Inorganic Nitrate As a Treatment for Acute Heart Failure

Total Page:16

File Type:pdf, Size:1020Kb

Inorganic Nitrate As a Treatment for Acute Heart Failure Falls et al. J Transl Med (2017) 15:172 DOI 10.1186/s12967-017-1271-z Journal of Translational Medicine PROTOCOL Open Access Inorganic nitrate as a treatment for acute heart failure: a protocol for a single center, randomized, double‑blind, placebo‑controlled pilot and feasibility study Roman Falls1,2, Michael Seman1,2, Sabine Braat2,4, Joshua Sortino1, Jason D. Allen1,3 and Christopher J. Neil1,2,3,5* Abstract Background: Acute heart failure (AHF) is a frequent reason for hospitalization worldwide and efective treatment options are limited. It is known that AHF is a condition characterized by impaired vasorelaxation, together with reduced nitric oxide (NO) bioavailability, an endogenous vasodilatory compound. Supplementation of inorganic sodium nitrate ­(NaNO3) is an indirect dietary source of NO, through bioconversion. It is proposed that oral sodium nitrate will favorably afect levels of circulating NO precursors (nitrate and nitrite) in AHF patients, resulting in reduced systemic vascular resistance, without signifcant hypotension. Methods and outcomes: We propose a single center, randomized, double-blind, placebo-controlled pilot trial, evaluating the feasibility of sodium nitrate as a treatment for AHF. The primary hypothesis that sodium nitrate treat- ment will result in increased systemic levels of nitric oxide pre-cursors (nitrate and nitrite) in plasma, in parallel with improved vasorelaxation, as assessed by non-invasively derived systemic vascular resistance index. Additional sur- rogate measures relevant to the known pathophysiology of AHF will be obtained in order to assess clinical efect on dyspnea and renal function. Discussion: The results of this study will provide evidence of the feasibility of this novel approach and will be of inter- est to the heart failure community. This trial may inform a larger study. Keywords: Heart failure, Acute heart failure, Acute decompensated heart failure, Sodium nitrate, Nitric oxide, Non- invasive cardiovascular monitoring Background and rationale to fuid overload, raised ventricular flling pressures and/ Acute heart failure: incidence and current treatment or pulmonary congestion [4]. In the United States, acute heart failure (AHF), also Although contemporary medical and device-based known as acute decompensated heart failure, is responsi- therapies (including non-invasive ventilation and ven- ble for over 1 million hospital admissions annually [1] and tricular assist devices) have substantially improved the is the leading reason for hospitalization among patients outlook for patients with chronic heart failure, the lack over 65 years of age. AHF refers to the heterogeneous of established efective treatment strategies for patients syndrome of the gradual or rapid onset of worsening presenting with AHF has been identifed as a major need signs and/or symptoms of heart failure [2, 3], attributed [5]. Tis, together with (i) the re-emerging role of vaso- dilators in AHF, (ii) evidence for acutely impaired nitric oxide (NO) bioavailability and (iii) the potential thera- *Correspondence: [email protected] peutic beneft of inorganic sodium nitrate, will be dis- 5 Western Health Cardiology, Footscray Hospital, Gordon St, Locked Bag 2, cussed as background to this protocol. Footscray, VIC 3011, Australia Full list of author information is available at the end of the article © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Falls et al. J Transl Med (2017) 15:172 Page 2 of 9 Vascular resistance in the hemodynamics of AHF have been associated with increased mortality [16]. In A discussion of typical hemodynamic profles in the regards to high dose intravenous organic nitrates (e.g. spectrum of AHF presentations is crucial to understand isosorbide dinitrate, glyceryltrinitrate), despite their the re-emerging role of vasodilators in this context. availability and apparent beneft in several relatively small Patients with AHF generally present with an elevated phase II studies [17–19], use is hampered by the develop- pulmonary capillary wedge pressure (PCWP), result- ment of