B11504973.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

B11504973.Pdf http://www.nap.edu/catalog/4919.html We ship printed books within 1 business day; personal PDFs are available immediately. Engineering Within Ecological Constraints Peter Schulze, Editor; National Academy of Engineering ISBN: 0-309-59647-5, 224 pages, 6 x 9, (1996) This PDF is available from the National Academies Press at: http://www.nap.edu/catalog/4919.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online for free • Explore our innovative research tools – try the “Research Dashboard” now! • Sign up to be notified when new books are published • Purchase printed books and selected PDF files Thank you for downloading this PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll- free at 888-624-8373, visit us online, or send an email to [email protected]. This book plus thousands more are available at http://www.nap.edu. Copyright © National Academy of Sciences. All rights reserved. Unless otherwise indicated, all materials in this PDF File are copyrighted by the National Academy of Sciences. Distribution, posting, or copying is strictly prohibited without written permission of the National Academies Press. Request reprint permission for this book. i e h t be ion. om r ibut f r t cannot r at not o f EnginEngineeringeeringEngineering WithinWithinWithin however, version ng, i t paper book, at ive EcolEcologicalogicalEcological ConstraintsConstraintsConstraints at rm o riginal horit ic f o e h t he aut t om r as ing-specif t ion ed f Edited by Peter C. Schulze peset y http://www.nap.edu/catalog/4919.html Engineering WithinEcologicalConstraints publicat her t iles creat is h t L f M of and ot X om yles, r f st version print posed e h NATIONAL ACADEMY OF ENGINEERING heading Copyright © National Academy ofSciences. Allrights reserved. recom use t breaks, ease l been P word has ed. hs, insert ally line lengt original work e h t he original; ion of t at o ue t r have been accident y t a represent m are l a errors age breaks P is new digit h pographic y iles. T t f e ile: ng i f t F D P peset and som is y h t ined, NATIONAL ACADEMY PRESS a bout A ret original t Washington, D.C. 1996 ii e h t be ion. om NATIONAL ACADEMY PRESS 2101 Constitution Avenue, NW Washington, DC 20418 r ibut f r t cannot The National Academy of Engineering was established in 1964, under the charter of the r at not National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous o f in its administration and in the selection of its members, sharing with the National Academy of Sci- ences the responsibility for advising the federal government. The National Academy of Engineering however, also sponsors engineering programs aimed at meeting national needs, encourages education and version ng, i research, and recognizes the superior achievements of engineers. Dr. Harold Liebowitz is president t paper book, at ive of the National Academy of Engineering. at rm This volume has been reviewed by a group other than the authors according to procedures o approved by a National Academy of Engineering report review process. The interpretations and con- riginal horit ic f clusions expressed in the papers are those of the authors and are not presented as the views of the o e council, officers, or staff of the National Academy of Engineering. h t he aut Funding for the activity that led to this publication was provided by the W. M. Keck Founda- t om tion, the Andrew W. Mellon Foundation, and the National Academy of Engineering Technology r as ing-specif t Agenda Program. ion ed f Library of Congress Cataloging-in-Publication Data peset Engineering within ecological constraints / edited by Peter C. Schulze. y p. cm. http://www.nap.edu/catalog/4919.html Engineering WithinEcologicalConstraints publicat "National Academy of Engineering." her t iles creat is Includes bibliographical references and index. h t L f M of ISBN 0-309-05198-3 (alk. paper) and ot X 1. Ecological engineering. I. Schulze, Peter C. II. National Academy of Engineering. om yles, r f GE350.E54 1996 st version 628—dc20 95-47174 CIP print posed e Copyright 1996 by the National Academy of Sciences. All rights reserved. h heading Copyright © National Academy ofSciences. Allrights reserved. Cover art: The Japanese Footbridge by Claude Monet, courtesy of the National Gallery of Art, recom use t Washington, D.C. This book is printed on recycled paper. breaks, ease Printed in the United States of America l been P word has ed. hs, insert