Estimation of the Blood Velocity for Nanorobotics Matthieu Fruchard, Laurent Arcese, Estelle Courtial

Total Page:16

File Type:pdf, Size:1020Kb

Estimation of the Blood Velocity for Nanorobotics Matthieu Fruchard, Laurent Arcese, Estelle Courtial Estimation of the blood velocity for nanorobotics Matthieu Fruchard, Laurent Arcese, Estelle Courtial To cite this version: Matthieu Fruchard, Laurent Arcese, Estelle Courtial. Estimation of the blood veloc- ity for nanorobotics. IEEE Transactions on Robotics, IEEE, 2014, 30 (1), pp.93-102. 10.1109/TRO.2013.2288799. hal-01071275 HAL Id: hal-01071275 https://hal.archives-ouvertes.fr/hal-01071275 Submitted on 3 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Estimation of the blood velocity for nanorobotics Matthieu Fruchard, Laurent Arcese, Estelle Courtial Abstract—The paper aims at estimating the blood velocity to enhance the navigation of an aggregate in the human vascu- lature. The considered system is a polymer binded aggregate of ferromagnetic nanorobots immersed in a blood vessel. The drag force depends on the blood velocity and specially acts on the aggregate dynamics. In the design of advanced control laws, the blood velocity is usually assumed to be known or set to a constant mean value to achieve the control objectives. We provide theoretical tools to on-line estimate the blood velocity from the sole measurement of the aggregate position and combine the state estimator with a backstepping control law. Two state estimation approaches are addressed and compared through simulations: a high gain observer and a receding horizon estimator. Simulations illustrate the efficiency of the proposed approach combining on- line estimation and control for the navigation of an aggregate of nanorobots. Fig. 1. Aggregate of nanorobots in a blood vessel. (a) Aggregate binded by Index Terms—Blood velocity, high gain observer, receding ligand, including a payload; (b) aggregate binded by magnetic and interaction horizon estimator, magnetic nanorobots. forces. I. INTRODUCTION Whatever the proposed design, these systems are subject There has been a growing interest in the development of to different forces whom modelling is necessary in order to therapeutic microrobots and nanorobots for some years [1]. estimate their dynamic behaviors in a fluidic environment Such systems have the potential to perform complex surgical [15], [16]. The blood velocity is usually assumed to be known procedures without heavy trauma for the patients [2], [3], or set to a constant mean value whilst it is a key nonlinear [4], [5], [6]. Among the numerous prototypes developed, parameter of the drag force which prevails at a small scale. those possessing a deported actuation are the most promising. The measurement of the blood velocity is a difficult task that Indeed these robots do not embed any energy source thus is often assigned to ultrasonic sensors, at least in vessels inducing smaller sizes. Untethered robots thus benefit from a close to the sensor. This solution calls for an end-effector possible better therapeutic targeting since they can access to servoing so as to track the aggregate position. Another hard-to-reach body’s area and also lessen medical side effects solution relies on a priori knowledge of the blood velocity. linked to surgical operations. Works related to the numerical resolution of the velocity profiles using Computational Fluid Dynamics software had The kind of deported actuators required to control such been reported in the literature [17], [18]. But these studies robots depends on the propulsion strategy. A variable magnetic can not be used for real-time purposes because they are field is necessary for robots with elastic flagellum [7], [8] based on the Navier Stokes equations whom resolution is or helical flagella [9]. The control of bead pulled robots or computational time consuming. In [15], the authors proposed swarm of robots [10], [11], [12] is provided by the magnetic analytical expressions of the blood velocity profiles. These field gradients of either Magnetic Resonance Imaging (MRI) expressions are valid in the neighborhood of a bifurcation devices or magnetic setups (e.g. from Aeon Scientific or but require an accurate knowledge of the vessel geometry. Stereotaxis). So as to benefit both from a large motive force The blood velocity could also be considered as a disturbance in the macrovasculature and from a possible break up in and be rejected in the control law, like in [19] for breathing the microvasculature (so as to avoid undesired thrombosis compensation. However the knowledge of the blood velocity and to improve the targeting), a promising approach is to is relevant for the navigation since the main force depends on consider aggregates. Such aggregates of magnetic nanorobots it. Finally the on-line estimation of the blood velocity seems are