DISSERTATION COLOR VISION DURING PREGNANCY Submitted by Melissa Pfohl Department of Psychology in Partial Fulfillment of The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sensitivities in Older Eyes with Good Acuity: Cross-Sectional Norms
Sensitivities in Older Eyes With Good Acuity: Cross-Sectional Norms Alvin Eisner,*f Susan A. Fleming,*! Michael L. Kleins and W. Manning Mauldinf We measured several indices of foveal visual function for a large group of people aged 60 and older. The data reported in this paper are from individuals who had good acuity in each eye and met a number of other criteria for good ocular health. For each index, we described the rate of cross-sectional change with age using linear regression statistics. We found age-related change for eyes having 20/20 or better acuity to exist for several different indices. Sensitivity mediated by the blue-sensitive cones decreased with age, as expected. However, the rate of decrease was faster for females than for males. At least part of the difference was associated with different rates of lenticular change. Absolute sensitivity at long wavelengths also decreased with age, but at the same rate for each sex. Rayleigh color matches changed with age in a manner consistent with underlying age-related decreases of effective foveal cone photopigment density. However, not all indices showed age-dependent changes. For instance, the time constant describing the rate of photopic dark adaptation did not appear to change with age. Invest Ophthalmol Vis Sci 28:1824-1831, 1987 Human visual function changes with age. Cross- criteria for good ocular health in each eye. In particu- sectional age-related changes have been reported for lar, we have tested people having good acuity in each Snellen acuity,1 spatial2"4 and temporal4 contrast sen- eye. -
ERG), Molecular and Behavioral Studies
Vision Research 38 (1998) 3377–3385 Severity of color vision defects: electroretinographic (ERG), molecular and behavioral studies M.A. Crognale a,b,*, D.Y. Teller a,c, A.G. Motulsky d,e, S.S. Deeb d,e a Department of Psychology, Uni6ersity of Washington, Box 351525, Seattle, WA 98195-1525, USA b Department of Ophthalmology, Uni6ersity of Washington, Seattle, WA, USA c Department of Physiology/Biophysics, Uni6ersity of Washington, Seattle, WA, USA d Department of Genetics, Uni6ersity of Washington, Seattle, WA, USA e Department of Medicine, Uni6ersity of Washington, Seattle, WA, USA Received 10 July 1997; received in revised form 29 October 1997 Abstract Earlier research on phenotype/genotype relationships in color vision has shown imperfect predictability of color matching from the photopigment spectral sensitivities inferred from molecular genetic analysis. We previously observed that not all of the genes of the X-chromosome linked photopigment gene locus are expressed in the retina. Since sequence analysis of DNA does not necessarily reveal which of the genes are expressed into photopigments, we used ERG spectral sensitivities and adaptation measurements to assess expressed photopigment complement. Many deuteranomalous subjects had L, M, and L–M hybrid genes. The ERG results showed that M pigment is not present in measurable quantities in deutan subjects. Using these results to determine gene expression improved the correlations between inferred pigment separation and color matching. Furthermore, we found a subject who had normal L and M genes and normal proximal promoter sequences, yet he had a single photopigment (M) by ERG and tested as a protanope. These results demonstrate the utility of ERG measurements in studies of molecular genetics of color vision deficiencies, and further support the conclusion that not all genes are expressed in color deficient subjects. -
RETINAL DISORDERS Eye63 (1)
RETINAL DISORDERS Eye63 (1) Retinal Disorders Last updated: May 9, 2019 CENTRAL RETINAL ARTERY OCCLUSION (CRAO) ............................................................................... 1 Pathophysiology & Ophthalmoscopy ............................................................................................... 1 Etiology ............................................................................................................................................ 2 Clinical Features ............................................................................................................................... 2 Diagnosis .......................................................................................................................................... 2 Treatment ......................................................................................................................................... 2 BRANCH RETINAL ARTERY OCCLUSION ................................................................................................ 3 CENTRAL RETINAL VEIN OCCLUSION (CRVO) ..................................................................................... 3 Pathophysiology & Etiology ............................................................................................................ 3 Clinical Features ............................................................................................................................... 3 Diagnosis ......................................................................................................................................... -
The Genetics of Normal and Defective Color Vision