tolerance [20], as well as the generation of reac- ing in congestion (interstitial and/or alveolar pulmonary tive oxygen species [21] and impaired biotransformation edema), present in the majority of cases of AHF. On the in heart failure patients [22]. other hand, cardiac output/cardiac index (CI) can vary Several novel neurohumoral therapeutic strategies, substantially within the AHF population. Te majority including recombinant B-type natriuretic peptide infu- of AHF patients (69%) actually present with a CI in the sion, adenosine receptor antagonism and vasopressin normal range, as illustrated by the work of Nohria et al. receptor antagonism, have not demonstrated an advan- [6]. Furthermore, the majority of patients with AHF are tage over standard therapy [23–25]. Mechanical diuresis known to present with hypertension (50%), rather than via ultrafltration has likewise not demonstrated supe- normotension (47%) or hypotension (3%) [7]. By infer- riority to standard medical diuresis, in fact demonstrat- ence, given that such patients are typically not hyperdy- ing an increased incidence of adverse events [26]. More namic, systemic vascular resistance (SVR) is likely to be recently, serelaxin, a recombinant vasodilating peptide, generally and markedly elevated at the time of acute pres- has shown some promise in a study by Teerlink et al. entations in this group. Elevated SVR was found to be the [27]. Whilst there was a signifcant beneft seen in dysp- most consistent hemodynamic abnormality in a cross- nea relief during treatment and biomarker endpoints, the sectional study employing non-invasive cardiac output 30-day readmission rate was not reduced. Intriguingly, measurements in a large cohort of AHF patients [8]. however, the mortality at 6 months was improved over Acute elevation of SVR has several implications in placebo. Tis fnding has focused interest on vasodilation the context of AHF. Increased SVR would generally be in AHF, as well as informed a large phase III study [28]. attributed to impaired vasorelaxation (or failure of vaso- dilation) at an arteriolar level, as a net result of neuroen- Nitric oxide bioavailability in AHF docrine and paracrine signals, in addition to the infuence Te normal physiology of vascular relaxation involves the of vasoactive drugs. Importantly, activation of the sym- generation of NO via endothelial nitric oxide synthase, pathetic nervous system, with arteriolar vasoconstriction from l-arginine; NO freely difuses to adjacent smooth and reduced venous capacitance, is thought to promote muscle cells to activate soluble guanylate cyclase (sCG), the centralization of blood volume, in the genesis of pul- which induces vasorelaxation via a second messenger monary congestion [9, 10]. Te efects of high SVR on cyclic guanylate monophosphate. Heart failure is associ- afterload are also likely to be crucial in the pathophysiol- ated with decreased NO bioavailability and dysfunction ogy of AHF, which has been conceptualized as a condi- of endothelial NOS [29]. In acute decompensation, there tion of afterload mismatch, as reviewed by Cotter et al. is decreased overall NO production, as refected by a 38% [8, 11]. In respect to afterload, it should be noted that decrease in systemic nitrate and nitrite [30]. An addi- there are pulsatile and non-pulsatile elements of afterload tional mechanism by which NOS function may be acutely and both are known to be abnormal in AHF [12, 13]. All impaired is a substantial increase in levels of circulating of the above considerations are components of an emerg- asymmetric dimethylarginine (ADMA), an endogenous ing vasculocentric model of AHF [14]. inhibitor of NOS, which was measured simultaneously with reduced nitrate and nitrite levels, by Saitoh and Current therapeutics in AHF colleges [30]. Tus, in the AHF context, impaired NOS Te primary therapeutic objective during AHF hospitali- function may be at the nexus of poor NO biosynthesis/ zation is decongestion, whilst avoiding the complications bioavailability and elevated SVR. Methods to therapeuti- of hypotension and worsening renal function (WRF). cally circumvent this defciency may result in therapeutic Currently, loop diuretic is universally recommended in