Unit 3. Antarctic Oceanography Lesson 1

Total Page:16

File Type:pdf, Size:1020Kb

Unit 3. Antarctic Oceanography Lesson 1 ANTARCTIC Unit 3. Antarctic Oceanography Lesson 1. – Overview and Research Stations Lesson Objectives: • Introduces the continent of Antarctica and the oceans that surround it • The student will learn about the geography, history and climate. • The second section of this chapter discusses research stations and the scientists who live on the frozen continent. Antarctica is a continent located form 25 million years ago. The at the southern-most point of ice in Antarctica locks up more the globe. Millions of years ago, than two-thirds of the planet's this landmass was attached to fresh water. If the Antarctic ice a giant landmass that consisted were to melt, the sea would rise of modern-day South America, almost 200 feet. It is the only India and Africa. Powerful underground forces ripped a large piece of land from this giant landmass, which then drifted to its current position at the bottom of the globe. It is surrounded on all sides by the Indian, Pacific and Atlantic Oceans. continent that man had left untouched for Antarctica's cold, thick hard millions of years. covering, called an Antarctica is ice considered the sheet, coldest and driest continent on began to earth. Temperatures decrease regions inland. Temperatures as one moves from the coastal during the long, dark winters ©PROJECT OCEANOGRAPHY ANTARCTIC OCEANOGRAPHY 87 ANTARCTIC range from –4° F to –22° F on Blizzards are produced not by the coast, -40° F to –90° F falling snow, but when high inland. During the summers, winds (100- 200mph) blow coastal temperatures average ground snow around, creating 32° F (occasionally climbing to blinding conditions and 50° F), while the inland summer snowdrifts that can cover local temperatures range from –4° F research stations in an hour. to –31° F. The lowest temperature recorded in The snowfall has accumulated Antarctic history was in 1983, a over several million years to ο make Antarctica's average chilling -129 F. This is colder elevation 2.5 miles above sea than the surface of Mars. When level, making it the highest water was thrown into the air, it continent. But in a sense, it is froze before it hit the ground. also the lowest continent: the landmass itself, because of the Antarctica receives less snow weight of all that snow, has than you may think. Actually, it been pushed down so heavily only snows an average of 10" that some parts of the continent per year on the coast, and less are actually under sea level. than 2" inland. Because it is so cold, the snow never melts. History Aristotle, an ancient Greek John Davis, a US sealer, was philosopher, believed that if the the first to set foot on the world was round, then there continent. James Weddell, an must be a continent at the English sealer, had both a seal bottom of the globe holding all and a sea named after him the other continents in place. because of his discovery of an He named the continent unknown seal. Antarktikos, meaning "anti- Arctic". Most believe that the In 1911-1912, the first men to first man to sight Antarctica (in reach the South Pole were two 1820) was Fabian von teams led by Ronald Bellingshausen, a Russian Amundsen from Norway and explorer. Others believe it to be Robert F. Scott from Great a British seaman named Britain. Scott made it to the Edward Bransfield. Captain South Pole 10 days after ©PROJECT OCEANOGRAPHY ANTARCTIC OCEANOGRAPHY 88 ANTARCTIC Amundsen, who had left his preparation on their part, Scott country's flag at 0ο to let Scott and his team perished from know he had made it first. cold and starvation on the way Amundsen left supplies behind back to their camp. for Scott, but because of poor Research Stations Having been isolated for so long, Antarctica provides numerous opportunities for scientists to conduct research. By the mid 1950s, seven countries had claimed territories of Antarctica as their own, establishing year-round operations and sharing weather research stations there. Soon reports. They, and eventually five more nations were 45 more nations, spent the IGY expressing an interest in the cooperating with each other on continent for research various scientific and research purposes. An 18-month period projects. This period of from 1956-57 was declared the harmony led to the signing of International Geophysical the Antarctic Treaty in 1959, Year (IGY). These twelve declaring Antarctica as a countries came together in the research preserve. This treaty interests of science and took effect in 1961, and since discussed how they could help then, many other countries each other in terms of locating have agreed to it. The and building research bases, preamble to the Antarctic setting up communication Treaty clearly sets forth its systems, launching rescue purpose: ©PROJECT OCEANOGRAPHY ANTARCTIC OCEANOGRAPHY 89 ANTARCTIC Recognizing that it is in the interest of all mankind that Antarctica shall continue forever to be used exclusively for