ally line lengt original work e h t he original; ion of t at o ue t r have been accident y t a represent m are l a errors age breaks P is new digit h pographic y iles. T t f e ile: ng i f t F D P peset and som is y h t ined, a bout A ret original t PREFACE iii e h t be ion. om r ibut f r t cannot r at not PREFACE o f however, version ng, i t paper book, at ive at rm o riginal horit ic f o e h Advances in engineering and technology have historically been crucial to t he aut t solving important societal problems, including those that result from the om r as ing-specif t environmental impacts of humans. This pattern will undoubtedly continue into ion ed f the future. Unfortunately, however, the application of some innovations has had peset y undesirable, sometimes unanticipated, environmental consequences. Therefore, http://www.nap.edu/catalog/4919.html Engineering WithinEcologicalConstraints publicat a primary challenge for the future is to maximize the benefits of technological her t iles creat is h innovation and use while minimizing undesirable environmental effects. t L f M of One response to this challenge is the recent efforts in business and industry and ot X that emphasize preventing environmental damage, a practice based on industrial om yles, r f ecology. Like traditional ecology, which is the study of natural and managed st version ecosystems, industrial ecology is the study of industrial systems and their print relationships to natural and managed ecosystems. The foundation of industrial posed e h heading ecology is a systems approach to environmental design and management based Copyright © National Academy ofSciences. Allrights reserved. recom on an understanding of the flows of materials and energy in industrial and use t consumer activities, the effects of these flows on the environment, and the breaks, ease l been influences of economic, political, regulatory, and social factors on the flow, use, P and transformation of resources. These efforts have made substantial progress word has ed. hs, in reducing pollution and the consumption of raw materials per unit of production. However, inefficiencies are only part of the problem. insert Gains in efficiency can be overshadowed by concurrent increases in the ally line lengt scale of production that result from population growth or increased per capita original work e consumption. For example, efficiency improvements in fishing technology have h t led to overfishing and the collapse of several fisheries. Fishing quotas designed to address this problem ideally are based on economic theory and on ecological he original; ion of t at o data ue t r have been accident y t a represent m are l a errors age breaks P is new digit h pographic y iles. T t f e ile: ng i f t F D P peset and som is y h t ined, a bout A ret original t PREFACE iv e h t be ion. om r and reasoning. In fisheries as in other areas of economic activity, averting ibut f r t cannot problems of overuse will require that insights from ecology, engineering, r at not o economics, and other fields be better integrated in devising technological and f policy solutions. however, The papers in this volume are the products of a National Academy of version ng, i t Engineering (NAE) meeting intended to take a small step toward promoting the paper book, at ive necessary multidisciplinary approach. at rm o They were contributed by engineers, ecologists, and social scientists. They riginal horit ic f o provide a variety of perspectives on the challenges faced in efforts to engineer e h within ecological constraints. We hope these papers will contribute to efforts to t he aut t om find paths toward sustainability and will stimulate further cross-disciplinary r as ing-specif t interaction. ion ed f This volume originates from an April 1994 meeting we chaired based on a peset y concept originated by Peter Schulze. Both the publication and the meeting are http://www.nap.edu/catalog/4919.html Engineering WithinEcologicalConstraints publicat her t components of an ongoing NAE initiative exploring issues of technology and iles creat is h t L f the environment. We are indebted to the authors for their excellent M of and ot contributions, to a group of external reviewers of those contributions, and to an X editorial team composed of Peter Schulze, Dale Langford, Jessica Blake, and om yles, r f Penny Gibbs. On behalf of Peter Schulze, thanks also go to Austin College for st version supporting his work on this volume.
