), send me an email to get .tex file :-) We live in an era of “Big Data”: science, engineering, and technology are producing in- creasingly large data streams every second. Looking at social networks, electronic commerce, astronomical and biological data, the big data phenomenon appears everywhere nowadays, and presents opportunities and challenges for computer scientists and mathematicians. Com- paring with traditional algorithms, several issues need to be considered: A massive data set is too big to be stored; even an O(n2)-time algorithm is too slow; data may change over time, and algorithms need to cope with dynamic changes of the data. Hence streaming, dynamic and distributed algorithms are needed for analyzing big data. To illuminate the study of streaming algorithms, let us look at a few examples. Our first example comes from network analysis. Any big website nowadays receives millions of visits every minute, and very frequent visit per second from the same IP address are probably gen- erated automatically by computers and due to hackers. In this scenario, a webmaster needs to efficiently detect and block those IPs which generate very frequent visits per second. Here, instead of storing all IP record history which are expensive, we need an efficient algorithm that detect most such IPs.
    [Show full text]
  • Improving Iot Data Stream Analytics Using Summarization Techniques Maroua Bahri
    Improving IoT data stream analytics using summarization techniques Maroua Bahri To cite this version: Maroua Bahri. Improving IoT data stream analytics using summarization techniques. Machine Learn- ing [cs.LG]. Institut Polytechnique de Paris, 2020. English. NNT : 2020IPPAT017. tel-02865982 HAL Id: tel-02865982 https://tel.archives-ouvertes.fr/tel-02865982 Submitted on 12 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Improving IoT Data Stream Analytics Using Summarization Techniques These` de doctorat de l’Institut Polytechnique de Paris prepar´ ee´ a` Tel´ ecom´ Paris Ecole´ doctorale n◦626 Denomination´ (Sigle) Specialit´ e´ de doctorat : Informatique NNT : 2020IPPAT017 These` present´ ee´ et soutenue a` Palaiseau, le 5 juin 2020, par MAROUA BAHRI Composition du Jury : Albert Bifet Professor, Tel´ ecom´ Paris Co-directeur de these` Silviu Maniu Associate Professor, Universite´ Paris-Sud Co-directeur de these` Joao˜ Gama Professor, University of Porto President´ Cedric´ Gouy-Pailler Engineer-Researcher, CEA-LIST Examinateur Ons Jelassi
    [Show full text]
  • Data Stream Clustering Techniques, Applications, and Models: Comparative Analysis and Discussion
    big data and cognitive computing Review Data Stream Clustering Techniques, Applications, and Models: Comparative Analysis and Discussion Umesh Kokate 1,*, Arvind Deshpande 1, Parikshit Mahalle 1 and Pramod Patil 2 1 Department of Computer Engineering, SKNCoE, Vadgaon, SPPU, Pune 411 007 India; [email protected] (A.D.); [email protected] (P.M.) 2 Department of Computer Engineering, D.Y. Patil CoE, Pimpri, SPPU, Pune 411 007 India; [email protected] * Correspondence: [email protected]; Tel.: +91-989-023-9995 Received: 16 July 2018; Accepted: 10 October 2018; Published: 17 October 2018 Abstract: Data growth in today’s world is exponential, many applications generate huge amount of data streams at very high speed such as smart grids, sensor networks, video surveillance, financial systems, medical science data, web click streams, network data, etc. In the case of traditional data mining, the data set is generally static in nature and available many times for processing and analysis. However, data stream mining has to satisfy constraints related to real-time response, bounded and limited memory, single-pass, and concept-drift detection. The main problem is identifying the hidden pattern and knowledge for understanding the context for identifying trends from continuous data streams. In this paper, various data stream methods and algorithms are reviewed and evaluated on standard synthetic data streams and real-life data streams. Density-micro clustering and density-grid-based clustering algorithms are discussed and comparative analysis in terms of various internal and external clustering evaluation methods is performed. It was observed that a single algorithm cannot satisfy all the performance measures.