peaceful purposes and shall not become the scene or object of international discord; …the establishment of a firm foundation for the continuation and development of such cooperation on the basis of freedom, of scientific investigation in Antarctica as applied during the IGY accords with the interest of science and the progress of all mankind…." The treaty states that Antarctica research laboratories and will remain open for research support facilities. for any scientists from nations McMurdo is built on the bare who agree to the treaty. It also volcanic rock of Hut Point calls for a ban on military and Peninsula on Ross Island, the weapons (including nuclear) most southerly solid ground testing; international that is accessible by ship. It is cooperation and freedom of located just 20 miles south of scientific investigation; and free Mt. Erebus, an active volcano exchange of science program that steams continually and plans, results and personnel. erupts frequently though not This treaty guarantees that no violently. country's claim on any territory will ever be acknowledged by Heat and lighting is provided the other parties. Any disputes by small power plants. The are to be settled by the buildings must be designed to International Court of Justice. withstand blizzards, and due to The Treaty was re-examined in the dry conditions, fire remains 1991, 30 years after signing, a major threat. The base is run and re-affirmed. by an administrative director, Some of the modern research who is not necessarily a stations, especially the larger scientist. The base requires ones, are like small towns. personnel to perform a myriad McMurdo Station, the principal of tasks: cooks, bulldozer U.S. facility, on Ross Island, coast of Antarctica (peak summer population capacity 1,258; 1996 winter, 232) is Antarctica's largest station, it has airports and a seaport, ©PROJECT OCEANOGRAPHY ANTARCTIC OCEANOGRAPHY 90 ANTARCTIC operators, pilots, mechanics, One of the problems created by communication specialists. the research stations is the Some bases even have accumulation of trash. chaplains to help those on the Garbage does not break down base deal with the isolation and or biodegrade in the frigid the cramped living conditions. climate. Piles of trash that accumulated over the decades Although nations build their of research, including own bases, it is not unusual to thousands of oil barrels and have scientists from many broken or abandoned nations working together on machinery, littered the research projects at one base. landscape. Recently, the US There are 40-50 research and other nations have started stations in Antarctica, and more cleanup procedures and now than 50,000 people from many transport trash from the different countries work on continent back to their these bases. countries. The Oceans that Surround Antarctica Antarctica is surrounded on all the Southern Ocean. This is the sides by water; the Atlantic, area located south of 50° Pacific and Indian Oceans all latitude. meet at Antarctica. The three oceans are collectively called The Antarctic Divergence The East Wind Drift drives the In the Southern Hemisphere, waters closest to Antarctica, the Coriolis Effect deflects which move in a westerly moving masses to the left. The direction around the continent. inner East Wind Drift moves Further out from the continent toward the continent while the the waters are driven by outer West Wind Drift moves westerly winds called the West away from the continent. This Wind Drift. These westerly creates an area of divergence winds remain strong through called the Antarctic out most of the year. Divergence. ©PROJECT OCEANOGRAPHY ANTARCTIC OCEANOGRAPHY 91 ANTARCTIC The Antarctic Convergence The Antarctic Convergence is waters into the cold water of the the irregular ocean zone that Southern Ocean. surrounds Antarctica. It is where warm deep water from These nutrients are necessary the northern oceans collide with for photosynthesis and create colder surface water from the the perfect environment for Southern Ocean and the colder zooplankton and bottom water. Because the phytoplankton to thrive. colder water is saltier, and Because plankton is so therefore more dense, it flows abundant, they form the beneath the warmer water. This foundation of the food web. A convergence brings the rich small shrimp-like creature nutrients from the warmer called krill feeds on the plankton. Krill Krill is a general term used to microscopic ocean plants describe about 85 species of suspended in the upper water crustaceans found in open column where light is sufficient oceans. They belong to the to allow for growth. Most of the group of crustaceans called Antarctic creatures, everything euphausiids and look like from penguins to whales, feed smaller versions of familiar on krill. Without it, the crustaceans such as prawns or ecosystem would collapse. lobsters. They range in size from small tropical species of less than a centimeter in length to little known deep-sea giants that can reach 14 centimeters.
