Characterization of a Novel Signal Transducer Element Intrinsic to Class IIIa/b Adenylate Cyclases and Guanylate Cyclases Miriam Ziegler1, Jens Bassler2, Stephanie Beltz1, Anita Schultz1, Andrei N. Lupas2, Joachim E. Schultz1* 1 Pharmazeutisches Institut der Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany 2 Max-Planck-Institut für Entwicklungsbiologie, Abt. Proteinevolution, Spemannstr. 35, 72076 Tübingen, Germany Article Running title Novel Cylase-Transducer-Element in Adenylate Cyclases Article type : Regular Paper Correspondence J. E. Schultz, Pharmazeutisches Institut der Universität Tübingen, Auf der Morgenstelle 8, D- 72076 Tübingen, Germany, FAX: +49 7071 292476 Tel: +49 7071 2972475; E-mail:
[email protected] Keywords adenylate cyclase, cyclic AMP (cAMP), receptor regulation, quorum-sensing, signal transduction, Legionella This article has been accepted for publication and undergone full peer review but has not Accepted been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/febs.14047 This article is protected by copyright. All rights reserved. Abbreviations AC, adenylate cyclase; GC, guanylate cyclase; CTE, cyclase-transducer-element; LAI-1, Legionella autoinducer-1; CAI-1, Legionella autoinducer-1; QS, quorum-sensing; CLANS, CLuster ANalysis of Sequences. Cholera Abstract Adenylate cyclases (ACs) are signalling proteins that produce the second messenger cAMP. Class III ACs comprises four groups (class IIIa-d); of these, class IIIa and IIIb ACs have been identified in bacteria and eukaryotes. Many class IIIa ACs are anchored to membranes via hexahelical domains. In eukaryotic ACs, membrane anchors are well conserved, suggesting that this region possesses important functional characteristics that are as yet Article unknown.