beneft. international guidelines, with the directed use of nonin- Te concept of a circulating pool of inorganic nitrite NO− NO− vasive ventilation, nitrovasodilators and inotropic sup- ( 2 ) and nitrate ( 3 ) as an efective NO donor, port, in more severe cases [3, 15]. With the exception of independent of endothelial NOS function, has received noninvasive ventilation, this basic therapeutic tool kit has increasing attention over the past decade [31]. Nitrite lev- been consistent for over 30 years. Unfortunately, despite els can be increased via direct administration (e.g. intra- substantial efort, no novel pharmacological strategy has venous or inhaled), or by oral intake of nitrate (typically thus
Recommended publications
  • Angiotensin II Protocol
    Angiotensin II (Giapreza ™) Protocol Background Sepsis and septic shock are medical emergencies that affect millions of people each year and killing as many as 1 in 4.1 The cornerstones of therapy are fluid resuscitation, early appropriate antibiotics, source control if needed and vasopressors. A small portion of patients fail to respond to these therapies and develop refractory shock. The definition of refractory septic shock varies in the literature but is generally considered to be hypotension, with end-organ dysfunction, requiring high-dose vasopressor support.2 The associated mortality of refractory septic shock is up to 60% and as high as 80-90% in patients requiring more than 1 mcg/kg/min of norepinephrine.2,3 Patients who develop refractory septic shock comprise a very small portion of the population in large randomized controlled trials therefore limited data is available regarding outcomes and management. Indications: Angiotensin II (Ang II) is a vasoconstrictor used to increase blood pressure in adults with septic or other distributive shock. Administration: Starting dose of 5 (nanograms) ng/kg/min intravenously via central line only. Titration: Every 5 minutes by increments of 5 ng/kg/min as needed. Maximum dose should not exceed 80 ng/kg/min (During the first 3 hours of administration); after the first 3 hours the maintenance (maximum) dose is 40 ng/kg/min. Monitoring: Critical care setting only with telemetry, arterial blood pressure, and continuous SpO2 monitoring. DVT Prophylaxis should be started (unless contraindicated)
    [Show full text]
  • Nitric Oxide, the Biological Mediator of the Decade: Fact Or Fiction?
    Eur Respir J 1997; 10: 699–707 Copyright ERS Journals Ltd 1997 DOI: 10.1183/09031936.97.10030699 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 SERIES 'CLINICAL PHYSIOLOGY IN RESPIRATORY INTENSIVE CARE' Edited by A. Rossi and C. Roussos Number 14 in this Series Nitric oxide, the biological mediator of the decade: fact or fiction? S. Singh, T.W. Evans Nitric oxide, the biological mediator of the decade: fact or fiction? S. Singh, T.W. Evans. Unit of Critical Care, National Heart & ERS Journals Ltd 1997. Lung Institute, Royal Brompton Hospital, ABSTRACT: Nitric oxide (NO), an atmospheric gas and free radical, is also an London, UK. important biological mediator in animals and humans. Its enzymatic synthesis by constitutive (c) and inducible (i) isoforms of NO synthase (NOS) and its reactions Correspondence: T.W. Evans with other biological molecules such as reactive oxygen species are well charac- Royal Brompton Hospital Sydney Street terized. NO modulates pulmonary and systemic vascular tone through its vasodila- London SW3 6NP tor property. It has antithrombotic functions and mediates some consequences of UK the innate and acute inflammatory responses; cytokines and bacterial toxins induce widespread expression of iNOS associated with microvascular and haemodynam- Keywords: Acute respiratory distress syn- ic changes in sepsis. drome Within the lungs, a diminution of NO production is implicated in pathological hypoxic pulmonary vasoconstriction states associated with pulmonary hypertension, such as acute respiratory distress nitric oxide syndrome: inhaled NO is a selective pulmonary vasodilator and can improve ven- nitric oxide synthase tilation-perfusion mismatch. However, it may have deleterious effects through mod- pulmonary hypertension ulating hypoxic pulmonary vasoconstriction.
