Amniota: Eureptilia) from the Upper Permian of Mallorca (Balearic Islands, Western Mediterranean)

Total Page:16

File Type:pdf, Size:1020Kb

Amniota: Eureptilia) from the Upper Permian of Mallorca (Balearic Islands, Western Mediterranean) A large multiple tooth-rowed captorhinid reptile (Amniota: Eureptilia) from the Upper Permian of Mallorca (Balearic Islands, Western Mediterranean) TORSTEN LIEBRECHT,1 JOSEP FORTUNY,2 ÀNGEL GALOBART,2 JOHANNES MÜLLER,1 and P. MARTIN SANDER,3 1 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany, [email protected], [email protected]; 2 Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Carrer de les Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain, [email protected], [email protected]; 3 Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, 53115 Bonn, Germany, [email protected] Supplementary data GEOLOGIC SETTING Today, the Balearic Islands (Spanish: Islas Baleares; Catalan: Illes Balears; Fig. S1) represent the geomorphologically highest, and thus emergent, parts of the north-eastern extension of the Betic Cordillera of southern Spain. This extension is also called the Balearic Promontory, which to the northwest is separated from the Iberian mainland by the Valencia Trough, an Oligocene to recent extensional structure that has a complex tectonic history closely connected to the Alpidic collisional movements that affected the western Mediterranean realm in the Late Mesozoic and Cenozoic (Roca, 1996). The northwestern part of the Island of Mallorca is occupied by the Serra de Tramuntana (Serra del Nord), a southwest-northeast trending horst-like structure that internally is built up of southeast-dipping Alpidic thrust sheets of unmetamorphosed, predominantly calcareous rocks of Jurassic age. Exposures of Permian to Middle Triassic terrestrial redbeds (so-called ‘Permo- Triassic’) are present only at the northwestern flank of the Serra de Tramuntana in the coastal area between the villages of Estellencs and Valldemosa. These deposits were referred to as ‘Buntsandstein facies’ (Rodríguez-Perea et al., 1987) and subdivided into three units which are named, from oldest to youngest, ‘Areniscas y Lutitas de Port des Canonge’, ‘Areniscas de Asá’, and ‘Lutitas y Areniscas de Son Serralta’ (Ramos, 1995). They represent the infill of post- variscan northwest-southeast trending extensional structures whose origin is closely related to that of the Permo-Triassic basins of the Iberian Chain (Gomez-Gras, 1993). The source area of the redbeds was the Hesperian Massif – the Iberian part of the Variscan mountains – to the northwest, and deposition took place under semi-arid conditions (Ramos, 1995; Linol et al., 2009). The relative age of the ‘Areniscas y Lutitas de Port des Canonge’ (for convenience hereafter referred to as Port des Canonge beds) is not well constrained and depends on whether its top is considered a major unconformity or not. Ramos and Doubinger (1989) identified a Late Permian (‘Thuringian’) palynoflora in the middle part of the overlying Asá beds and consequently also assigned the Port des Canonge beds to the Upper Permian. This was adopted 1 by most subsequent workers (Gomez-Gras, 1993; Ramos, 1995; Arche et al., 2002; Linol et al., 2009), except Bourquin et al. (2007) and Bourquin et al. (2011) who assume a major hiatus between the Port des Canonge and Asá beds and thus regard the former as Middle Permian. At least the Permian age now appears to be further corroborated by the occurrence of a captorhinid reptile. CIRCUMSTANCES OF DISCOVERY AND LOCAL GEOLOGY The maxilla was found incidentally by Mrs. Lieselotte Hannen, a hobby collector, on a beach of the Port des Canonge area (39° 41' 58" N, 2° 33' 04" E) in 2002. Port des Canonge is a small village in the municipality of Banyalbufar, about 15 km northwest of Palma de Mallorca. The beaches at Port des Canonge belong to the south-western part of the 80 km long