Vision Research xxx (2011) xxx–xxx Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Review The genetics of normal and defective color vision Jay Neitz ⇑, Maureen Neitz University of Washington, Dept. of Ophthalmology, Seattle, WA 98195, United States article info a b s t r a c t Article history: The contributions of genetics research to the science of normal and defective color vision over the previ- Received 3 July 2010 ous few decades are reviewed emphasizing the developments in the 25 years since the last anniversary Received in revised form 25 November 2010 issue of Vision Research. Understanding of the biology underlying color vision has been vaulted forward Available online xxxx through the application of the tools of molecular genetics. For all their complexity, the biological pro- cesses responsible for color vision are more accessible than for many other neural systems. This is partly Keywords: because of the wealth of genetic variations that affect color perception, both within and across species, Color vision and because components of the color vision system lend themselves to genetic manipulation. Mutations Cone photoreceptor and rearrangements in the genes encoding the long, middle, and short wavelength sensitive cone pig- Colorblindness Cone mosaic ments are responsible for color vision deficiencies and mutations have been identified that affect the Opsin genes number of cone types, the absorption spectra of the pigments, the functionality and viability of the cones, Evolution and the topography of the cone mosaic. The addition of an opsin gene, as occurred in the evolution of pri- Comparative color vision mate color vision, and has been done in experimental animals can produce expanded color vision capac- Cone photopigments ities and this has provided insight into the underlying neural circuitry. -
Acquired Colour Vision Defects in Glaucoma—Their Detection and Clinical Significance
1396 Br J Ophthalmol 1999;83:1396–1402 Br J Ophthalmol: first published as 10.1136/bjo.83.12.1396 on 1 December 1999. Downloaded from PERSPECTIVE Acquired colour vision defects in glaucoma—their detection and clinical significance Mireia Pacheco-Cutillas, Arash Sahraie, David F Edgar Colour vision defects associated with ocular disease have The aims of this paper are: been reported since the 17th century. Köllner1 in 1912 + to provide a review of the modern literature on acquired wrote an acute description of the progressive nature of col- colour vision in POAG our vision loss secondary to ocular disease, dividing defects + to diVerentiate the characteristics of congenital and into “blue-yellow” and “progressive red-green blindness”.2 acquired defects, in order to understand the type of This classification has become known as Köllner’s rule, colour vision defect associated with glaucomatous although it is often imprecisely stated as “patients with damage retinal disease develop blue-yellow discrimination loss, + to compare classic clinical and modern methodologies whereas optic nerve disease causes red-green discrimina- (including modern computerised techniques) for tion loss”. Exceptions to Köllner’s rule34 include some assessing visual function mediated through chromatic optic nerve diseases, notably glaucoma, which are prima- mechanisms rily associated with blue-yellow defects, and also some reti- + to assess the eVects of acquired colour vision defects on nal disorders such as central cone degeneration which may quality of life in patients with POAG. result in red-green defects. Indeed, in some cases, there might be a non-specific chromatic loss. Comparing congenital and acquired colour vision Colour vision defects in glaucoma have been described defects since 18835 and although many early investigations Congenital colour vision deficiencies result from inherited indicated that red-green defects accompanied glaucoma- cone photopigment abnormalities. -
Intraocular Pressure During Phacoemulsification
J CATARACT REFRACT SURG - VOL 32, FEBRUARY 2006 Intraocular pressure during phacoemulsification Christopher Khng, MD, Mark Packer, MD, I. Howard Fine, MD, Richard S. Hoffman, MD, Fernando B. Moreira, MD PURPOSE: To assess changes in intraocular pressure (IOP) during standard coaxial or bimanual micro- incision phacoemulsification. SETTING: Oregon Eye Center, Eugene, Oregon, USA. METHODS: Bimanual microincision phacoemulsification (microphaco) was performed in 3 cadaver eyes, and standard coaxial phacoemulsification was performed in 1 cadaver eye. A pressure transducer placed in the vitreous cavity recorded IOP at 100 readings per second. The phacoemulsification pro- cedure was broken down into 8 stages, and mean IOP was calculated across each stage. Intraocular pressure was measured during bimanual microphaco through 2 different incision sizes and with and without the Cruise Control (Staar Surgical) connected to the aspiration line. RESULTS: Intraocular pressure exceeded 60 mm Hg (retinal perfusion pressure) during both standard coaxial and bimanual microphaco procedures. The highest IOP occurred during hydrodissection, oph- thalmic viscosurgical device injection, and intraocular lens insertion. For the 8 stages of the phaco- emulsification procedure delineated in this study, IOP was lower for at least 1 of the bimanual microphaco eyes compared with the standard coaxial phaco eye in 4 of the stages (hydro steps, nu- clear disassembly, irritation/aspiration, anterior chamber reformation). CONCLUSION: There was no consistent difference in IOP between the bimanual microphaco eyes and the eye that had standard coaxial phacoemulsification. Bimanual microincision phacoemul- sification appears to be as safe as standard small incision phacoemulsification with regard to IOP. J Cataract Refract Surg 2006; 32:301–308 Q 2006 ASCRS and ESCRS Bimanual microincision phacoemulsification, defined as capable of insertion through these microincisions become cataract extraction through 2 incisions of less than 1.5 mm more widely available. -