binded either by a biodegradable ligand [13] or by to be an interesting approach to avoid the drawbacks of the self-assembly properties [14] as shown on Figure 1. aforementioned methods. The purpose of this paper is to propose an on-line state M. Fruchard and E. Courtial are with PRISME EA 4229, Univ. Orleans,´ 63 Av de Lattre de Tassigny, F18020, Bourges, estimation of the blood velocity. The latter is modeled by a France. [email protected], truncated Fourier series. The model of the nanorobot dynamics [email protected] taking into account the blood velocity behavior is proved to L. Arcese is with CReSTIC EA 3804, Univ. Reims Champagne- Ardenne, Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France. be observable. Two different state observers are then designed [email protected] and combined with a backstepping law to achieve a reference TABLE I PHYSIOLOGICAL PARAMETERS[20], ACTUATION AND IMAGING. X STANDS FOR A COMPATIBLE DEVICE. Physiological Parameters (mean values) System Design Actuator (∇B in mT.m−1) Imager resolution in m Blood Clinical Pre-clinical Maxwell Cardiovascular Network Diameter Required µ-MRI MRI µ-MRI CT1 µ-CT2 OCT3,4 US5,4 velocity MRI MRI Coils −3 −4 −3 −5 −6 −3 (m) −1 gradient (≈ 450) < 10 < 10 < 10 < 510 < 10 < 10 (m.s ) (< 80) (≈ 100) Setup −2 −1 Arteries 10 2.510 60 X X X X X X X X X X Small 10−3 210−2 90 - X XX X X X X X X Arteries Arterioles 10−4 10−3 250 - - XX - X - XX - Capillaries 10−5 510−5 2800 - - -X - - - - X - 0.12 trajectory tracking. The paper consists in five sections. Section Blood velocity v0 =<v> II details the need for a blood velocity estimation and proposes 0.10 v1 a generic blood velocity model. Then, in Section III, the v2 v ) 0.08 3 nonlinear model of an aggregate navigating in a blood vessel is 1 presented. Section IV is dedicated to the design of observers: − m.s a high gain observer and a receding horizon estimator are ( 0.06 addressed to on-line reconstruct the blood velocity. Finally, simulations illustrate the efficiency of the proposed approach 0.04 combining control and estimation in Section V. Conclusions 0.02 and discussions on open issues are summarized in Section VI. Blood velocity 0 II. WHY AND HOW TO ESTIMATE THE BLOOD VELOCITY? −0.02 0 0.20.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Magnetically actuated robots are classically described Time (s) [11] by the motive magnetic force induced by the magnetic field or gradient depending on the robot design [1], the Fig. 2. Blood velocity v (black solid line), mean value v0 (gray solid line) and nth order truncated Fourier series vn: v1 (blue dots), v2 (black dashes) apparent weight and the drag force induced by a non and v3 (green crosses). pulsatile blood flow. Hydrodynamic wall effects show that a partial vessel occlusion by the particles results in an optimal ratio between the microrobot and the vessel radii, the vasculature, the most disturbed by external time-varying denoted r and R respectively. As suggested in [14], a perturbations is the drag force because of the pulsatile first approximation for dimensioning the actuators relies blood flow. Several possibilities to deal with this periodic on the study of the optimal ratio of motive over external perturbation might be considered: direct measurement, forces. Table I summarizes these technical constraints and disturbance rejection or blood velocity estimation. the consequences on the choice of both actuators and imagers. Physiological periodic perturbations are usual issues in Optimality requires that the robot goes smaller as it medical robotics and are often addressed using periodic enters smaller vessels. Recently the idea of using microscale signal rejection: either using filtering of the output or using a carrier made up of a biodegradable aggregate of iron-cobalt precompensation in the control law, like in [19] for breathing nanoparticles and doxorubicin has been rendered possible rejection. For the present case, both solutions require the blood [13]. In large vessels, a millimeter-sized robot has an velocity measurement. However the pulsatile blood velocity important propelling force making possible to resist to the is a local information and is consequently more difficult to blood drag. In small vessels where the blood flow is lower, be measured. Studies have been carried out to measure the a micrometer-sized robot can ensure a sufficient thrust while blood velocity using the Doppler effect with ultrasound or avoiding any injury caused by embolism or thrombosis. MRI devices [21], [22]. The quality of the measurement Furthermore the motive force is volumetric whilst the drag depends on the ultrasound transducer orientation during the force is —at best— surfacic which implies an increasing acquisition and it would require to ensure the servoing of the prevalence of the drag force as the vessel radius decreases.
