Characteristics of Hyaloclastite Ridges Under Western Vatnajökull

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics of Hyaloclastite Ridges Under Western Vatnajökull Mars Polar Science 2000 4062.pdf CHARACTERISTICS OF HYALOCLASTITE RIDGES UNDER WESTERN VATNAJÖKULL. K.A.Langley1, M.T. Gudmundsson1 and H.Björnsson1, 1 Science Institute, University of Iceland, Hofsvallagata 53, 107 Iceland. The interaction between volcanoes and ice can result in morphology and known petrology. It was determined the creation of very distinctive landforms, including that the simple ridges do indeed correspond to individ- tuyas, hyaloclastite ridges and extensive hyaloclastite ual eruption units although, it is unlikely that all the beds and columnar jointed flows. Such features have units can be identified from the radio echo data alone. been observed in many places around the world al- though most abundantly in Iceland, the Canadian Cor- Of special interest were the width length ratios of the dillera and Antarctica. ridges. A particularly useful comparison was that of the width length ratios of other hyaloclastite ridges in Iceland affords one the most accessible and perhaps the now ice-free section of the Eastern Volcanic Zone one of the most interesting locations to study these (Jakobsson, pers. com.). This indicated that the sub- phenomena. Not only does it proffer numerous exam- glacial composite ridges are on average approximately ples of each, but also the occurrence of present day the same lengths as the ice-free ridges but in general subglacial and submarine volcanism offers the oppor- much wider. This difference could be due to the dif- tunity to witness and study the processes associated ferent erosional and depositional regimes one might with the formation of these products in situ. expect to find in the two environments. For example, it is evident that deposition of glaciofluvial sediments Vatnajökull, Europe’s largest ice cap, straddles an ac- and subaerial lavas in the ice-free areas have filled in tive section of the neovolcanic zone; the expression of valleys and covered the bases of many ridges. The the current plate boundary as it passes through the is- width of these ridges will be underestimated. Con- land. An extensive radio echo sounding survey, con- versely, in a subglacial environment such as that under ducted by the Science Institute of the University of Vatnajökull, glacial and fluvial erosion are more likely Iceland, has been carried out across the ice cap. The to dominate, especially with regards to the jökulhlaups data has been used to construct ice surface and bedrock and the surging behaviour of many of the outlets. topography maps as well as to describe the subglacial Where this erosion has caused the overdeepening of geology and define the ice and water drainage basins valleys, the width of the ridges will be overestimated. of Vatnajökull [1], [2], [3], [4], The length of the ridges correspond to the length of the fissures along which they were erupted and thus reveal The aim of the present work was to study the charac- information on the tectonics involved. teristics of the hyaloclastite ridges beneath the glacier using the radio echo data. Two types of ridge have References: been determined. The smaller shorter units termed [1] Björnsson, H. 1982. Nordic Hydrology 213-232, simple ridges are thought to correspond to single erup- [2] Björnsson, H. 1986. Annals of Glaciology. 8, 11- tion units. The larger scale morphological units, re- 18. [3] Björnsson, H. 1988. Hydrology of Ice Caps in ferred to here as composite ridges, may include several Volcanic Regions. Soc. Sci. Isl. Rit 45, Reykjavik, 139 of the simple ridges and are thought to have been pp., [4] Björnsson, H and P. Einarsson 1990. Jökull formed during a number of eruptions along single or 40, 147-168 parallel fissures. In attempt to validate this, a pseudo survey was conducted over an ice-free area of similar.
Recommended publications
  • The Antarctic Treaty System And
    The Antarctic Treaty System and Law During the first half of the 20th century a series of territorial claims were made to parts of Antarctica, including New Zealand's claim to the Ross Dependency in 1923. These claims created significant international political tension over Antarctica which was compounded by military activities in the region by several nations during the Second World War. These tensions were eased by the International Geophysical Year (IGY) of 1957-58, the first substantial multi-national programme of scientific research in Antarctica. The IGY was pivotal not only in recognising the scientific value of Antarctica, but also in promoting co- operation among nations active in the region. The outstanding success of the IGY led to a series of negotiations to find a solution to the political disputes surrounding the continent. The outcome to these negotiations was the Antarctic Treaty. The Antarctic Treaty The Antarctic Treaty was signed in Washington on 1 December 1959 by the twelve nations that had been active during the IGY (Argentina, Australia, Belgium, Chile, France, Japan, New Zealand, Norway, South Africa, United Kingdom, United States and USSR). It entered into force on 23 June 1961. The Treaty, which applies to all land and ice-shelves south of 60° South latitude, is remarkably short for an international agreement – just 14 articles long. The twelve nations that adopted the Treaty in 1959 recognised that "it is in the interests of all mankind that Antarctica shall continue forever to be used exclusively for peaceful purposes and shall not become the scene or object of international discord".