Recommended publications
  • Education in Ecological Engineering—Aneedwhose Time Has Come
    Circular Economy and Sustainability https://doi.org/10.1007/s43615-021-00067-4 ORIGINAL PAPER Education in Ecological Engineering—aNeedWhose Time Has Come Glenn Dale1,2 & Gabriela Dotro3 & Puneet Srivastava 4 & David Austin5 & Stacy Hutchinson6 & Peter Head7 & Ashantha Goonetilleke8 & Alexandros Stefanakis9 & Ranka Junge10 & José A. Fernández L. 11 & Vanessa Weyer12 & Wayne Truter 12 & Devi Bühler10 & John Bennett 2 & Hongbo Liu13 & Zifu Li14 & Jianqiang Du 15,16 & Petra Schneider17 & Jochen Hack18 & Andreas Schönborn 10 Received: 4 March 2021 /Accepted: 8 March 2021/ # The Author(s) 2021 Abstract Overcoming Limitations of Ecology and Engineering in Addressing Society’sChallengesBy providing an integrated, systems-approach to problem-solving that incorporates ecolog- ical principles in engineering design, ecological engineering addresses, many of the limitations of Ecology and Engineering needed to work out how people and nature can beneficially coexist on planet Earth. Despite its origins in the 1950s, ecological engineer- ing remains a niche discipline, while at the same time, there has never been a greater need to combine the rigour of engineering and science with the systems-approach of ecology for pro-active management of Earth’s biodiversity and environmental life-support sys- tems. Broad consensus on the scope and defining elements of ecological engineering and development of a globally consistent ecological engineering curriculum are key pillars to mainstream recognition of the discipline and practice of ecological engineering. The Importance of Ecological Engineering in Society In this paper, the importance of ecological engineering education is discussed in relation to the perceived need of our society to address global challenges of sustainable development. The perceived needs of industry, practitioners, educators and students for skills in ecological engineering are also discussed.
    [Show full text]
  • Environmental Awareness and Conceptual Understanding Through a Pilot Sustainable Development Module
    AC 2011-1917: FIRST-YEAR ENGINEERING STUDENTS’ ENVIRONMEN- TAL AWARENESS AND CONCEPTUAL UNDERSTANDING THROUGH A PILOT SUSTAINABLE DEVELOPMENT MODULE Nicole R. Weber, Purdue University She is a Postdoctoral Researcher in the School of Engineering Education at Purdue University. She received her B.S. degree in Ecology, Evolution and Behavior from the University of Minnesota, St. Paul. At the University of Massachusetts Boston, she received her Ph.D. in Environmental Biology with an emphasis in Science Education. Her current research is working in ”sustainable engineering” education, creating awareness of engineering as a ”caring” discipline. A discipline where engineers incorporate the ecological footprint into their design, keeping in mind related social and ecological impacts. Melissa Dyehouse, Purdue University Melissa Dyehouse is a Postdoctoral Research Associate at the Institute for P-12 Engineering Research and Learning (INSPIRE). She received her M.S.Ed. and Ph.D. in Educational Psychology from Purdue University with a focus on educational research methodology and assessment. Her research at INSPIRE focuses on the learning and teaching of engineering as a ”caring” discipline in the context of environmen- tal and ecological concerns. Constance A Harris, Purdue University She is a doctoral candidate in the College of Education at Purdue University. She received her B.S. degree in Political Science from the University of Illinois at Urbana-Champaign. In addition, she earned M.S. in Interdisciplinary Studies from DePaul University located in Chicago, Illinois, and a M.A. in Communication Studies from Purdue University Calumet located in Hammond, Indiana. Currently, she works as a research assistant in the School of Engineering Education at Purdue University.