Recommended publications
  • Make Robots Be Bats: Specializing Robotic Swarms to the Bat Algorithm
    © <2019>. This manuscript version is made available under the CC- BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc- nd/4.0/ Accepted Manuscript Make robots Be Bats: Specializing robotic swarms to the Bat algorithm Patricia Suárez, Andrés Iglesias, Akemi Gálvez PII: S2210-6502(17)30633-8 DOI: 10.1016/j.swevo.2018.01.005 Reference: SWEVO 346 To appear in: Swarm and Evolutionary Computation BASE DATA Received Date: 24 July 2017 Revised Date: 20 November 2017 Accepted Date: 9 January 2018 Please cite this article as: P. Suárez, André. Iglesias, A. Gálvez, Make robots Be Bats: Specializing robotic swarms to the Bat algorithm, Swarm and Evolutionary Computation BASE DATA (2018), doi: 10.1016/j.swevo.2018.01.005. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Make Robots Be Bats: Specializing Robotic Swarms to the Bat Algorithm Patricia Su´arez1, Andr´esIglesias1;2;:, Akemi G´alvez1;2 1Department of Applied Mathematics and Computational Sciences E.T.S.I. Caminos, Canales y Puertos, University of Cantabria Avda. de los Castros, s/n, 39005, Santander, SPAIN 2Department of Information Science, Faculty of Sciences Toho University, 2-2-1 Miyama 274-8510, Funabashi, JAPAN :Corresponding author: [email protected] http://personales.unican.es/iglesias Abstract Bat algorithm is a powerful nature-inspired swarm intelligence method proposed by Prof.
    [Show full text]
  • Nanomedicine and Medical Nanorobotics - Robert A
    BIOTECHNOLOGY– Vol .XII – Nanomedicine and Medical nanorobotics - Robert A. Freitas Jr. NANOMEDICINE AND MEDICAL NANOROBOTICS Robert A. Freitas Jr. Institute for Molecular Manufacturing, Palo Alto, California, USA Keywords: Assembly, Nanomaterials, Nanomedicine, Nanorobot, Nanorobotics, Nanotechnology Contents 1. Nanotechnology and Nanomedicine 2. Medical Nanomaterials and Nanodevices 2.1. Nanopores 2.2. Artificial Binding Sites and Molecular Imprinting 2.3. Quantum Dots and Nanocrystals 2.4. Fullerenes and Nanotubes 2.5. Nanoshells and Magnetic Nanoprobes 2.6. Targeted Nanoparticles and Smart Drugs 2.7. Dendrimers and Dendrimer-Based Devices 2.8. Radio-Controlled Biomolecules 3. Microscale Biological Robots 4. Medical Nanorobotics 4.1. Early Thinking in Medical Nanorobotics 4.2. Nanorobot Parts and Components 4.3. Self-Assembly and Directed Parts Assembly 4.4. Positional Assembly and Molecular Manufacturing 4.5. Medical Nanorobot Designs and Scaling Studies Acknowledgments Bibliography Biographical Sketch Summary Nanomedicine is the process of diagnosing, treating, and preventing disease and traumatic injury, of relieving pain, and of preserving and improving human health, using molecular tools and molecular knowledge of the human body. UNESCO – EOLSS In the relatively near term, nanomedicine can address many important medical problems by using nanoscale-structured materials and simple nanodevices that can be manufactured SAMPLEtoday, including the interaction CHAPTERS of nanostructured materials with biological systems. In the mid-term, biotechnology will make possible even more remarkable advances in molecular medicine and biobotics, including microbiological biorobots or engineered organisms. In the longer term, perhaps 10-20 years from today, the earliest molecular machine systems and nanorobots may join the medical armamentarium, finally giving physicians the most potent tools imaginable to conquer human disease, ill-health, and aging.