    [Show full text]
  • Polartrec Teacher Joins Hunt for Old Ice in Antarctica
    NEWSLETTER OF THE NATIONAL ICE CORE LABORATORY — SCIENCE MANAGEMENT OFFICE Vol. 5 Issue 1 • SPRING 2010 PolarTREC Teacher Joins Hunt for Old Eric Cravens: Ice in Antarctica Farewell & By Jacquelyn (Jackie) Hams, PolarTREC Teacher Thanks! Courtesy: PolarTREC ... page 2 WAIS Divide Ice Core Images Now Available from AGDC ... page 3 WAIS Divide Ice Dave Marchant and Jackie Hams Core Update Photo: PolarTREC ... page 3 WHEN I APPLIED to the PolarTREC I actually left for Antarctica. I was originally program (http://www.polartrec.com/), I was selected by the CReSIS (Center for Remote asked where I would prefer to go given the Sensing of Ice Sheets) project, which has options of the Arctic, Antarctica, or either. I headquarters at the University of Kansas. I checked the Antarctica box only, despite the met and spent a few days visiting the team at Drilling for Old Ice fact that I may have decreased my chances of the University of Kansas and had dinner at the being selected. Antarctica was my preference Principal Investigator’s home with other team ... page 5 for many reasons. As a teacher I felt that members. We were all pleased with the match Antarctica represented the last frontier to study and looked forward to working together. the geologic history of the planet because the continent is uninhabited, not polluted, and In the late summer of 2008, I was informed that NEEM Reaches restricted to pure research. Over the last few the project was cancelled and that I would be Eemian and years I have noticed that my students were assigned to another research team.
    [Show full text]
  • Joint Conference of the History EG and Humanities and Social Sciences
    Joint conference of the History EG and Humanities and Social Sciences EG "Antarctic Wilderness: Perspectives from History, the Humanities and the Social Sciences" Colorado State University, Fort Collins (USA), 20 - 23 May 2015 A joint conference of the History Expert Group and the Humanities and Social Sciences Expert Group on "Antarctic Wilderness: Perspectives from History, the Humanities and the Social Sciences" was held at Colorado State University in Fort Collins (USA) on 20-23 May 2015. On Wednesday (20 May) we started with an excursion to the Rocky Mountain National Park close to Estes. A hike of two hours took us along a former golf course that had been remodelled as a natural plain, and served as a fitting site for a discussion with park staff on “comparative wilderness” given the different connotations of that term in isolated Antarctica and comparatively accessible Colorado. After our return to Fort Collins we met a group of members of APECS (Association of Polar Early Career Scientists), with whom we had a tour through the New Belgium Brewery. The evening concluded with a screening of the film “Nightfall on Gaia” by the anthropologist Juan Francisco Salazar (Australia), which provides an insight into current social interactions on King George Island and connections to the natural and political complexities of the sixth continent. The conference itself was opened by on Thursday (21 May) by Diana Wall, head of the School of Global Environmental Sustainability at the Colorado State University (CSU). Andres Zarankin (Brazil) opened the first session on narratives and counter narratives from Antarctica with his talk on sealers, marginality, and official narratives in Antarctic history.