    [Show full text]
  • Long Term Deforestation Assessment in Jharkhand State, India: a Grid Based Geospatial Approach
    Biological Forum – An International Journal 9(1): 183-188(2017) ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239 Long Term Deforestation Assessment in Jharkhand state, India: A grid based Geospatial Approach Firoz Ahmad* and Laxmi Goparaju* *Vindhyan Ecology and Natural History Foundation, Mirzapur, Uttar Pradesh, India. (Corresponding author: Laxmi Goparaju) (Received 15 March 2017, Accepted 18 June, 2017) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: Forest is a fundamental component of the environment. Deforestation is caused by various anthropogenic factors, forest fire and fragmentation of large contiguous forests. Deforestation represents a global issue mostly caused by human influence and the forest of Jharkhand, India is not an exception as they have also been witnessing large scale deforestation. The aim of the present study is to identify deforestation using historical data for the year 1935 (Survey of India topographical maps of 1924–1935) and for the year of 2015 with Landsat -8 datasets in Jharkhand, India. To achieve this objective, the analysis focuses on grid (5 km*5 km) based assessment to detect long term change. The grid based analysis reveals forest percent in Jharkhand for the year 1935 and 2015 were roughly 49% and 23% respectively. The result shows 2596 forest grid for the year 1935 out of which 1372 forest grids were found present in the year 2015. 1224 forest grid (equivalent to 26% forest area) was lost during the span of 80 years. The analysis of remote sensing data in GIS domain and its derived product must be incorporated in forest conservation; management and planning which will certainly fetch better result in decision making support system.
    [Show full text]
  • Ecosystem Services Generated by Fish Populations
    AR-211 Ecological Economics 29 (1999) 253 –268 ANALYSIS Ecosystem services generated by fish populations Cecilia M. Holmlund *, Monica Hammer Natural Resources Management, Department of Systems Ecology, Stockholm University, S-106 91, Stockholm, Sweden Abstract In this paper, we review the role of fish populations in generating ecosystem services based on documented ecological functions and human demands of fish. The ongoing overexploitation of global fish resources concerns our societies, not only in terms of decreasing fish populations important for consumption and recreational activities. Rather, a number of ecosystem services generated by fish populations are also at risk, with consequences for biodiversity, ecosystem functioning, and ultimately human welfare. Examples are provided from marine and freshwater ecosystems, in various parts of the world, and include all life-stages of fish. Ecosystem services are here defined as fundamental services for maintaining ecosystem functioning and resilience, or demand-derived services based on human values. To secure the generation of ecosystem services from fish populations, management approaches need to address the fact that fish are embedded in ecosystems and that substitutions for declining populations and habitat losses, such as fish stocking and nature reserves, rarely replace losses of all services. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Ecosystem services; Fish populations; Fisheries management; Biodiversity 1. Introduction 15 000 are marine and nearly 10 000 are freshwa­ ter (Nelson, 1994). Global capture fisheries har­ Fish constitute one of the major protein sources vested 101 million tonnes of fish including 27 for humans around the world. There are to date million tonnes of bycatch in 1995, and 11 million some 25 000 different known fish species of which tonnes were produced in aquaculture the same year (FAO, 1997).