Recommended publications
  • The Antarctic Treaty System And
    The Antarctic Treaty System and Law During the first half of the 20th century a series of territorial claims were made to parts of Antarctica, including New Zealand's claim to the Ross Dependency in 1923. These claims created significant international political tension over Antarctica which was compounded by military activities in the region by several nations during the Second World War. These tensions were eased by the International Geophysical Year (IGY) of 1957-58, the first substantial multi-national programme of scientific research in Antarctica. The IGY was pivotal not only in recognising the scientific value of Antarctica, but also in promoting co- operation among nations active in the region. The outstanding success of the IGY led to a series of negotiations to find a solution to the political disputes surrounding the continent. The outcome to these negotiations was the Antarctic Treaty. The Antarctic Treaty The Antarctic Treaty was signed in Washington on 1 December 1959 by the twelve nations that had been active during the IGY (Argentina, Australia, Belgium, Chile, France, Japan, New Zealand, Norway, South Africa, United Kingdom, United States and USSR). It entered into force on 23 June 1961. The Treaty, which applies to all land and ice-shelves south of 60° South latitude, is remarkably short for an international agreement – just 14 articles long. The twelve nations that adopted the Treaty in 1959 recognised that "it is in the interests of all mankind that Antarctica shall continue forever to be used exclusively for peaceful purposes and shall not become the scene or object of international discord".
    [Show full text]
  • 100 Magic Water Words
    WaterCards.(WebFinal).qxp 6/15/06 8:10 AM Page 1 estuary ocean backwater canal ice flood torrent snowflake iceberg wastewater 10 0 ripple tributary pond aquifer icicle waterfall foam creek igloo cove Water inlet fish ladder snowpack reservoir sleet Words slough shower gulf rivulet salt lake groundwater sea puddle swamp blizzard mist eddy spillway wetland harbor steam Narcissus surf dew white water headwaters tide whirlpool rapids brook 100 Water Words abyssal runoff snow swell vapor EFFECT: Lay 10 cards out blue side up. Ask a participant to mentally select a word and turn the card with the word on it over. You turn all marsh aqueduct river channel saltwater the other cards over and mix them up. Ask the participant to point to the card with his/her water table spray cloud sound haze word on it. You magically tell the word selected. KEY: The second word from the top on the riptide lake glacier fountain spring white side is a code word for a number from one to ten. Here is the code key: Ocean = one (ocean/one) watershed bay stream lock pool Torrent = two (torrent/two) Tributary = three (tributary/three) Foam = four (foam/four) precipitation lagoon wave crest bayou Fish ladder = five (fish ladder/five) Shower = six (shower/six) current trough hail well sluice Sea = seven (sea/seven) Eddy = eight (eddy/eight) Narcissus = nine (Narcissus/nine) salt marsh bog rain breaker deluge Tide = ten (tide/ten) Notice the code word on the card that is first frost downpour fog strait snowstorm turned over. When the second card is selected the chosen word will be the secret number inundation cloudburst effluent wake rainbow from the top.
    [Show full text]
  • Navigation on Shackleton's Voyage to Antarctica
    Records of the Canterbury Museum, 2019 Vol. 33: 5–22 © Canterbury Museum 2019 5 Navigation on Shackleton’s voyage to Antarctica Lars Bergman1 and Robin G Stuart2 1Saltsjöbaden, Sweden 2Valhalla, New York, USA Email: [email protected] On 19 January 1915, the Imperial Trans-Antarctic Expedition, under the leadership of Sir Ernest Shackleton, became trapped in their vessel Endurance in the ice pack of the Weddell Sea. The subsequent ordeal and efforts that lead to the successful rescue of all expedition members are the stuff of legend and have been extensively discussed elsewhere. Prior to that time, however, the voyage had proceeded relatively uneventfully and was dutifully recorded in Captain Frank Worsley’s log and work book. This provides a window into the navigational methods used in the day-to- day running of the ship by a master mariner under normal circumstances in the early twentieth century. The conclusions that can be gleaned from a careful inspection of the log book over this period are described here. Keywords: celestial navigation, dead reckoning, double altitudes, Ernest Shackleton, Frank Worsley, Imperial Trans-Antarctic Expedition, Mercator sailing, time sight Introduction On 8 August 1914, the Imperial Trans-Antarctic passage in the 22½ foot (6.9 m) James Caird to Expedition under the leadership of Sir Ernest seek rescue from South Georgia. It is ultimately Shackleton set sail aboard their vessel the steam a tribute to Shackleton’s leadership and Worsley’s yacht (S.Y.) Endurance from Plymouth, England, navigational skills that all survived their ordeal. with the goal of traversing the Antarctic Captain Frank Worsley’s original log books continent from the Weddell to Ross Seas.