    [Show full text]
  • Pleth Variability Index: a Dynamic Measurement to Help Assess to Help Measurement a Dynamic Index: Variability Pleth Responsiveness and Fluid Physiology
    Pleth Variability Index: A Dynamic Measurement to Help Assess TECHNICAL BULLETIN TECHNICAL Physiology and Fluid Responsiveness SUMMARY PVI®, an index available with Masimo SET® pulse oximetry, is the first and only noninvasive, continuous, easy-to-use method to help clinicians manage fluid responsiveness in sedated patients under positive pressure ventilation. Other clinical uses have also been developed for PVI, including helping clinicians to assess the effects of positive end expiratory pressure on cardiac index and to identify patients at risk for hypotension during anesthesia induction. PVI, along with the other innovative noninvasive monitoring technologies available with the Masimo rainbow SET® platform (SpHb®, SpCO®, SpMet®, RRa™), has helped clinicians to realize improved patient outcomes while lowering the cost of care. INTRODUCTION Many pulse oximetry technologies display a processed and filtered representation of the photoplethysmosgraphic waveform. Each manufacturer uses unique proprietary algorithms to calculate the waveform displayed on the pulse oximeter. Masimo has extracted and processed information from the waveform to create two physiologic indices, perfusion index (PI) and pleth variability index (PVI). PI is calculated by indexing the infrared (IR) pulsatile signal against the nonpulsitile signal and expressing this number as a percentage. Masimo SET® PI has been shown to be useful to gauge the severity of illness in newborns1, 2 to assess the effectiveness of epidural blocks3, 4 to indicate successful interscalene nerve block placement in awake patients5 and to quantify peripheral perfusion for diagnosis of congenital heart disease in newborns.6 PVI is the first and only commercially available measurement that automatically and continuously calculates the respiratory variations in the photoplethysmosgraphic waveform.
    [Show full text]
  • Medicare National Coverage Determinations Manual, Part 1
    Medicare National Coverage Determinations Manual Chapter 1, Part 1 (Sections 10 – 80.12) Coverage Determinations Table of Contents (Rev. 10838, 06-08-21) Transmittals for Chapter 1, Part 1 Foreword - Purpose for National Coverage Determinations (NCD) Manual 10 - Anesthesia and Pain Management 10.1 - Use of Visual Tests Prior to and General Anesthesia During Cataract Surgery 10.2 - Transcutaneous Electrical Nerve Stimulation (TENS) for Acute Post- Operative Pain 10.3 - Inpatient Hospital Pain Rehabilitation Programs 10.4 - Outpatient Hospital Pain Rehabilitation Programs 10.5 - Autogenous Epidural Blood Graft 10.6 - Anesthesia in Cardiac Pacemaker Surgery 20 - Cardiovascular System 20.1 - Vertebral Artery Surgery 20.2 - Extracranial - Intracranial (EC-IC) Arterial Bypass Surgery 20.3 - Thoracic Duct Drainage (TDD) in Renal Transplants 20.4 – Implantable Cardioverter Defibrillators (ICDs) 20.5 - Extracorporeal Immunoadsorption (ECI) Using Protein A Columns 20.6 - Transmyocardial Revascularization (TMR) 20.7 - Percutaneous Transluminal Angioplasty (PTA) (Various Effective Dates Below) 20.8 - Cardiac Pacemakers (Various Effective Dates Below) 20.8.1 - Cardiac Pacemaker Evaluation Services 20.8.1.1 - Transtelephonic Monitoring of Cardiac Pacemakers 20.8.2 - Self-Contained Pacemaker Monitors 20.8.3 – Single Chamber and Dual Chamber Permanent Cardiac Pacemakers 20.8.4 Leadless Pacemakers 20.9 - Artificial Hearts And Related Devices – (Various Effective Dates Below) 20.9.1 - Ventricular Assist Devices (Various Effective Dates Below) 20.10 - Cardiac
    [Show full text]
  • Caring for Patients Receiving Vasopressors and Inotropes in the ICU
    Caring for patients receiving vasopressors and inotropes in the ICU Vigilant monitoring will maximize outcomes. By Sonya M. Grigsby, DNP, APRN, AGACNP-BC CNE 1.5 contact hours LEARNING O BJECTIVES 1. Identify receptors related to cardiovascular physiology. 2. Differentiate the effects of vasopressors and inotropes. 3. Discuss nursing care of patients receiving vasopressors and inotropes in the ICU. The authors and planners of this CNE activity have disclosed no relevant fi- nancial relationships with any commercial companies pertaining to this ac- tivity. See the last page of the article to learn how to earn CNE credit. Expiration: 2/1/24 SHOCK requires early recognition and quick peutic effect) these medications using the action to prevent organ failure. (See Types of lowest possible dose to avoid adverse effects. shock.) After initial I.V. fluid resuscitation, pharmacologic agents—such as vasopressors Cardiovascular physiology and inotropes—are used in critical care set- Shock disrupts cardiovascular physiology, par- tings as supportive therapies to improve my- ticularly blood pressure, so understanding ocardial contractility, heart rate, and vascular normal function is important. Short-term resistance in patients with low cardiac output. blood pressure (BP) regulation is controlled When critical care nurses understand shock by the autonomic nervous system (ANS) via pathophysiology and hemodynamic monitor- baroreceptors in the aortic arch and carotid si- ing, they can effectively and safely titrate (in- nus. The ANS regulates the heart, secretory crease or decrease an infusion rate for thera- glands, and smooth muscles via activation of MyAmericanNurse.com February 2021 American Nurse Journal 5 Types of shock Shock is a decline in tissue perfusion and oxygen delivery, leading to cellular dysfunction and death.