    [Show full text]
  • Ecological Engineering for Biodiversity Adaptation to Climate Change
    LAND AND WATER Ecological engineering for biodiversity adaptation to climate change Background Managing contemporary environmental needs whilst ensuring Natural Resource Management (NRM) investment is future‐proofed to withstand climate change is a key challenge for environmental managers in the 21st century. To address this challenge, the Department of the Environment and the CSIRO are collaborating to identify and develop a new generation of climate‐ready ‘ecological engineering’ approaches. What is ecological engineering? The project defines ecological engineering as ‘the design, manipulation or construction of self‐sustaining ecosystems for the mutual benefit of humans and nature’. We use this term in place of ‘ecological restoration’, because restoring characteristics from pre‐existing communities may not be viable in a changing climate. Rather, we may need modified designs and approaches, informed by forecasting tools, to maximise future climate‐ resilience. Why would we need to engineer Australian ecosystems? Governments across Australia have invested billions of dollars in ecosystem restoration through national and state and territory Natural Resource Management (NRM) programs. These investments are occurring in an environment of accelerated climatic change. For example, significant ecological restoration is being undertaken in Australia’s southern agricultural zones to sequester carbon, restore landscape connectivity and habitat for native biodiversity, ameliorate salinisation and provide other ecosystem services. Climate projections
    [Show full text]
  • Restoring Tropical Forests on Lands Mined for Bauxite: Examples from the Brazilian Amazon
    Ecological Engineering 17 (2001) 219–239 www.elsevier.com/locate/ecoleng Restoring tropical forests on lands mined for bauxite: Examples from the Brazilian Amazon John A. Parrotta a,*, Oliver H. Knowles b a International Institute of Tropical Forestry, USDA Forest Ser6ice, P.O. Box 25000, Rı´o Piedras, PR 00928-5000, USA b C.P. 15, Santare´m, 68005.970 Para´, Brazil Accepted 19 August 2000 Abstract Restoring self-sustaining tropical forest ecosystems on surface mined sites is a formidable challenge that requires the integration of proven reclamation techniques and reforestation strategies appropriate to specific site conditions, including landscape biodiversity patterns. Restorationists working in most tropical settings are usually hampered by lack of basic information on the wide variety of native tree species that characterize the pre-disturbance forests, as well as insufficient understanding of the ecology of disturbance and natural recovery to design effective restoration programs. A notable exception to this is the forest restoration program developed since the early 1980s by a Brazilian bauxite mining company operating at Trombetas in Para´ State in central Amazonia. A systematic nursery and field research strategy was used to develop a reforestation program based on mixed plantings of more than 70 native old-growth forest tree species. This technique has been used to replant about 100 ha of deforested minelands each year over the past 15 years. Research in recent years has evaluated this approach and other, generally simpler, reforestation methods used at a smaller scale at this site. Post-plantation biodiversity development and other indicators of restoration success or sustainability were recorded.
    [Show full text]
  • Ecological Engineering and Restoration of Eroded Muddy Coasts in South East Asia: Knowledge Gaps and Recommendations
    sustainability Review Ecological Engineering and Restoration of Eroded Muddy Coasts in South East Asia: Knowledge Gaps and Recommendations Huynh Van Tien, Nguyen Tuan Anh , Nguyen Tan Phong * and Mai Le Minh Nhut Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; [email protected] (H.V.T.); [email protected] (N.T.A.); [email protected] (M.L.M.N.) * Correspondence: [email protected] Abstract: Ecological engineering (EE) was employed for developing strategies for stabilizing eroded muddy coasts (EMCs). However, there was a limited analysis of these EE strategies with respect to design, performance, and lessons learned. This study employed a critical review for addressing the limitations. There were four EE models designed with different restoration interventions for stabilizing EMCs. The models using active interventions have not been cost-effective in controlling erosion because the interventions failed to achieve their goals or were costly and unnecessary. Of the two passive intervention models, the one with structures constructed from onshore proved to be more cost-effective in terms of construction costs, the survival rate of transplanted seedlings, and levels of sea mud accumulation. Interventions with adequate consideration of the muddy coastal ecological processes and the ecological reasoning for the positioning of these interventions play a crucial role in stabilizing EMCs. A passive restoration model using gradually expanded interventions should be promoted in order to ensure sustainable management of EMCs in the future. Citation: Tien, H.V.; Tuan Anh, N.; Keywords: active restoration; muddy coasts; passive restoration; sea mud accumulation; transplantation Tan Phong, N.; Minh Nhut, M.L.