north- western coast of Mallorca Island. The specimen was initially kept by the Hannen family and then, in 2007, was given to the Paleontological Department of the University of Bonn, Germany. From there it was transferred to the Museum für Naturkunde Berlin in 2008 for further study and preparation. The specimen is now accessioned at the Museu Balear de Ciències Naturals (MBCN) in Sóller, Island of Mallorca. The north-western coast of Mallorca is part of the north-western flank of the Serra de Tramuntana. It is a cliffed coast with many exposures of mainly Mesozoic rocks. The coastal cliffs at Port des Canonge (Fig. S1) are the type section of the deep red sandstones, siltstones, and claystones of the Port des Canonge beds, as discussed above. Because these siliciclastic redbeds much easier erode than the mainly calcareous rocks of the Serra de Tramuntana, the terrain in this area is generally lower and the slopes are less steep than in the adjacent areas. Small ephemeral streams (locally referred to as ‘torrentes’) have cut several small valleys into the ground that open into the beach at their lower end. According to Mrs. Hannen the maxilla was found among the pebbles of the beach gravel at Cala Gata, a few hundred meters W of Port des Canonge (Figs. 2S, 3S). The gravel forms a thin veneer on Permian mudstones, which also are exposed in the coastal cliff, and finer grained Quaternary deposits of reworked Permian redbeds. Closer examinations of these underlying deposits did not lead to discoveries of further bone material. The discovery in the gravel indicates that the specimen must have been transported, but only a very short distance as shown by the lack of abrasion. The sediment adhering to the specimen allows an assignment to the siltstones and mudstones exposed in the coastal section of the Port des Canonge area. Hence, the maxilla must either have immediately been weathered out of the coastal cliff or transported via an ephemeral stream over a very short distance from an inland exposure of the same lithologic unit (i.e. the Port des Canonge beds). The latter option is supported by the fact that the exact site of discovery is situated immediately below the exit of the valley of the Torrent son Bunyola. Our field work confirmed that the siliciclastic redbeds of the Port des Canonge area are clearly terrestrial. They show features of fluvial deposition (channel and overbank flood deposits) as well as of soil formation such as root traces. 2 FIGURE S1. Map showing the geographic position and geological setting of Cala Gata west-northwest of the village of Port des Canonge, the site where MBCN 15730 has been found. FIGURE S2. Coastal exposures and beach of Cala Gata west-northwest of Port des Canonge, seen from NE. Permian redbeds form the gently rolling reddish hills down at the coast line. The mountain tops and the prominent headland further in the back (Punta de s’Àguila) are made up of Mesozoic and Cenozoic carbonate rocks. MBCN 15730 was found on the gravel beach in the foreground. 3 FIGURE S3. Satellite image of the coastal area immediately west of Port des Canonge, Illes Balears. The place where the specimen was encountered in 2002 is marked by the circle. PRESERVATION MBCN 15730 was preserved in a matrix of red siltstone. The original bone tissue is reddish-brown due to impregnation with or replacement by iron minerals. After preparation most of the original bone surface is easily identifiable by a cover of a light greyish-blue secondary mineral, probably the phosphate mineral vivianite. CLADISTIC ANALYSIS We used a modified dataset of Reisz et al. (2015), which is the most recent version of a dataset used and successively expanded in earlier works (Dodick and Modesto, 1995; Müller and Reisz, 2005, 2006; Modesto et al., 2007; Sumida et al., 2010; Reisz et al., 2011; Modesto et al., 2014). Only seven of 75 characters could be coded (chars. no. 6, 7, 9, 10, 12, 20, 