    [Show full text]
  • Swarm Robotics”
    applied sciences Editorial Editorial: Special Issue “Swarm Robotics” Giandomenico Spezzano Institute for High Performance Computing and Networking (ICAR), National Research Council of Italy (CNR), Via Pietro Bucci, 8-9C, 87036 Rende (CS), Italy; [email protected] Received: 1 April 2019; Accepted: 2 April 2019; Published: 9 April 2019 Swarm robotics is the study of how to coordinate large groups of relatively simple robots through the use of local rules so that a desired collective behavior emerges from their interaction. The group behavior emerging in the swarms takes its inspiration from societies of insects that can perform tasks that are beyond the capabilities of the individuals. The swarm robotics inspired from nature is a combination of swarm intelligence and robotics [1], which shows a great potential in several aspects. The activities of social insects are often based on a self-organizing process that relies on the combination of the following four basic rules: Positive feedback, negative feedback, randomness, and multiple interactions [2,3]. Collectively working robot teams can solve a problem more efficiently than a single robot while also providing robustness and flexibility to the group. The swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. In the model, the robots in the swarm should have some basic functions, such as sensing, communicating, motioning, and satisfy the following properties: 1. Autonomy—individuals that create the swarm-robotic system are autonomous robots. They are independent and can interact with each other and the environment. 2. Large number—they are in large number so they can cooperate with each other.
    [Show full text]
  • Molecular Nanotechnology - Wikipedia, the Free Encyclopedia
    Molecular nanotechnology - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Molecular_manufacturing Molecular nanotechnology From Wikipedia, the free encyclopedia (Redirected from Molecular manufacturing) Part of the article series on Molecular nanotechnology (MNT) is the concept of Nanotechnology topics Molecular Nanotechnology engineering functional mechanical systems at the History · Implications Applications · Organizations molecular scale.[1] An equivalent definition would be Molecular assembler Popular culture · List of topics "machines at the molecular scale designed and built Mechanosynthesis Subfields and related fields atom-by-atom". This is distinct from nanoscale Nanorobotics Nanomedicine materials. Based on Richard Feynman's vision of Molecular self-assembly Grey goo miniature factories using nanomachines to build Molecular electronics K. Eric Drexler complex products (including additional Scanning probe microscopy Engines of Creation Nanolithography nanomachines), this advanced form of See also: Nanotechnology Molecular nanotechnology [2] nanotechnology (or molecular manufacturing ) Nanomaterials would make use of positionally-controlled Nanomaterials · Fullerene mechanosynthesis guided by molecular machine systems. MNT would involve combining Carbon nanotubes physical principles demonstrated by chemistry, other nanotechnologies, and the molecular Nanotube membranes machinery Fullerene chemistry Applications · Popular culture Timeline · Carbon allotropes Nanoparticles · Quantum dots Colloidal gold · Colloidal
    [Show full text]
  • Uses of Nanorobotics Technology
    Volume II, Issue IV, APRIL 2013 IJLTEMAS ISSN 2278 - 2540 USES OF NANOROBOTICS TECHNOLOGY Dr. Gaurav Kumar Jain Deepshikha Group of Colleges [email protected] Mr. Sandeep Joshi Deepshikha Group of Colleges Mr. Ravi Ranjan Deepshikha Group of Colleges ABSTRACT Illnesses such as cancer, neurodegenerative diseases and cardiovascular diseases Nanorobotics is the technology of creating continue to ravage people around the world. machines or robots at or close to the microscopic scale of a nanometer (10−9 NANOROBOTICS THEORY:- meters). More specifically, nanorobotics refers to the still largely hypothetical Since nanorobots would be microscopic in nanotechnology engineering discipline of size, it would probably be necessary for very designing and building nanorobots, devices large numbers of them to work together to ranging in size from 0.1-10 micrometers and perform microscopic and macroscopic tasks. constructed of nanoscale or molecular These nanorobot swarms, both those which components. As no artificial non-biological are incapable of replication (as in utility fog) nanorobots have yet been created, they and those which are capable of remain a hypothetical concept. The names unconstrained replication in the natural nanobots, nanoids, nanites or nanomites also environment (as in grey goo and its less have been used to describe these common variants), are found in many hypothetical devices. science fiction stories, such as the Borg nanoprobes in Star Trek. The word KEY WORDS "nanobot" (also "nanite", "nanogene", or Nanorobot, approaches and Applications "nanoant") is often used to indicate this fictional context and is an informal or even INTRODUCTION pejorative term to refer to the engineering concept of nanorobots.