    [Show full text]
  • INAUGURAL SEASON 2020-2021 Antarctica | Greenland & Iceland
    EXPEDITION CRUISES INAUGURAL SEASON 2020-2021 Antarctica | Svalbard | Greenland & Iceland | Norway & Russia | Northwest Passage | North, Central & South America | Europe new Alaska & Canada Content 2020-21 ––––––––––––––––––––––––––––––––––––––––– We take you far beyond the ordinary 6-7 ––––––––––––––––––––––––––––––––––––––––– Our Expedition Fleet 8-9 ––––––––––––––––––––––––––––––––––––––––– The future is green 10-11 ––––––––––––––––––––––––––––––––––––––––– Antarctica 12-15 ––––––––––––––––––––––––––––––––––––––––– Greenland & Iceland 16-19 ––––––––––––––––––––––––––––––––––––––––– Russia 19 ––––––––––––––––––––––––––––––––––––––––– Svalbard 20-23 ––––––––––––––––––––––––––––––––––––––––– Norway 24-25 ––––––––––––––––––––––––––––––––––––––––– Northwest Passage 26-27 ––––––––––––––––––––––––––––––––––––––––– Alaska & Canada 28-29 ––––––––––––––––––––––––––––––––––––––––– North & Central America 30 ––––––––––––––––––––––––––––––––––––––––– South America 31 ––––––––––––––––––––––––––––––––––––––––– Europe 32 ––––––––––––––––––––––––––––––––––––––––– Extend your stay 32-33 ––––––––––––––––––––––––––––––––––––––––– Terms and conditions 34-37 ––––––––––––––––––––––––––––––––––––––––– 2 “Ever since Hurtigruten started sailing polar waters back in 1893, we have been on a constant look out for new worlds to explore.” © HURTIGRUTEN Hurtigruten is an exploration company in the truest sense of the word; our mission is to bring adventurers to remote natural beauty around the world. Our experience in the feld is unparalleled, and we draw on our unique
    [Show full text]
  • Daily Program Friday, 24.02.2017 – Embarkation Ushuaia
    DAILY PROGRAM FRIDAY, 24.02.2017 – EMBARKATION USHUAIA RESTAURANT TIMINGS TEA,COFFEE & COOKIES 15:00 – 17:30 PANORAMA LOUNGE, DECK 7 BUFFET DINNER 18:00 – 21:00 RESTAURANT, DECK 4 15:00 Check-In 21:30 Captain’s Cocktails. Our Expedition Jackets and Check in is on deck 3 and 4. Captain Raymond Martinsen Rubber Boots will be available Suites can check in on deck 7. would like to welcome you on for collection over the coming board and present his officers days. 15:00-17:30 Medical Forms and the Expedition Team. At Please deliver your medical the same time we'll give some We may have the opportunity forms to the Doctor in the information regarding our to stamp your passport at an lobby on deck 4. voyage, in the Panorama Antarctic base during our Lounge, deck 7. voyage. If you would NOT like 15:00-17:30 If you would like a stamp, please see to learn more about our FRAM goes paperless! On Reception, Deck 4. voyage then why not come your first day you will receive and meet some of the the Daily program in printed Most of the time we will use Expedition Team members in version. From tomorrow on our PolarCirkle boats for the Panorama Lounge on deck you will find the daily landings. For organizational 7. information on your cabin’s TV purposes we are going to screen as well as in all public separate you into groups of Approx. 17:30 Mandatory spaces. By doing so we avoid approximately 30 passengers.
    [Show full text]
  • Continental Field Manual 3 Field Planning Checklist: All Field Teams Day 1: Arrive at Mcmurdo Station O Arrival Brief; Receive Room Keys and Station Information
    PROGRAM INFO USAP Operational Risk Management Consequences Probability none (0) Trivial (1) Minor (2) Major (4) Death (8) Certain (16) 0 16 32 64 128 Probable (8) 0 8 16 32 64 Even Chance (4) 0 4 8 16 32 Possible (2) 0 2 4 8 16 Unlikely (1) 0 1 2 4 8 No Chance 0% 0 0 0 0 0 None No degree of possible harm Incident may take place but injury or illness is not likely or it Trivial will be extremely minor Mild cuts and scrapes, mild contusion, minor burns, minor Minor sprain/strain, etc. Amputation, shock, broken bones, torn ligaments/tendons, Major severe burns, head trauma, etc. Injuries result in death or could result in death if not treated Death in a reasonable time. USAP 6-Step Risk Assessment USAP 6-Step Risk Assessment 1) Goals Define work activities and outcomes. 2) Hazards Identify subjective and objective hazards. Mitigate RISK exposure. Can the probability and 3) Safety Measures consequences be decreased enough to proceed? Develop a plan, establish roles, and use clear 4) Plan communication, be prepared with a backup plan. 5) Execute Reassess throughout activity. 6) Debrief What could be improved for the next time? USAP Continental Field Manual 3 Field Planning Checklist: All Field Teams Day 1: Arrive at McMurdo Station o Arrival brief; receive room keys and station information. PROGRAM INFO o Meet point of contact (POC). o Find dorm room and settle in. o Retrieve bags from Building 140. o Check in with Crary Lab staff between 10 am and 5 pm for building keys and lab or office space (if not provided by POC).