39; see supplementary material) for MBCN 15730. Almost all are dental characters. The analysis was conducted using the ‘implicit enumeration’ algorithm of TNT (Goloboff et al., 2008), which is essentially the same as the ‘branch-and-bound’ algorithm in PAUP. All characters were left unordered and unweighted. The ‘protorothyridid’ eureptile Protorothyris was selected as outgroup. Tree statistics and support values were obtained with the script statss.run and implemented features in TNT. Coding of characters for the Mallorca specimen (MBCN 15730) as added to the data matrix of Reisz et al. (2015): Mallorca specimen ?????31?13 ?2???????0 ?????????? ????????1? ?????????? ?????????? ?????????? ????? 4 FIGURE S4. Strict consensus of the two trees obtained from the TNT analysis of the dataset of Reisz et al. (2015). Numbers on nodes refer to bootstrap values (above) and bremer (decay) indices (below). LITERATURE CITED Arche, A., J. López-Gómez, and H. Vargas. 2002. Propuesta de correlación entre los sedimentos Pérmicos y Triásicos de la Cordillera Ibérica Este y de las Islas Baleares. Geogaceta 32:275-278 Bourquin, S., A. Bercovici, J. López-Gómez, J. B. Diez, J. Broutin, A. Ronchi, M. Durand, A. Arché, B. Linol, and F. Amour. 2011. The Permian–Triassic transition and the onset of Mesozoic sedimentation at the northwestern peri-Tethyan domain scale: Palaeogeographic maps and geodynamic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 299:265-280 Bourquin, S., M. Durand, J. B. Diez, J. Broutin, and F. Fluteau. 2007. The Permian-Triassic boundary and Lower Triassic sedimentation in western European basins: an overview. Journal of Iberian Geology 33:221-236 Dodick, J. T., and S. P. Modesto. 1995. The cranial anatomy of the captorhinid reptile Labidosaurikos meachami from the Lower Permian of Oklahoma. Palaeontology 38:687-711 Goloboff, P. A., J. S. Farris, and K. C. Nixon. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24:774-786 5 Gomez-Gras, D. 1993. El Permotrías de las Baleares y de la vertiente mediterránea de la Cordillera Ibérica y del Maestrat: Facies y Petrología Sedimentaria (Parte II).
Recommended publications
  • Reptiles A. Cladistics 1. Many Groups of Organisms
    Reptiles A. Cladistics 1. Many groups of organisms are “polyphyletic” a. This means that the group combines 2 or more lineages - example=fish 2. Cladistics follows only pure lineages going back in time - example Osteichthys B. Reptile Classifiecation - looks like a polyphyletic group 1. Dry skin - no loss of water through skin like amphibians 2. Aminotic egg - an egg that can survive on dry land - in contrast with the amphibian egg C. Mammals and Birds are derived from different lineages of reptiles (We will see below) D. Stem Reptiles 1. Different lineages based on the temporal region of their skulls - number of holes (or bars) a. These holes are necessary to accommodate large jaw muscles b. Anapsid Skull - no holes in temporal - jaws can move fast, but with little force 1. Muscles that move the jaw are small 2. There is no good paleotological evidence for the transition between amphibians and reptiles - no fossil intermediates a. Fossil amphibians have lots of dermal bones in skull b. Amphibians have no temporal openings in skull 1. (Aside) both fossil amphibians and primitive reptiles have a parietal “eye” that senses light and dark (“third” eye in middle of head) c. Reptile skull is higher than amphibian to accomodate larger jaw muscles d. Of the modern reptiles only turtles are anapsids 2. Diapsid Skull - has holes in the temporal region a. Diapsid reptiles gave rise to lizards and snakes - they have a diapsid skull 1. Also Tuatara, crocodiles, dinosaurs and pterydactyls Reptiles b. One group of diapsids also had a pre-orbital hole in the skull in front of eye - this hole is still preserved in the birds - this anatomy suggests strongly that the birds are derived from the diapsid reptiles 3.