    [Show full text]
  • 2. Disc Resources
    An early map of the world Resource D1 A map of the world drawn in 1570 shows ‘Terra Australis Nondum Cognita’ (the unknown south land). National Library of Australia Expeditions to Antarctica 1770 –1830 and 1910 –1913 Resource D2 Voyages to Antarctica 1770–1830 1772–75 1819–20 1820–21 Cook (Britain) Bransfield (Britain) Palmer (United States) ▼ ▼ ▼ ▼ ▼ Resolution and Adventure Williams Hero 1819 1819–21 1820–21 Smith (Britain) ▼ Bellingshausen (Russia) Davis (United States) ▼ ▼ ▼ Williams Vostok and Mirnyi Cecilia 1822–24 Weddell (Britain) ▼ Jane and Beaufoy 1830–32 Biscoe (Britain) ★ ▼ Tula and Lively South Pole expeditions 1910–13 1910–12 1910–13 Amundsen (Norway) Scott (Britain) sledge ▼ ▼ ship ▼ Source: Both maps American Geographical Society Source: Major voyages to Antarctica during the 19th century Resource D3 Voyage leader Date Nationality Ships Most southerly Achievements latitude reached Bellingshausen 1819–21 Russian Vostok and Mirnyi 69˚53’S Circumnavigated Antarctica. Discovered Peter Iøy and Alexander Island. Charted the coast round South Georgia, the South Shetland Islands and the South Sandwich Islands. Made the earliest sighting of the Antarctic continent. Dumont d’Urville 1837–40 French Astrolabe and Zeelée 66°S Discovered Terre Adélie in 1840. The expedition made extensive natural history collections. Wilkes 1838–42 United States Vincennes and Followed the edge of the East Antarctic pack ice for 2400 km, 6 other vessels confirming the existence of the Antarctic continent. Ross 1839–43 British Erebus and Terror 78°17’S Discovered the Transantarctic Mountains, Ross Ice Shelf, Ross Island and the volcanoes Erebus and Terror. The expedition made comprehensive magnetic measurements and natural history collections.
    [Show full text]
  • Asynchronous Antarctic and Greenland Ice-Volume Contributions to the Last Interglacial Sea-Level Highstand
    ARTICLE https://doi.org/10.1038/s41467-019-12874-3 OPEN Asynchronous Antarctic and Greenland ice-volume contributions to the last interglacial sea-level highstand Eelco J. Rohling 1,2,7*, Fiona D. Hibbert 1,7*, Katharine M. Grant1, Eirik V. Galaasen 3, Nil Irvalı 3, Helga F. Kleiven 3, Gianluca Marino1,4, Ulysses Ninnemann3, Andrew P. Roberts1, Yair Rosenthal5, Hartmut Schulz6, Felicity H. Williams 1 & Jimin Yu 1 1234567890():,; The last interglacial (LIG; ~130 to ~118 thousand years ago, ka) was the last time global sea level rose well above the present level. Greenland Ice Sheet (GrIS) contributions were insufficient to explain the highstand, so that substantial Antarctic Ice Sheet (AIS) reduction is implied. However, the nature and drivers of GrIS and AIS reductions remain enigmatic, even though they may be critical for understanding future sea-level rise. Here we complement existing records with new data, and reveal that the LIG contained an AIS-derived highstand from ~129.5 to ~125 ka, a lowstand centred on 125–124 ka, and joint AIS + GrIS contributions from ~123.5 to ~118 ka. Moreover, a dual substructure within the first highstand suggests temporal variability in the AIS contributions. Implied rates of sea-level rise are high (up to several meters per century; m c−1), and lend credibility to high rates inferred by ice modelling under certain ice-shelf instability parameterisations. 1 Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia. 2 Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, UK. 3 Department of Earth Science and Bjerknes Centre for Climate Research, University of Bergen, Allegaten 41, 5007 Bergen, Norway.