    [Show full text]
  • The Method and Model of Ecological Technology Evaluation
    sustainability Article The Method and Model of Ecological Technology Evaluation Xiaoning Hu 1, Meizi Si 2, Han Luo 3 , Mancai Guo 1,* and Jijun Wang 3 1 College of Science, Northwest A&F University, Yangling, Xianyang 712100, China; [email protected] 2 College of Economics and Management, Northwest A&F University, Yangling, Xianyang 712100, China; [email protected] 3 Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Xianyang 712100, China; [email protected] (H.L.); [email protected] (J.W.) * Correspondence: [email protected]; Tel.: +86-029-8709-2298 Received: 11 January 2019; Accepted: 5 February 2019; Published: 8 February 2019 Abstract: In order to evaluate ecological technology scientifically, we constructed a modular “three-stage evaluation method” based on qualitative evaluation, semiquantitative evaluation and quantitative evaluation, and established the theoretical models of the four kinds of ecotechnology, such as soil and water conservation technology, desertification governance technology, rocky desertification governance technology and ecological restoration technology. We gave the quantification criteria of the first-level and second-level index commonly shared by four kinds of ecotechnology and defined the quantification criteria of the third-level index of reflecting the heterogeneity of soil and water conservation technology. An ecotechnology evaluation model combining Analytic Hierarchy Process and Logistic regression was established based on soil and water conservation technology. The rationality of the evaluation method and model were verified by field investigation data of soil and water conservation technology in Gaoxigou. The evaluation method and model could provide scientific basis for the effective introduction and popularization of ecotechnology.
    [Show full text]
  • Perspectives of Forest Biodiversity Conservation in Northeast India
    ioprospe , B cti ity ng rs a e n iv d d Tripathi et al., J Biodivers Biopros Dev 2016, 3:2 D o i e v B e f DOI: 10.4172/2376-0214.1000157 l Journal of Biodiversity, Bioprospecting o o l p a m n r e n u t o J ISSN: 2376-0214 and Development ResearchReview Article Article OpenOpen Access Access Perspectives of Forest Biodiversity Conservation in Northeast India Shri Kant Tripathi1*, Arijit Roy2, Deepak Kushwaha2, Fanai Lalnunmawia1, Lalnundanga1, Hnialum Lalraminghlova3, Chalthleng Lalnunzira1 and Parth Sarathi Roy4 1Department of Forestry, Mizoram University, Aizawl, Mizoram, India 2Indian Institute of Remote Sensing, Dehradun, Uttarakhand, India 3Department of Environmental Science, Mizoram University, Aizawl, India 4University Center of Earth and Space Science, Hyderabad, Telangana, India Abstract Forests are major repositories of biodiversity and provide essential goods and services for humanity. Biodiversity loss is a major threat to forest ecosystem and emerging as a great challenge to humanity. Estimation of biodiversity or biological richness of a region is a difficult task that is an impossible goal without technological inputs. The Northeast India, part of Indo-Burma biodiversity hotspot, is one of the still relatively undisturbed regions of the world harbouring almost 50% of the flowering plant of the Indian subcontinent. This region is economically less developed and forests are under tremendous pressure from the anthropogenic influences mainly due to the local traditional shifting (jhum) cultivation practices. This article aims to bring an overview on current state of forest biodiversity and its conservation strategies in the Northeast India including traditional knowledge of conservation in this region.
    [Show full text]
  • Engineering Futures 2035 Engineering Education Programs, Priorities & Pedagogies
    Engineering Futures 2035 Engineering Education Programs, Priorities & Pedagogies __________________________________________________________________________________________ Caroline Crosthwaite February 2021 Executive Summary The 2019 scoping study ‘Engineering Futures 2035’ commissioned by the Australian Council of Engineering Deans (ACED) investigated drivers of change, the anticipated nature of future professional engineering work, and engineering education programs that will be needed to produce fit-for-purpose graduates. Engineers of the future will require greater abilities to find and define problems before finding solutions. Both problem definition and solution will require a deeper ability to communicate and empathise with a broader range of stakeholders than has been required in the past. A greater focus on the human dimensions of engineering work and increasing complexity is also anticipated. Further details of the anticipated changes in the nature of professional engineering work and the capabilities that will be expected of future engineering graduates are provided in Section 1. The purpose of this report is to follow up on the ACED scoping study recommendation number 2 by presenting a critique of applicable developments in engineering education, referencing national and international best practice, and emerging educational models within the higher education sector. This includes identifying exemplary engineering education programs, program models, curriculum contexts and pedagogies that have the potential to support the delivery of the T-shaped engineering graduate and the greater breadth of graduate outcomes that will be required in future. Given the large engineering student numbers at many Australian universities, scalability, and possible barriers to widespread implementation of desirable changes are of particular interest. Consultation with national and international engineering educators and scholars collected views on program architectures, curriculum and pedagogies that will be instrumental in delivering on future graduate expectations.