    [Show full text]
  • Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
    Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus
    [Show full text]
  • The Global Distribution of Tetrapods Reveals a Need for Targeted Reptile
    1 The global distribution of tetrapods reveals a need for targeted reptile 2 conservation 3 4 Uri Roll#1,2, Anat Feldman#3, Maria Novosolov#3, Allen Allison4, Aaron M. Bauer5, Rodolphe 5 Bernard6, Monika Böhm7, Fernando Castro-Herrera8, Laurent Chirio9, Ben Collen10, Guarino R. 6 Colli11, Lital Dabool12 Indraneil Das13, Tiffany M. Doan14, Lee L. Grismer15, Marinus 7 Hoogmoed16, Yuval Itescu3, Fred Kraus17, Matthew LeBreton18, Amir Lewin3, Marcio Martins19, 8 Erez Maza3, Danny Meirte20, Zoltán T. Nagy21, Cristiano de C. Nogueira19, Olivier S.G. 9 Pauwels22, Daniel Pincheira-Donoso23, Gary Powney24, Roberto Sindaco25, Oliver Tallowin3, 10 Omar Torres-Carvajal26, Jean-François Trape27, Enav Vidan3, Peter Uetz28, Philipp Wagner5,29, 11 Yuezhao Wang30, C David L Orme6, Richard Grenyer✝1 and Shai Meiri✝*3 12 13 # Contributed equally to the paper 14 ✝ Contributed equally to the paper 15 * Corresponding author 16 17 Affiliations: 18 1 School of Geography and the Environment, University of Oxford, Oxford, OX13QY, UK. 19 2 Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, 20 Ben-Gurion University, Midreshet Ben-Gurion 8499000, Israel. (Current address) 21 3 Department of Zoology, Tel-Aviv University, Tel-Aviv 6997801, Israel. 22 4 Hawaii Biological Survey, 4 Bishop Museum, Honolulu, HI 96817, USA. 23 5 Department of Biology, Villanova University, Villanova, PA 19085, USA. 24 6 Department of Life Sciences, Imperial College London, Silwood Park Campus Silwood Park, 25 Ascot, Berkshire, SL5 7PY, UK 26 7 Institute of Zoology, Zoological Society of London, London NW1 4RY, UK. 27 8 School of Basic Sciences, Physiology Sciences Department, Universidad del Valle, Colombia.
    [Show full text]
  • Marine Reptiles Arne R
    Virginia Commonwealth University VCU Scholars Compass Study of Biological Complexity Publications Center for the Study of Biological Complexity 2011 Marine Reptiles Arne R. Rasmessen The Royal Danish Academy of Fine Arts John D. Murphy Field Museum of Natural History Medy Ompi Sam Ratulangi University J. Whitfield iG bbons University of Georgia Peter Uetz Virginia Commonwealth University, [email protected] Follow this and additional works at: http://scholarscompass.vcu.edu/csbc_pubs Part of the Life Sciences Commons Copyright: © 2011 Rasmussen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Downloaded from http://scholarscompass.vcu.edu/csbc_pubs/20 This Article is brought to you for free and open access by the Center for the Study of Biological Complexity at VCU Scholars Compass. It has been accepted for inclusion in Study of Biological Complexity Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Review Marine Reptiles Arne Redsted Rasmussen1, John C. Murphy2, Medy Ompi3, J. Whitfield Gibbons4, Peter Uetz5* 1 School of Conservation, The Royal Danish Academy of Fine Arts, Copenhagen, Denmark, 2 Division of Amphibians and Reptiles, Field Museum of Natural History, Chicago, Illinois, United States of America, 3 Marine Biology Laboratory, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia, 4 Savannah River Ecology Lab, University of Georgia, Aiken, South Carolina, United States of America, 5 Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America Of the more than 12,000 species and subspecies of extant Caribbean, although some species occasionally travel as far north reptiles, about 100 have re-entered the ocean.
    [Show full text]
  • Meet the Herps!
    Science Standards Correlation SC06-S2C2-03, SC04-S4C1-04, SC05-S4C1-01, SC04-S4C1-06, SC07-S4C3-02, SC08- S4C4-01, 02&06 MEET THE HERPS! Some can go without a meal for more than a year. Others can live for a century, but not really reach a ripe old age for another couple of decades. One species is able to squirt blood from its eyes. What kinds of animals are these? They’re herps – the collective name given to reptiles and amphibians. What Is Herpetology? The word “herp” comes from the word “herpeton,” the Greek word for “crawling things.” Herpetology is the branch of science focusing on reptiles and amphibians. The reptiles are divided into four major groups: lizards, snakes, turtles, and crocodilians. Three major groups – frogs (including toads), salamanders and caecilians – make up the amphibians. A herpetologist studies animals from all seven of these groups. Even though reptiles and amphibians are grouped together for study, they are two very different kinds of animals. They are related in the sense that early reptiles evolved from amphibians – just as birds, and later mammals, evolved from reptiles. But reptiles and amphibians are each in a scientific class of their own, just as mammals are in their own separate class. One of the reasons reptiles and amphibians are lumped together under the heading of “herps” is that, at one time, naturalists thought the two kinds of animals were much more closely related than they really are, and the practice of studying them together just persisted through the years. Reptiles vs. Amphibians: How Are They Different? Many of the differences between reptiles and amphibians are internal (inside the body).