    [Show full text]
  • The Commonwealth Trans-Antarctic Expedition 1955-1958
    THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword ..................................................................................................................................
    [Show full text]
  • Polartrec Teacher Joins Hunt for Old Ice in Antarctica
    NEWSLETTER OF THE NATIONAL ICE CORE LABORATORY — SCIENCE MANAGEMENT OFFICE Vol. 5 Issue 1 • SPRING 2010 PolarTREC Teacher Joins Hunt for Old Eric Cravens: Ice in Antarctica Farewell & By Jacquelyn (Jackie) Hams, PolarTREC Teacher Thanks! Courtesy: PolarTREC ... page 2 WAIS Divide Ice Core Images Now Available from AGDC ... page 3 WAIS Divide Ice Dave Marchant and Jackie Hams Core Update Photo: PolarTREC ... page 3 WHEN I APPLIED to the PolarTREC I actually left for Antarctica. I was originally program (http://www.polartrec.com/), I was selected by the CReSIS (Center for Remote asked where I would prefer to go given the Sensing of Ice Sheets) project, which has options of the Arctic, Antarctica, or either. I headquarters at the University of Kansas. I checked the Antarctica box only, despite the met and spent a few days visiting the team at Drilling for Old Ice fact that I may have decreased my chances of the University of Kansas and had dinner at the being selected. Antarctica was my preference Principal Investigator’s home with other team ... page 5 for many reasons. As a teacher I felt that members. We were all pleased with the match Antarctica represented the last frontier to study and looked forward to working together. the geologic history of the planet because the continent is uninhabited, not polluted, and In the late summer of 2008, I was informed that NEEM Reaches restricted to pure research. Over the last few the project was cancelled and that I would be Eemian and years I have noticed that my students were assigned to another research team.
    [Show full text]
  • GSA TODAY • Southeastern Section Meeting, P
    Vol. 5, No. 1 January 1995 INSIDE • 1995 GeoVentures, p. 4 • Environmental Education, p. 9 GSA TODAY • Southeastern Section Meeting, p. 15 A Publication of the Geological Society of America • North-Central–South-Central Section Meeting, p. 18 Stability or Instability of Antarctic Ice Sheets During Warm Climates of the Pliocene? James P. Kennett Marine Science Institute and Department of Geological Sciences, University of California Santa Barbara, CA 93106 David A. Hodell Department of Geology, University of Florida, Gainesville, FL 32611 ABSTRACT to the south from warmer, less nutrient- rich Subantarctic surface water. Up- During the Pliocene between welling of deep water in the circum- ~5 and 3 Ma, polar ice sheets were Antarctic links the mean chemical restricted to Antarctica, and climate composition of ocean deep water with was at times significantly warmer the atmosphere through gas exchange than now. Debate on whether the (Toggweiler and Sarmiento, 1985). Antarctic ice sheets and climate sys- The evolution of the Antarctic cryo- tem withstood this warmth with sphere-ocean system has profoundly relatively little change (stability influenced global climate, sea-level his- hypothesis) or whether much of the tory, Earth’s heat budget, atmospheric ice sheet disappeared (deglaciation composition and circulation, thermo- hypothesis) is ongoing. Paleoclimatic haline circulation, and the develop- data from high-latitude deep-sea sed- ment of Antarctic biota. iments strongly support the stability Given current concern about possi- hypothesis. Oxygen isotopic data ble global greenhouse warming, under- indicate that average sea-surface standing the history of the Antarctic temperatures in the Southern Ocean ocean-cryosphere system is important could not have increased by more for assessing future response of the Figure 1.
    [Show full text]
  • Antarctic Primer
    Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state.