    [Show full text]
  • Assembly and Disassembly of Magnetic Mobile Micro-Robots Towards Deterministic 2-D Reconfigurable Micro-Systems
    Assembly and Disassembly of Magnetic Mobile Micro-Robots towards Deterministic 2-D Reconfigurable Micro-Systems Eric Diller,∗ Chytra Pawashe,y Steven Floyd,z and Metin Sittix Abstract rise to synthetic reality (Goldstein et al. (2005)). This is similar to virtual or augmented reality, where a computer can generate A primary challenge in the field of reconfigurable robotics and modify an arbitrary object. However, in synthetic reality, is scaling down the size of individual robotic modules. We this object has physical realization. A primary goal for pro- present a novel set of permanent magnet modules that are grammable matter is scaling down the size of each individual under 1 mm in all dimensions, called Mag-µMods, for use in module, with the aim of increasing spatial resolution of the final a reconfigurable micro-system. The modules are actuated by assembled product. Currently, the smallest deterministic, actu- oscillating external magnetic fields of several mT in strength, ated module in a reconfigurable robotic system fits inside a 2 and are capable of locomoting on a 2-D surface. Multiple cm cube (Yoshida et al. (2001)), which is a self-contained mod- modules are controlled by using an electrostatic anchoring ule that is actuated using shape memory alloy. Scaling down surface, which can selectively prevent specific modules from further into the sub-millimeter scale brings new issues, includ- being driven by the external field while allowing others to ing module fabrication, control, and communication. move freely. We address the challenges of both assembling Micro-robotics technologies of the past few years have been and disassembling two modules.
    [Show full text]
  • Swarm Robotics
    SWARM ROBOTICS A FINAL PROJECT REPORT submitted in partial fulfillment of the requirements for the degree of BACHELOR OF TECHNOLOGY by JAYENDRASINGH R. PARDESHI 101742 (L-45) CHINMAY P. TIKHE 101051 (L-71) Under the guidance of Prof. (MRS.) K. S. DEGAONKAR DEPARTMENT OF ELECTRONICS ENGINEERING VISHWAKARMA INSTITUTE OF TECHNOLOGY PUNE 2013-2014 Bansilal Ramnath Agarwal Charitable Trust’s VISHWAKARMA INSTITUTE OF TECHNOLOGY, PUNE - 37 (An Autonomous Institute Affiliated to University of Pune ) CERTIFICATE This is to certify that the FINAL PROJECT REPORT entitled SWARM ROBOTICS has been submitted in the academic year 2013-14 by JAYENDRASINGH R. PARDESHI 101742 (L-45) CHINMAY P. TIKHE 101051 (L-71) under the supervision of Prof. (MRS.) K. S. DEGAONKAR in partial fulfillment of the re- quirements for the degree of Bachelor of Technology in ELECTRONICS AND TELECOM- MUNICATION ENGINEERING as prescribed by University of Pune. Guide/Supervisor Head of the Department Name: Prof. (Mrs.) K.S.Degaonkar Name: Prof. A. M. Chopde Signature: Signature: External Examiner Name: Signature: Acknowledgments It is matter of great pleasure for us to submit this project report on ”SWARM ROBOTICS” as a part of curriculum for award of ”BACHELOR OF TECHNOLOGY IN ELECTRONICS AND TELECOMMUNICATION”. We are thankful to our seminar guide Prof. (MRS.) K.S.DEGAONKAR, Assistant Professor in Electronics Engineering Department for her constant encouragement and able guidance. We are also thankful to Prof.A.M.CHOPDE, Head of Electronics Engineering Department for his valuable support. We take this opportunity to express our deep sense of gratitude towards those, who have helped us in various ways, for our project.