    [Show full text]
  • Pulse Wave Analysis to Estimate Cardiac Output
    CLINICAL FOCUS REVIEW Jerrold H. Levy, M.D., F.A.H.A., F.C.C.M., Editor Pulse Wave Analysis to Estimate Cardiac Output Karim Kouz, M.D., Thomas W. L. Scheeren, M.D., Daniel de Backer, M.D., Bernd Saugel, M.D. ardiac output (CO)–guided therapy is a promising reference CO value measured using an indicator dilution Capproach to hemodynamic management in high-risk method (transpulmonary thermodilution or lithium dilu- patients having major surgery1 and in critically ill patients tion).5,9 CO measurement using indicator dilution methods with circulatory shock.2 Pulmonary artery thermodilu- requires a (central) venous catheter for indicator injection tion remains the clinical reference method for CO mea- upstream in the circulation and a dedicated arterial catheter Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/134/1/119/513741/20210100.0-00023.pdf by guest on 29 September 2021 surement,3 but the use of the pulmonary artery catheter and measurement system to detect downstream indicator decreased over the past two decades.4 Today, various CO temperature or concentration changes.5,9–11 monitoring methods with different degrees of invasiveness The VolumeView system (Edwards Lifesciences, are available, including pulse wave analysis.5 Pulse wave USA) and the PiCCO system (Pulsion Medical Systems, analysis is the mathematical analysis of the arterial blood Germany) calibrate pulse wave analysis–derived CO to pressure waveform and enables CO to be estimated con- transpulmonary thermodilution–derived CO. To measure tinuously and in real time.6 In this article, we review pulse CO using transpulmonary thermodilution, a bolus of cold wave analysis methods for CO estimation, including their crystalloid solution is injected in the central venous circu- underlying measurement principles and their clinical appli- lation.10 The cold indicator bolus injection causes changes cation in perioperative and intensive care medicine.
    [Show full text]
  • Chapter 9 Monitoring of the Heart and Vascular System
    Chapter 9 Monitoring of the Heart and Vascular System David L. Reich, MD • Alexander J. Mittnacht, MD • Martin J. London, MD • Joel A. Kaplan, MD Hemodynamic Monitoring Cardiac Output Monitoring Arterial Pressure Monitoring Indicator Dilution Arterial Cannulation Sites Analysis and Interpretation Indications of Hemodynamic Data Insertion Techniques Systemic and Pulmonary Vascular Resistances Central Venous Pressure Monitoring Frank-Starling Relationships Indications Monitoring Coronary Perfusion Complications Electrocardiography Pulmonary Arterial Pressure Monitoring Lead Systems Placement of the Pulmonary Artery Catheter Detection of Myocardial Ischemia Indications Intraoperative Lead Systems Complications Arrhythmia and Pacemaker Detection Pacing Catheters Mixed Venous Oxygen Saturation Catheters Summary References HEMODYNAMIC MONITORING For patients with severe cardiovascular disease and those undergoing surgery associ- ated with rapid hemodynamic changes, adequate hemodynamic monitoring should be available at all times. With the ability to measure and record almost all vital physi- ologic parameters, the development of acute hemodynamic changes may be observed and corrective action may be taken in an attempt to correct adverse hemodynamics and improve outcome. Although outcome changes are difficult to prove, it is a rea- sonable assumption that appropriate hemodynamic monitoring should reduce the incidence of major cardiovascular complications. This is based on the presumption that the data obtained from these monitors are interpreted correctly and that thera- peutic decisions are implemented in a timely fashion. Many devices are available to monitor the cardiovascular system. These devices range from those that are completely noninvasive, such as the blood pressure (BP) cuff and ECG, to those that are extremely invasive, such as the pulmonary artery (PA) catheter. To make the best use of invasive monitors, the potential benefits to be gained from the information must outweigh the potential complications.