    [Show full text]
  • A New Species of the Sauropsid Reptile Nothosaurus from the Lower Muschelkalk of the Western Germanic Basin, Winterswijk, the Netherlands
    A new species of the sauropsid reptile Nothosaurus from the Lower Muschelkalk of the western Germanic Basin, Winterswijk, The Netherlands Nicole Klein and Paul C.H. Albers Acta Palaeontologica Polonica 54 (4), 2009: 589-598 doi: http://dx.doi.org/10.4202/app.2008.0083 A nothosaur skull recently discovered from the Lower Muschelkalk (early Anisian) locality of Winterswijk, The Netherlands, represents at only 46 mm in length the smallest nothosaur skull known today. It resembles largely the skull morphology of Nothosaurus marchicus. Differences concern beside the size, the straight rectangular and relative broad parietals, the short posterior extent of the maxilla, the skull proportions, and the overall low number of maxillary teeth. In spite of its small size, the skull can not unequivocally be interpreted as juvenile. It shows fused premaxillae, nasals, frontals, and parietals, a nearly co−ossified jugal, and fully developed braincase elements, such as a basisphenoid and massive epipterygoids. Adding the specimen to an existing phylogenetic analysis shows that it should be assigned to a new species, Nothosaurus winkelhorsti sp. nov., at least until its juvenile status can be unequivocally verified. Nothosaurus winkelhorsti sp. nov. represents, together with Nothosaurus juvenilis, the most basal nothosaur, so far. Key words: Sauropterygia, Nothosaurus, ontogeny, Anisian, The Netherlands. Nicole Klein [[email protected]], 1Steinmann Institute, Paleontology, University of Bonn, Nußallee 8, 53115 Bonn, Germany; Paul C.H. Albers [[email protected]], Naturalis, Leiden, The Netherlands. Darwinweg 2, 2333 CR Leiden, The Netherlands; This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see creativecommons.org), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • 190 World's First Herbivorous Filter-Feeding Marine Reptile
    BCAS Vol.30 No.3 2016 Earth Sciences World’s First Herbivorous Filter- feeding Marine Reptile ome strange creatures cropped up in the wake Its head was poorly preserved, but it seemed to have of one of Earth’s biggest mass extinctions a flamingo-like beak. However, in a paper published S252 million years ago. In 2014, scientists May 6 in Science Advances, Dr. LI Chun, Institute of discovered a bizarre fossil – a crocodile-sized sea- Vertebrate Paleontology and Paleoanthropology (IVPP), dwelling reptile, Atopodentatus unicus, that lived 242 Chinese Academy of Sciences, and his international million years ago in what today is southwestern China. team described two new specimens and revealed what Fossil and reconstruction of Atopodentatus unicus (Image by IVPP) 190 Bulletin of the Chinese Academy of Sciences Vol.30 No.3 2016 Science Watch Earth Sciences was really going on—that "beak" is actually part of a among marine reptiles. It is older than other marine hammerhead-shaped jaw apparatus, which the reptile used animals that ate plants with a filter-feeding system by to feed on plants on the ocean floor. It's the earliest known about eight million years, said the team. example of an herbivorous marine reptile. Atopodentatus appeared during the Triassic period These two newly discovered specimens of soon after the biggest mass extinction of species in Earth's Atopodentatus were collected from the Middle Triassic history, illustrating that life recovered and diversified (Anisian) Guanling Formation of Luoping County, Yunnan more quickly than previously thought. Other oddball Province, southwestern China. The new specimens clearly creatures also swam the seas at the time, including a demonstrate that rather than being downturned, the reptile called Dinocephalosaurus whose neck comprised rostrum developed into a “hammerhead” with pronounced half of its 17-foot (5.25 meters) length.