    [Show full text]
  • Zero Energy Refrigerator Using Bio Nanorobot
    Zero Energy Refrigerator Using Bio Nanorobot ABSTRACT: interested in building superior machines atom by atom. Nanotech means that each Nanotechnology, or nanotech, is atom of a machine is a functioning structure the study and design of machines on the on its own, but when combined with other molecular and atomic level. To be structures, these atoms work together to considered nanotechnology, these structures fulfill a larger purpose. As nanotech must be anywhere from 1 to 100 nanometers continues to develop, consumers will see it in size. As nanotech continues to develop, being used for several different purposes. consumers will see it being used for several This technology may be used in energy different purposes. Nano robotics is the production, medicine, and electronics, as emerging technology field creating well as other commercial uses. Many machines or robots whose components are at −9 believe that this technology will also be used or close to the scale of a nanometer (10 militarily. Nanotechnology will make it meters). Another definition is a robot that possible to build more advanced weapons allows precision interactions with nanoscale and surveillance devices. While these uses objects, or can manipulate with nanoscale are not yet possible, many researchers resolution. The Bio fridge is a concept believe that it is only a matter of time. where the Bio Robot cools biopolymer gel through luminescence. A non-sticky gel Nanorobotics is the emerging surrounds the food item when shoved into technology field creating machines or robots the biopolymer gel, creating separate pods. whose components are at or close to the The design features no doors or drawers, and scale of a nanometer (10−9 meters).[1][2][3] the food items are individually cooled at More specifically, nanorobotics refers to the their optimal temperature thanks to the nanotechnology engineering discipline of robot.
    [Show full text]
  • Nanorobots: Changing Face of Healthcare System
    Open Access Austin Journal of Biomedical Engineering A Austin Full Text Article Publishing Group Editorial Nanorobots: Changing Face of Healthcare System Shrikant Mali* Abstract Department of Oral and Maxillofacial Surgery, MGV KBH dental college, India Nowadays medical science is more and more improving with the blessings of new scientific discoveries. Nanotechnology is such a field which is changing *Corresponding author: Shrikant Mali, Department vision of medical science. Nanorobot is an excellent tool for future medicine. of Oral and Maxillofacial Surgery, MGV KBH dental Nanorobotics is the technology of creating machines or robots at or close college nashik Maharashtra, India to the microscopic scale of a nanometer (10−9 meters). More specifically, Received: June 12, 2014; Accepted: June 16, 2014; nanorobotics refers to the still largely hypothetical nanotechnology engineering Published: June 18, 2014 discipline of designing and building nanorobots, devices ranging in size from 0.1-10 micrometers and constructed of nanoscale or molecular components. Nanobots moves around their environment consuming molecules to attain energy. Nanobots direct themselves towards certain cells by their glycolipid structures. This idea would help physicians to treat diseases effectively without any adverse side-effects; actually the idea is to repair organs such as the brain, or the heart. The most valuable feature is that without any invasive surgery all of this can be done. Keywords: Nanotechnology; Robots; Nanorobot Minimally invasive medicine is the current buzz word. Scientists and agile enough to navigate through the human circulatory system, are looking for effective ways of diagnosing ailments, detecting an incredibly complex network of veins and arteries. The robot should diseases and analyzing changes in the body without having to carry medication or miniature tools.