    [Show full text]
  • Companion Q&A Fact Sheet: What Mars Reveals About Life in Our
    What Mars Reveals about Life in Our Universe Companion Q&A Fact Sheet Educators from the Smithsonian’s Air and Space and Natural History Museums assembled this collection of commonly asked questions about Mars to complement the Smithsonian Science How webinar broadcast on March 3, 2021, “What Mars Reveals about Life in our Universe.” Continue to explore Mars and your own curiosities with these facts and additional resources: • NASA: Mars Overview • NASA: Mars Robotic Missions • National Air and Space Museum on the Smithsonian Learning Lab: “Wondering About Astronomy Together” Guide • National Museum of Natural History: A collection of resources for teaching about Antarctic Meteorites and Mars 1 • Smithsonian Science How: “What Mars Reveals about Life in our Universe” with experts Cari Corrigan, L. Miché Aaron, and Mariah Baker (aired March 3, 2021) Mars Overview How long is Mars’ day? Mars takes 24 hours and 38 minutes to spin around once, so its day is very similar to Earth’s. How long is Mars’ year? Mars takes 687 days, almost two Earth years, to complete one orbit around the Sun. How far is Mars from Earth? The distance between Earth and Mars changes as both planets move around the Sun in their orbits. At its closest, Mars is just 34 million miles from the Earth; that’s about one third of Earth’s distance from the Sun. On the day of this program, March 3, 2021, Mars was about 135 million miles away, or four times its closest distance. How far is Mars from the Sun? Mars orbits an average of 141 million miles from the Sun, which is about one-and-a-half times as far as the Earth is from the Sun.
    [Show full text]
  • Representations of Antarctic Exploration by Lesser Known Heroic Era Photographers
    Filtering ‘ways of seeing’ through their lenses: representations of Antarctic exploration by lesser known Heroic Era photographers. Patricia Margaret Millar B.A. (1972), B.Ed. (Hons) (1999), Ph.D. (Ed.) (2005), B.Ant.Stud. (Hons) (2009) Submitted in fulfilment of the requirements for the Degree of Master of Science – Social Sciences. University of Tasmania 2013 This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis. ………………………………….. ………………….. Patricia Margaret Millar Date This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. ………………………………….. ………………….. Patricia Margaret Millar Date ii Abstract Photographers made a major contribution to the recording of the Heroic Era of Antarctic exploration. By far the best known photographers were the professionals, Herbert Ponting and Frank Hurley, hired to photograph British and Australasian expeditions. But a great number of photographs were also taken on Belgian, German, Swedish, French, Norwegian and Japanese expeditions. These were taken by amateurs, sometimes designated official photographers, often scientists recording their research. Apart from a few Pole-reaching images from the Norwegian expedition, these lesser known expedition photographers and their work seldom feature in the scholarly literature on the Heroic Era, but they, too, have their importance. They played a vital role in the growing understanding and advancement of Antarctic science; they provided visual evidence of their nation’s determination to penetrate the polar unknown; and they played a formative role in public perceptions of Antarctic geopolitics.
    [Show full text]
  • Paper Number: 2897 a History of Early Antarctic Fossil Discoveries in Support of the Supercontinent Gondwana Clary, R.M.1, and Sharpe, T.2
    Paper Number: 2897 A History of Early Antarctic Fossil Discoveries in Support of the Supercontinent Gondwana Clary, R.M.1, and Sharpe, T.2 1Mississippi State University, Box 5448, Mississippi State, MS 39762 USA; [email protected] 2Centre for Lifelong Learning, Cardiff University, UK ___________________________________________________________________________ First proposed by Eduard Suess (1831-1914), the supercontinent Gondwana included the present-day continents of South America, Africa, Australia, India, and Antarctica. Alexander Du Toit (1878-1948) expanded Suess’ work in his 1937 book, Our Wandering Continents; An Hypothesis of Continental Drifting. Correlating evidence to support the inclusion of Antarctica in the Gondwana supercontinent would result from the stratigraphic and paleontological data collected within early polar expeditions. Early rock and fossil specimens of Antarctica were recovered by the 1829-1831 Antarctic Expedition sponsored by the United States of America. The expedition included a scientific program, supported by the Lyceum for Natural History of the City of New York. James Eights (1798-1882) produced quality scientific work, including a geological description of the Shetland Islands, and the first fossil of the Antarctic—carbonized wood [1, 2]. The Norwegian expedition of 1893-1894, under Carl Anton Larsen (1860-1924), also found petrified wood fossils on Seymour Island. The wood hinted of a warmer climate in Antarctica’s past, and sparked scientific interest [3]. Within the Heroic Age of Antarctic Exploration (1897-1922), additional fossils were uncovered. Cretaceous ammonites, molluscs, echinoderms and leaves were collected on Seymour Island, and additional plant fossils at Hope Bay, by geologist Nils Otto Gustaf Nordenskjöld (1869-1928) during the Swedish South Polar Expedition of 1901-1904.
    [Show full text]