    [Show full text]
  • Living and Working at USAP Facilities
    Chapter 6: Living and Working at USAP Facilities CHAPTER 6: Living and Working at USAP Facilities McMurdo Station is the largest station in Antarctica and the southermost point to which a ship can sail. This photo faces south, with sea ice in front of the station, Observation Hill to the left (with White Island behind it), Minna Bluff and Black Island in the distance to the right, and the McMurdo Ice Shelf in between. Photo by Elaine Hood. USAP participants are required to put safety and environmental protection first while living and working in Antarctica. Extra individual responsibility for personal behavior is also expected. This chapter contains general information that applies to all Antarctic locations, as well as information specific to each station and research vessel. WORK REQUIREMENT At Antarctic stations and field camps, the work week is 54 hours (nine hours per day, Monday through Saturday). Aboard the research vessels, the work week is 84 hours (12 hours per day, Monday through Sunday). At times, everyone may be expected to work more hours, assist others in the performance of their duties, and/or assume community-related job responsibilities, such as washing dishes or cleaning the bathrooms. Due to the challenges of working in Antarctica, no guarantee can be made regarding the duties, location, or duration of work. The objective is to support science, maintain the station, and ensure the well-being of all station personnel. SAFETY The USAP is committed to safe work practices and safe work environments. There is no operation, activity, or research worth the loss of life or limb, no matter how important the future discovery may be, and all proactive safety measures shall be taken to ensure the protection of participants.
    [Show full text]
  • What Is Antarctica?
    What Is Antarctica? What Is Antarctica? This text is from the "NASA Knows!" series from NASA. Antarctica is a continent. It is Earth's fifth-largest continent and is covered almost completely in ice. Antarctica covers Earth's South Pole. What Is Antarctica Like? NASA Antarctica is Earth's fifth largest continent. Antarctica is the coldest place on Earth. The average temperature in Antarctica in the winter is minus 34.4 Celcius (minus 30 degrees Fahrenheit). The temperature in the center of Antarctica is much lower than the temperature on the coasts. The lowest temperature ever recorded in Antarctica was minus 89.4 C (minus 129 F). The highest temperature ever recorded in Antarctica was 15 C (59 F). Antarctica has just two seasons: summer and winter. Antarctica has six months of daylight in its summer and six months of darkness in its winter. The seasons are caused by the tilt of Earth's axis in relation to the sun. The direction of the tilt never changes. But as the Earth orbits the sun, different parts of the planet are exposed to direct sunlight. During summer, Antarctica is on the side of Earth tilted toward the sun and is in constant sunlight. In the winter, Antarctica is on the side of Earth tilted away from the sun, causing the continent to be dark. Antarctica is considered a desert because it receives very little rain or snowfall. The small amount of snow that does fall does not melt but builds up over hundreds and thousands of years to form large, thick ice sheets.
    [Show full text]
  • Download Factsheet
    Antarctic Factsheet Geographical Statistics May 2005 AREA % of total Antarctica - including ice shelves and islands 13,829,430km2 100.00% (Around 58 times the size of the UK, or 1.4 times the size of the USA) Antarctica - excluding ice shelves and islands 12,272,800km2 88.74% Area ice free 44,890km2 0.32% Ross Ice Shelf 510,680km2 3.69% Ronne-Filchner Ice Shelf 439,920km2 3.18% LENGTH Antarctic Peninsula 1,339km Transantarctic Mountains 3,300km Coastline* TOTAL 45,317km 100.00% * Note: coastlines are fractal in nature, so any Ice shelves 18,877km 42.00% measurement of them is dependant upon the scale at which the data is collected. Coastline Rock 5,468km 12.00% lengths here are calculated from the most Ice coastline 20,972km 46.00% detailed information available. HEIGHT Mean height of Antarctica - including ice shelves 1,958m Mean height of Antarctica - excluding ice shelves 2,194m Modal height excluding ice shelves 3,090m Highest Mountains 1. Mt Vinson (Ellsworth Mts.) 4,892m 2. Mt Tyree (Ellsworth Mts.) 4,852m 3. Mt Shinn (Ellsworth Mts.) 4,661m 4. Mt Craddock (Ellsworth Mts.) 4,650m 5. Mt Gardner (Ellsworth Mts.) 4,587m 6. Mt Kirkpatrick (Queen Alexandra Range) 4,528m 7. Mt Elizabeth (Queen Alexandra Range) 4,480m 8. Mt Epperly (Ellsworth Mts) 4,359m 9. Mt Markham (Queen Elizabeth Range) 4,350m 10. Mt Bell (Queen Alexandra Range) 4,303m (In many case these heights are based on survey of variable accuracy) Nunatak on the Antarctic Peninsula 1/4 www.antarctica.ac.uk Antarctic Factsheet Geographical Statistics May 2005 Other Notable Mountains 1.