    [Show full text]
  • STS Departments, Programs, and Centers Worldwide
    STS Departments, Programs, and Centers Worldwide This is an admittedly incomplete list of STS departments, programs, and centers worldwide. If you know of additional academic units that belong on this list, please send the information to Trina Garrison at [email protected]. This document was last updated in April 2015. Other lists are available at http://www.stswiki.org/index.php?title=Worldwide_directory_of_STS_programs http://stsnext20.org/stsworld/sts-programs/ http://hssonline.org/resources/graduate-programs-in-history-of-science-and-related-studies/ Austria • University of Vienna, Department of Social Studies of Science http://sciencestudies.univie.ac.at/en/teaching/master-sts/ Based on high-quality research, our aim is to foster critical reflexive debate concerning the developments of science, technology and society with scientists and students from all disciplines, but also with wider publics. Our research is mainly organized in third party financed projects, often based on interdisciplinary teamwork and aims at comparative analysis. Beyond this we offer our expertise and know-how in particular to practitioners working at the crossroad of science, technology and society. • Institute for Advanced Studies on Science, Technology and Society (IAS-STS) http://www.ifz.tugraz.at/ias/IAS-STS/The-Institute IAS-STS is, broadly speaking, an Institute for the enhancement of Science and Technology Studies. The IAS-STS was found to give around a dozen international researchers each year - for up to nine months - the opportunity to explore the issues published in our annually changing fellowship programme. Within the frame of this fellowship programme the IAS-STS promotes the interdisciplinary investigation of the links and interaction between science, technology and society as well as research on the development and implementation of socially and environmentally sound, sustainable technologies.
    [Show full text]
  • Journal of Ecological Engineering
    Journal of Ecological Engineering Received: 2019.08.30 Revised: 2019.09.27 Volume 20, Issue 10, November 2019, pages 217–224 Accepted: 2019.10.18 Available online: 2019.10.30 https://doi.org/10.12911/22998993/113538 Ecological Engineering – a View on Tasks and Challenges Joanna Kostecka1 1 Department of Biological Foundations of Agriculture and Environmental Education, Faculty of Biology and Agriculture, University of Rzeszów, M. Ćwiklińskiej 1A, 25-601 Rzeszów e-mail: [email protected] “The world does not need more successful people anymore. Planet Earth desperately needs more people of peace, healers, restorers, storytellers and lovers of all kinds, needs people to live well, needs people with moral courage to make the effort to create a more humane and friendly world for its inhabitants, and these values have little to do with the success in the sense in which it is defined by modern civilization.“ ~ David W. Orr, writer, ecologist activist, scientist, academic professor ABSTRACT The following elaboration presents a view on the tasks and challenges which should be faced by ecological engi- neering in the near future. The study also emphasizes the need to disseminate the concept of retarding the pace of transformation of ecosystems and natural resources as well as proper understanding and urgent implementation of strategically correct provisions from the existing legal acts. It also refers to the need to look for the effective methods of disseminating the activities for the protection of ecosystems, in which accepting the concept of “violence on the environment” may be helpful. The ecological engineering activity may be divided into: a) activities in natural areas, including rural ones, to protect and restore their ecosystem services, b) activities in increasingly biologically poorer urbanized and industrialized areas in order to create the conditions for the well-being of residents, in the reality of climate change and the prevention of further rapid change in the region, intensified by anthropogenic pressure, c) involvement in education.
    [Show full text]