    [Show full text]
  • Heartlogic Clinical Compendium Updated As of February 2020 TABLE of CONTENTS
    HeartLogic Clinical Compendium Updated as of February 2020 TABLE OF CONTENTS Introduction.............................................................................................. 2 HeartLogic Heart Failure Diagnostic ................................................... 3 Heart Sounds ......................................................................................... 11 Respiration ............................................................................................. 19 Thoracic Impedance ............................................................................ 23 Activity Level.......................................................................................... 25 Night Heart Rate ................................................................................... 26 Sleep Incline .......................................................................................... 27 Weight ..................................................................................................... 29 RV and LV Pacing .................................................................................. 30 Arrhythmia Burden ............................................................................... 33 Heart Failure Assessment ................................................................... 37 THIS DOCUMENT IS A COMPILATION OF RELEVANT CLINICAL PUBLICATION REFERENCES THAT FORM THE CLINICAL FOUNDATION OF THE HEARTLOGIC HEART FAILURE DIAGNOSTIC. PUBLICATIONS ARE LISTED BY SENSOR TREND/TOPIC AREA AND THEN BY RELEVANCE ON FEASIBILITY,
    [Show full text]
  • The Relation Between Cardiac Output and Body Size*
    Br Heart J: first published as 10.1136/hrt.25.4.425 on 1 July 1963. Downloaded from Brit. Heart J., 1963, 25, 425. THE RELATION BETWEEN CARDIAC OUTPUT AND BODY SIZE* BY W. JEGIER, PAUL SEKELJ, P. A. M. AULD, R. SIMPSON, AND M. McGREGOR From the Joint Cardio-Respiratory Service of the Montreal Children's Hospital and the Royal Victoria Hospital, The Department of Anesthesia, The Montreal Children's Hospital, and the Department ofPhysiology, McGill University, Montreal, Quebec, Canada Received December 10, 1962 A prerequisite in the study of abnormal body function is the ability to establish the limits of normal. In the case of parameters such as cardiac output that vary with the size of the subject, it has become an accepted practice to standardize values in relation to the body surface area. Thus the cardiac index describes the cardiac output per square metre of body surface area, and the stroke index describes the volume of blood per heart beat per square metre of body surface area. The validity of these expressions depends on the premise that there is a constant or straight line relation between body surface area on the one hand, and cardiac output and stroke volume on the other, over the whole range of body size to be studied, and that the relation can be described by a simple regression equation cutting the intercept at zero. Only where this is so is it meaningful to refer to "the normal" cardiac index or stroke index. Though this premise is backed by observations in the case of adult or adolescent subjects, it was until recently entirely unsupported in the case of children and is still unsupported by any data for infants.
    [Show full text]
  • What Inotrope and Why?