    [Show full text]
  • Grand Challenges in Bioengineered Nanorobotics for Cancer Therapy Scott C
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 60, NO. 3, MARCH 2013 667 Grand Challenges in Bioengineered Nanorobotics for Cancer Therapy Scott C. Lenaghan, Yongzhong Wang, Ning Xi, Toshio Fukuda, Tzyhjong Tarn, William R. Hamel, and Mingjun Zhang∗ Abstract—One of the grand challenges currently facing engi- gence in the design of bioinspired macrorobots [5], less progress neering, life sciences, and medicine is the development of fully has been made on transferring principles learned from microor- functional nanorobots capable of sensing, decision making, and ac- ganisms into nanorobotics. tuation. These nanorobots may aid in cancer therapy, site-specific drug delivery, circulating diagnostics, advanced surgery, and tissue Many of the challenges associated with the development of repair.In this paper, we will discuss, from a bioinspired perspective, nanorobots focus on the fabrication of small robots using tra- the challenges currently facing nanorobotics, including core design, ditional engineering approaches. Similarly, typical approaches propulsion and power generation, sensing, actuation, control, de- to power and control nanorobots suffer from a lack of minia- cision making, and system integration. Using strategies inspired turized electronics. In this study, we have turned our attention from microorganisms, we will discuss a potential bioengineered nanorobot for cancer therapy. to inspiration from micro/nanoscale biological systems. Hav- ing the advantage of evolution as a guiding force for design, Index Terms—Bioengineered robots, cancer therapy, biological systems have effectively developed robust strategies medical robotics, micro/nano-robotics, nanobiotechnology, nanoparticles. to overcome design limitations that currently plague tradition- ally engineered micro/nanorobots. As such, it is essential that I. INTRODUCTION an interdisciplinary bioinspired approach be used to design and ANOROBOTS have been envisioned since 1981 when fabricate future nanorobots.
    [Show full text]
  • A Survey on Nanorobotics Technology
    Pratik Rajan Bhore / International Journal of Computer Science & Engineering Technology (IJCSET) A Survey on Nanorobotics Technology Pratik Rajan Bhore Department of Computer Engineering Bharati Vidyapeeth University College of Engineering, Pune, India [email protected] Abstract— Nanorobotics is an upcoming technology field of creating robots whose components are at or close to the microscopic scale of a nanometer. To be more precise, Nanorobotics is the nanotechnology technique of building and forming designs of nanorobots. These robots range in size from 0.1-10 mm and get built in nanoscale (molecular component). The names nanorobots, Nanobots, nanoids, nanites, nanomachines or Nano-mites have also been used to describe these devices currently under research and development. Nanorobots get widely employed in the research & development (R & D) phases, but some first molecular robots get tested. In an example, a sensor having switch approx 1.5 nanometers across is capable of counting specific molecules in a chemical sample. The most useful applications of Nanobots are said to be in medical technology, which is used to identify and destroy cancer cells. The other potential example is the detection of toxic chemicals, and the measurement of their concentrations, in today’s environment. The size of the Nanorobots is microscopic to be exact. Hence it is necessary for a large number of nanorobots to perform the microscopic and macroscopic tasks correctly together. These nanorobots move into large numbers i.e. swarms, both those incapable of carrying the replication and those capable of unconstrained reproduction in the natural environment. Keywords--- Nanorobotics, Robotics, Nanobots, Nanorobots, Nanotechnology, Nanomedicine I. INTRODUCTION Nanorobotics is an upcoming frontier, a realm in which robots operate at scales of billionths of a meter [1].
    [Show full text]
  • Future Technology Trends
    OECD Science, Technology and Innovation Outlook 2016 © OECD 2016 Chapter 2 Future technology trends Technological change is set to have profound impacts over the next 10-15 years, widely disrupting economies and societies. As the world faces multiple challenges, including ageing, climate change, and natural resource depletion, technology will be called upon to contribute new or better solutions to emerging problems. These socio- ecological demands will shape the future dynamics of technological change, as will developments in science and technology. This chapter discusses ten key or emerging technologies that are among the most promising and potentially most disruptive and that carry significant risks. The choice of technologies is based on the findings of a few major foresight exercises carried out in recent years. The ten technologies are as follows: the Internet of Things; big data analytics; artificial intelligence; neurotechnologies; nano/microsatellites; nanomaterials; additive manufacturing; advanced energy storage technologies; synthetic biology; and blockchain. The chapter describes each technology in turn, highlighting some of its possible socioeconomic impacts and exploring related policy issues. A final section highlights some common themes across the ten technologies. 77 2. FUTURE TECHNOLOGY TRENDS Introduction Technological change is a significant megatrend in its own right, constantly reshaping economies and societies, often in radical ways. The scope of technology – in terms of its form, knowledge bases and application areas – is extremely broad and varied, and the ways it interacts with economies and societies are complex and co-evolutionary. These conditions create significant uncertainty about the future directions and impacts of technological change, but also offer opportunities for firms, industries, governments and citizens to shape technology development and adoption.
    [Show full text]