    [Show full text]
  • Massive Online Analysis, a Framework for Stream Classification and Clustering
    MOA: Massive Online Analysis, a Framework for Stream Classification and Clustering. Albert Bifet1, Geoff Holmes1, Bernhard Pfahringer1, Philipp Kranen2, Hardy Kremer2, Timm Jansen2, and Thomas Seidl2 1 Department of Computer Science, University of Waikato, Hamilton, New Zealand fabifet, geoff, [email protected] 2 Data Management and Exploration Group, RWTH Aachen University, Germany fkranen, kremer, jansen, [email protected] Abstract. In today's applications, massive, evolving data streams are ubiquitous. Massive Online Analysis (MOA) is a software environment for implementing algorithms and running experiments for online learn- ing from evolving data streams. MOA is designed to deal with the chal- lenging problems of scaling up the implementation of state of the art algorithms to real world dataset sizes and of making algorithms compa- rable in benchmark streaming settings. It contains a collection of offline and online algorithms for both classification and clustering as well as tools for evaluation. Researchers benefit from MOA by getting insights into workings and problems of different approaches, practitioners can easily compare several algorithms and apply them to real world data sets and settings. MOA supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analysis, and is released under the GNU GPL license. Besides providing algorithms and measures for evaluation and comparison, MOA is easily extensible with new contri- butions and allows the creation of benchmark scenarios through storing and sharing setting files. 1 Introduction Nowadays data is generated at an increasing rate from sensor applications, mea- surements in network monitoring and traffic management, log records or click- streams in web exploring, manufacturing processes, call detail records, email, blogging, twitter posts and others.
    [Show full text]
  • An Extensible Framework for Data Stream Clustering Research with R
    JSS Journal of Statistical Software February 2017, Volume 76, Issue 14. doi: 10.18637/jss.v076.i14 Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R Michael Hahsler Matthew Bolaños John Forrest Southern Methodist University Microsoft Corporation Microsoft Corporation Abstract In recent years, data streams have become an increasingly important area of research for the computer science, database and statistics communities. Data streams are ordered and potentially unbounded sequences of data points created by a typically non-stationary data generating process. Common data mining tasks associated with data streams include clustering, classification and frequent pattern mining. New algorithms for these types of data are proposed regularly and it is important to evaluate them thoroughly under standardized conditions. In this paper we introduce stream, a research tool that includes modeling and simu- lating data streams as well as an extensible framework for implementing, interfacing and experimenting with algorithms for various data stream mining tasks. The main advantage of stream is that it seamlessly integrates with the large existing infrastructure provided by R. In addition to data handling, plotting and easy scripting capabilities, R also provides many existing algorithms and enables users to interface code written in many program- ming languages popular among data mining researchers (e.g., C/C++, Java and Python). In this paper we describe the architecture of stream and focus on its use for data stream clustering research. stream was implemented with extensibility in mind and will be ex- tended in the future to cover additional data stream mining tasks like classification and frequent pattern mining.
    [Show full text]
  • Efficient Clustering of Big Data Streams Efficient
    4 ERGEBNISSE AUS DER INFORMATIK Recent advances in data collecting devices and data storage systems are continuously offering cheaper possibilities for gathering and storing increasingly bigger volumes of data. Similar improvements in the processing power and data bases enabled the acces- sibility to a large variety of complex data. Data mining is the task of extracting useful patterns and previously unknown knowledge out of this voluminous, various data. This thesis focuses on the data mining task of clustering, i.e. grouping objects into clusters such that similar objects are assigned to the same cluster while dissimilar ones are as- signed to different clusters. While traditional clustering algorithms merely considered static data, today’s applications and research issues in data mining have to deal with Marwan Hassani continuous, possibly infinite streams of data, arriving at high velocity. Web traffic data, click streams, surveillance data, sensor measurements, customer profile data and stock trading are only some examples of these daily-increasing applications. Since the growth of data sizes is accompanied by a similar raise in their dimensionalities, clusters cannot be expected to completely appear when considering all attributes to- Efficient Clustering of Big Data gether. Subspace clustering is a general approach that solved that issue by automatically finding the hidden clusters within different subsets of the attributes rather than consi- Streams dering all attributes together. In this thesis, novel methods for an efficient subspace clustering of high-dimensional data streams are presented and deeply evaluated. Approaches that efficiently combine the anytime clustering concept with the stream subspace clustering paradigm are inten- sively studied.
    [Show full text]