    What Inotrope and Why? a,b, a,b Nilkant Phad, MD, FRACP *, Koert de Waal, PhD KEYWORDS Hypotension Cardiovascular compromise Inotrope Newborn KEY POINTS There are significant gaps in the knowledge about diagnostic thresholds and choices of therapeutic interventions that can improve morbidity and mortality in neonates with car- diovascular compromise. Current use of inotropes in neonates is largely based on the pathophysiology of cardiovas- cular impairment and anticipated actions of inotropes because of limited outcome data from randomized controlled trials. Research studies of alternative study design unraveling the linkage of cardiovascular impairment and use of inotropes with important clinical outcomes are needed for future progress. INTRODUCTION The primary function of the cardiovascular system is to meet oxygen and nutritional demands of organs under various physiologic and pathologic conditions.1 To achieve this, the heart contracts against vascular resistance and drives blood to the lungs for oxygenation and into the systemic circulation for organ perfusion. The force of cardiac contraction, ventricular end-diastolic blood volume, and perfusion pressure are the main determinants of cardiovascular performance through an interplay between car- diac output (CO), vascular resistance, and neuroendocrine mechanisms.2 In neonates, the physiology of blood circulation can get disrupted in many clinical conditions, resulting in impaired organ perfusion and hypoxia. Persistent circulatory compromise can lead to derangement of metabolism,
    [Show full text]
  • Inotropes, Vasopressors, and Chronotropes OH MY! a Review For
    Inotropes, Vasopressors, and Chronotropes OH MY! A Review for the Young and the Seasoned MATT RUBERTUS, PHARMD CLINICAL PHARMACY SPECIALIST – CARDIOTHORACIC SURGERY/CRITICAL CARE EMORY UNIVERSITY HOSPITAL ATLANTA, GA Disclosure I have nothing to disclose pertaining to this presentation http://oz.wikia.com Objectives Review the mechanism of action for vasopressors and inotropes Recognize common side effects of different vasopressors and inotropes Review data for the use of alternative agents to treat vasoplegia Describe where angiotensin II fits into therapy Clinical Scenarios Shock Cardiogenic Vasodilatory Sepsis Cardiac Surgery Valve Disease Decompensated Heart Failure http://thefilmspectrum.com Hypotension Hypotension Baroreceptor Decreased Renal Activation Perfusion Increased RASS Activation Sympathetic Activity Cardiac Stimulation Vasoconstriction Volume Expansion Increased HR and Increased Preload Contractility Increased Cardiac Increased Systemic Increased Cardiac Output Vascular Resistance Output Increased Blood Pressure Hemodynamics The ultimate goal of cardiac function is perfusion Must deliver adequate oxygen to meet metabolic demand of end organs Oxygen delivery is affected by multiple factors Hemoglobin Oxygen saturation Cardiac output Cardiac Output (CO) = Heart Rate (HR) x Stroke Volume (SV) Hemodynamics Stroke Heart Rate CO = X Volume Rate Rhythm Preload Contractility Afterload CVP MAP Vasopressors http://thefilmspectrum.com Alpha Receptors Alpha1 Located in vascular smooth muscle Cause vasoconstriction
    [Show full text]
  • Anemia on Cardiovascular Hemodynamics, Therapeutic Strategy and Clinical Outcomes in Patients with Heart Failure and Hemodynamic Congestion
    1670 TANIMURA M et al. Circ J 2017; 81: 1670 – 1677 ORIGINAL ARTICLE doi: 10.1253/circj.CJ-17-0171 Heart Failure Effect of Anemia on Cardiovascular Hemodynamics, Therapeutic Strategy and Clinical Outcomes in Patients With Heart Failure and Hemodynamic Congestion Muneyoshi Tanimura, MD; Kaoru Dohi, MD, PhD; Naoki Fujimoto, MD, PhD; Keishi Moriwaki, MD; Taku Omori, MD; Yuichi Sato, MD, PhD; Emiyo Sugiura, MD, PhD; Naoto Kumagai, MD, PhD; Shiro Nakamori, MD, PhD; Tairo Kurita, MD, PhD; Eitaro Fujii, MD, PhD; Norikazu Yamada, MD, PhD; Masaaki Ito, MD, PhD Background: We investigated the effect of anemia on cardiovascular hemodynamics, therapeutic strategies and clinical outcomes in heart failure (HF) patients. Methods and Results: We divided 198 consecutive HF patients who underwent right heart catheterization before in-hospital HF treatment into 2 groups according to the presence or absence of hemodynamic congestion (HC: mean pulmonary capillary wedge pressure ≥15 mmHg and/or mean right atrial pressure ≥10 mmHg). The hemoglobin level correlated with the cardiac index (CI) and systemic vascular resistance index (SVRI) (r=−0.34 and 0.42, P<0.05, respectively), and was the strongest contributor of SVRI only in the HC group. Anemic patients more frequently required intravenous inotropic support despite having higher CI and lower SVRI than non-anemic patients in the HC group. The novel hemodynamic subsets based on mean right atrial pressure and estimated left ventricular stroke work index but not Forrester subsets appropriately predicted the need for intravenous inotropic support. The prob- ability of hospitalization for worsening HF during 2-year follow-up period was significantly higher in anemic patients than in non- anemic patients in the HC group.
    [Show full text]