    [Show full text]
  • Antarctica: at the Heart of It All
    4/8/2021 Antarctica: At the heart of it all Dr. Dan Morgan Associate Dean – College of Arts & Science Principal Senior Lecturer – Earth & Environmental Sciences Vanderbilt University Osher Lifelong Learning Institute Spring 2021 Webcams for Antarctic Stations III: “Golden Age” of Antarctic Exploration • State of the world • 1910s • 1900s • Shackleton (Nimrod) • Drygalski • Scott (Terra Nova) • Nordenskjold • Amundsen (Fram) • Bruce • Mawson • Charcot • Shackleton (Endurance) • Scott (Discovery) • Shackleton (Quest) 1 4/8/2021 Scurvy • Vitamin C deficiency • Ascorbic Acid • Makes collagen in body • Limits ability to absorb iron in blood • Low hemoglobin • Oxygen deficiency • Some animals can make own ascorbic acid, not higher primates International scientific efforts • International Polar Years • 1882-83 • 1932-33 • 1955-57 • 2007-09 2 4/8/2021 Erich von Drygalski (1865 – 1949) • Geographer and geophysicist • Led expeditions to Greenland 1891 and 1893 German National Antarctic Expedition (1901-04) • Gauss • Explore east Antarctica • Trapped in ice March 1902 – February 1903 • Hydrogen balloon flight • First evidence of larger glaciers • First ice dives to fix boat 3 4/8/2021 Dr. Nils Otto Gustaf Nordenskjold (1869 – 1928) • Geologist, geographer, professor • Patagonia, Alaska expeditions • Antarctic boat Swedish Antarctic Expedition: 1901-04 • Nordenskjold and 5 others to winter on Snow Hill Island, 1902 • Weather and magnetic observations • Antarctic goes north, maps, to return in summer (Dec. 1902 – Feb. 1903) 4 4/8/2021 Attempts to make it to Snow Hill Island: 1 • November and December, 1902 too much ice • December 1902: Three meant put ashore at hope bay, try to sledge across ice • Can’t make it, spend winter in rock hut 5 4/8/2021 Attempts to make it to Snow Hill Island: 2 • Antarctic stuck in ice, January 1903 • Crushed and sinks, Feb.
    [Show full text]
  • Arctic and Antarctic Research
    Science on the Edge arctic and antarctic discoveries he polar regions provide unique natural laboratories for the study of Tcomplex scientific questions, ranging from human origins in the New World to the expansion of the universe. People have studied the polar regions for centuries. The extreme cold and stark beauty of the Arctic and Antarctic capture the imaginations of explorers, naturalists, and armchair travelers. In the latter half of the twentieth century, NSF-funded scientists discovered that the Arctic and the Antarctic have much to teach us about our Earth and its atmosphere, oceans, and climate. For example, cores drilled from the great ice sheets of Greenland and Antarctica tell a story of global climate changes throughout history. During NSF’s lifetime, the extreme environments of the Arctic and Antarctic have become learning environments. During the First Polar Year (1882–83), scien- tists and explorers journeyed to the icy margins of the Earth to collect data on weather patterns, the Earth’s magnetic force, and other polar phe- nomena that affected navigation and shipping in A Surprising Abundance of Life the era of expanding commerce and industrial Both the Arctic and Antarctic seem beyond life: development. In all, the First Polar Year inspired icy, treeless, hostile places. Yet these polar regions fifteen expeditions (twelve to the Arctic and three host a surprising abundance of life, ranging from to the Antarctic) by eleven nations. Along the way, the microbial to the awe-inspiring, from bacteria researchers established twelve research stations. to bowhead whales. By the Second Polar Year (1932–33), new fields The United States has supported research Important differences mark North and South.
    [Show full text]
  • A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research
    POLAR RESEARCH BOARD AUGUST 2015 A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research RESEARCH IN ANTARCTICA AND THE SOUTHERN OCEAN has yielded tremendous insights into the workings of our planet and the universe beyond. Much of this research is now becoming increasingly urgent as scientists seek to understand how the region may affect sea-level rise and other global-scale environ- mental changes. Building on input from across the scientific community, this report identifies key priorities for Antarctic and Southern Ocean research over the coming decade, along with the infrastructure and logistical needs most critical for supporting this research. As the planet’s coldest and windiest conti- nent containing 90% of the world’s ice, Antarctica is like no other place on Earth. This unique environment provides an array of valuable opportunities for scien- tific research: for instance, ice and sediment cores provide a record of Earth’s climate history, the region’s varied ecosystems hold secrets to life in extreme environments, and the dry, stable atmosphere over Antarctica provides optimal conditions for studying the solar system and the universe beyond. Advancing our understanding of Antarctica and the Southern Ocean is becoming more urgent due to the region’s important roles in circulation of the oceans and atmo- sphere, cycling of carbon dioxide and heat through the ocean, and global sea level rise from melting ice Scientists install cameras to document how Antarctic sheets. glaciers are changing over time. Source: Erin Pettit The U.S. Antarctic Program of the National Science Foundation (NSF) supports U.S.
    [Show full text]