    [Show full text]
  • The Vertebrate Fauna of the New Mexico Permian Alfred S
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/11 The vertebrate fauna of the New Mexico Permian Alfred S. Romer, 1960, pp. 48-54 in: Rio Chama Country, Beaumont, E. C.; Read, C. B.; [eds.], New Mexico Geological Society 11th Annual Fall Field Conference Guidebook, 129 p. This is one of many related papers that were included in the 1960 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Snake and Lizards of Minnesota
    SNAKES AND LIZARDS OF MINNESOTA TABLE OF CONTENTS Acknowledgments . 4 Introduction . 6 Key to Minnesota’s Snakes . 24 Common Gartersnake . 26 Common Watersnake . 28 DeKay’s Brownsnake . 30 Eastern Hog‑nosed Snake . 32 Gophersnake . 34 Lined Snake . 36 Massasauga . 38 Milksnake . 40 North American Racer . 42 Plains Gartersnake . 44 Plains Hog‑nosed Snake . 46 Red‑bellied Snake . 48 Ring‑necked Snake . 50 Smooth Greensnake . 52 Timber Rattlesnake . 54 Western Foxsnake . 56 Western Ratsnake . 58 Key to Minnesota’s Lizards . 61 Common Five‑lined Skink . .. 62 Prairie Skink . 64 Six‑lined Racerunner . 66 Glossary . 68 Appendix . 70 Help Minnesota’s Wildlife! . 71 Cover photos: Timber rattlesnakes photograph by Barb Perry . Common five‑lined skink photograph by Carol Hall . Left: Park naturalist holding gophersnake . Photograph by Deborah Rose . ACKNOWLEDGMENTS Text Rebecca Christoffel, PhD, Contractor Jaime Edwards, Department of Natural Resources (DNR) Nongame Wildlife Specialist Barb Perry, DNR Nongame Wildlife Technician Snakes and Lizards Design of Minnesota Creative Services Unit, DNR Operation Services Division Editing Carol Hall, DNR Minnesota Biological Survey (MBS), Herpetologist Liz Harper, DNR Ecological and Water Resources (EWR), Assistant Central Regional Manager Erica Hoagland, DNR EWR, Nongame Wildlife Specialist Tim Koppelman, DNR Fish and Wildlife, Assistant Area Wildlife Manager Jeff LeClere, DNR, MBS, Animal Survey Specialist John Moriarity, Senior Manager of Wildlife, Three Rivers Park District Pam Perry, DNR, EWR, Nongame Wildlife Lake Specialist (Retired) This booklet was funded through a State Wildlife Grant and the Nongame Wildlife Program, DNR Ecological and Water Resources Division . Thank you for your contributions! See inside back cover . ECOLOGICAL AND WATER RESOURCES INTRODUCTION is understandable in Minnesota, spend most of the active season .
    [Show full text]
  • 622-2014Lectureweek5
    BIOLOGY 622 – FALL 2014 BASAL AMNIOTA - STRUCTURE AND PHYLOGENY WEEK – 5 EUREPTILIA – “PROTOROTHYRIDIDAE AND ARAEOSCELIDIA S. S. SUMIDA INTRODUCTION Now that we have determined the distinction of Eureptilia and Parareptilia, and used Captorhinidae as the model of the basalmost family of eureptilians, we may now address the remaining primitive members of Eureptilia. Of course Eureptilia is a huge group, including numerous extinct groups, and all sorts of extant taxa including extant diapsids – lizards and snakes, turtles (which are probably highly derived diapsids) the remaining extant archosauromorphs – the crocodilians and the birds (derived from saurischian therapod dinosaurs). The group that was “displaced” by the Captorhinidae as the most primitive of reptilians has a somewhat complicated history. Recall that Carroll (1969) designated the family Romeriidae as the group from which all other amniotes arose. The group was named for genus Romeria, originally named by Lewellyn Price with two species – Romeria texana and R. pricei (both from the Lower Permian of Texas). In the 1970s, Heaton (1979) removed Romeria from Romeriidae, suggesting they were better placed in the Captorhinidae. This left Romeriidae without its namesake, so the name reverted to Protorothyrididae. (Carroll persisted in calling this group the “Protorothyridae”.) Nonetheless, the monophyly of the Protorothyrididae was assumed. This was in part because most workers that “included” the Protorothyrididae in any phylogenetic analyses, usually did so only by using a single representative genus to represent the entire family – usually Protorthyris or Paleothyris. For example, in the illustration following, Heaton and Reisz (1986) used only Captorhinus to represent Captorhinidae, Protorothyris to represent Protorothyrididae, and Petrolacosaurus to represent basal Diapsida.
    [Show full text]
  • Reptile Observation Observe Reptile Characteristics and Behaviors at the Zoo
    Reptile Observation Observe reptile characteristics and behaviors at the zoo Grade 2 Objectives • Students will learn about reptiles through observation and drawing conclusions. Materials • provided zoo map Background Information • All reptiles have a backbone, breathe with lungs, and lay dry, scaly skin. • Reptiles lay eggs that have a dry leathery shell. Unlike amphibians, which have eggs with a jelly coat Key Words that must remain in water, reptiles are less dependent on water. • reptile • Basic Reptile Types • habitiat - Turtles are the only reptiles that have their “houses” on their backs. • environment - Lizards have visible, moving eyelids, limbs, and an ear opening on each side of their head. - Snakes lack limbs, eyelids, and ear openings. - Crocodilians include alligators as well as crocodiles. They are the most ancestral standards of the reptiles. • SCI.2.3.1 • SCI.2.3.2 Recommended Assessment • Have a group discussion about the observations made by students. Extensions • Assign each child or group a Reptile Treasure to discover as they move through zoo; for example, the heaviest reptile, the smallest reptile, the longest reptile, a reptile with three colors, etc. The children should report on the results of their treasure hunt when they get back to school. Reptile Observation Observe the following reptiles in Dr. Diversity’s Rain Forest Research Station while you are at the zoo. Fill in your observation on the chart. Name Timor Name of Komodo Reticulated Monitor Reptile Dragon Python Lizard Kind of snake snake snake Reptile lizard lizard lizard turtle turtle turtle crocodilian crocodilian crocodilian What it Looks Like What it Eats Interesting Facts Reptile Observation Observe the following reptiles in Dr.
    [Show full text]
  • A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes
    ORIGINAL RESEARCH published: 02 November 2017 doi: 10.3389/feart.2017.00088 A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes Michel Laurin 1* and Graciela H. Piñeiro 2 1 CR2P (UMR 7207) Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (Centre National de la Recherche Scientifique/MNHN/UPMC, Sorbonne Universités), Paris, France, 2 Departamento de Paleontología, Facultad de Ciencias, University of the Republic, Montevideo, Uruguay We reassess the phylogenetic position of mesosaurs by using a data matrix that is updated and slightly expanded from a matrix that the first author published in 1995 with his former thesis advisor. The revised matrix, which incorporates anatomical information published in the last 20 years and observations on several mesosaur specimens (mostly from Uruguay) includes 17 terminal taxa and 129 characters (four more taxa and five more characters than the original matrix from 1995). The new matrix also differs by incorporating more ordered characters (all morphoclines were ordered). Parsimony Edited by: analyses in PAUP 4 using the branch and bound algorithm show that the new matrix Holly Woodward, Oklahoma State University, supports a position of mesosaurs at the very base of Sauropsida, as suggested by the United States first author in 1995. The exclusion of mesosaurs from a less inclusive clade of sauropsids Reviewed by: is supported by a Bremer (Decay) index of 4 and a bootstrap frequency of 66%, both of Michael S. Lee, which suggest that this result is moderately robust. The most parsimonious trees include South Australian Museum, Australia Juliana Sterli, some unexpected results, such as placing the anapsid reptile Paleothyris near the base of Consejo Nacional de Investigaciones diapsids, and all of parareptiles as the sister-group of younginiforms (the most crownward Científicas y Técnicas (CONICET), Argentina diapsids included in the analyses).
    [Show full text]