A New Test System and a New Cause for Acquired Foveal Color-Vision Deficiency
International Journal of Ophthalmology & Visual Science 2016; 1(1): 8-19 http://www.sciencepublishinggroup.com/j/ijovs doi: 10.11648/j.ijovs.20160101.12 A New Test System and a New Cause for Acquired Foveal Color-Vision Deficiency Terry Bahill Systems and Biomedical Engineering, University of Arizona, Tucson Arizona, USA Email address: [email protected] To cite this article: Terry Bahill. A New Test System and a New Cause for Acquired Foveal Color-vision Deficiency. International Journal of Ophthalmology & Visual Science. Vol. 1, No. 1, 2016, pp. 8-19. doi: 10.11648/j.ijovs.20160101.12 Received: August 22, 2016; Accepted: November 8, 2016; Published: December 2, 2016 Abstract: The purpose of this paper is to show a new cause of a macular scotoma and an anomalous acquired color-vision deficiency in the clinical fovea caused by retina detachments and subsequent surgeries. This deficiency was measured with a visual test system composed of multiple lasers, a white light beam and dozens of targets that were projected on a computer monitor and printed on paper. Lasers were used, because they produce small monochromatic target dots, 0.07 degrees of visual angle (6 mm) in diameter. The outputs of the system were the subject’s perceived color matches. In experiments with small dots of laser light, colors were judged correctly by the right eye (OD): however, the left eye (OS) could not distinguish colors. For example, a green laser dot appeared green to his OD and white to his OS. Perceived color in the abnormal OS depended on the target’s hue, saturation, luminance, wavelength, size and position on the fovea. -
17-2021 CAMI Pilot Vision Brochure
Visual Scanning with regular eye examinations and post surgically with phoria results. A pilot who has such a condition could progress considered for medical certification through special issuance with Some images used from The Federal Aviation Administration. monofocal lenses when they meet vision standards without to seeing double (tropia) should they be exposed to hypoxia or a satisfactory adaption period, complete evaluation by an eye Helicopter Flying Handbook. Oklahoma City, Ok: US Department The probability of spotting a potential collision threat complications. Multifocal lenses require a brief waiting certain medications. specialist, satisfactory visual acuity corrected to 20/20 or better by of Transportation; 2012; 13-1. Publication FAA-H-8083. Available increases with the time spent looking outside, but certain period. The visual effects of cataracts can be successfully lenses of no greater power than ±3.5 diopters spherical equivalent, at: https://www.faa.gov/regulations_policies/handbooks_manuals/ techniques may be used to increase the effectiveness of treated with a 90% improvement in visual function for most One prism diopter of hyperphoria, six prism diopters of and by passing an FAA medical flight test (MFT). aviation/helicopter_flying_handbook/. Accessed September 28, 2017. the scan time. Effective scanning is accomplished with a patients. Regardless of vision correction to 20/20, cataracts esophoria, and six prism diopters of exophoria represent series of short, regularly-spaced eye movements that bring pose a significant risk to flight safety. FAA phoria (deviation of the eye) standards that may not be A Word about Contact Lenses successive areas of the sky into the central visual field. Each exceeded. -
Final Version (2017-06-28) of the Vision Camp
Young Researcher VisionCamp An international Career building Symposium 2017 Castle Wildenstein Leibertingen Germany www.vision-camp.eu Contact: Jugendherberge Burg Wildenstein 88637 Leibertingen-Wildenstein Tel: +49 7466-411 Fax: +49 7466-417 E-Mail: [email protected] www.leibertingen-wildenstein.jugendherberge-bw.de Preamble Dear Colleagues, Dear Participants of the Young Researcher Vision Camp 2017, The aim of this camp is to give young investigators (MSc and PhD students, young MDs and post-docs) an opportunity to present themselves and their work to fellow researchers, to allow them to build and strengthen personal networks in an international environment. Take the time for professional and social networking Take the time for new views on career paths to shape your future Take the time to bridge the gap between basic and clinical research Take the time to revive a medieval castle ENJOY THE YOUNG RESEARCHER VISION CAMP Thomas Wheeler-Schilling on behalf of the organising committee (in alphabetical order) Michaela Bitzer Sigrid Diether Philipp Hunger Norbert Kinkl Arne Ohlendorf Francois Paquet-Durand Vera Schmid Timm Schubert 3 Agenda FRIDAY, JUNE 30th, 2017 until 16:00 Arrival (for details see ‘How to get there’) 16:25 - 16:30 Welcome 16:30 - 17:00 Keynote Lecture I ‘Primary Cilia in the Visual System’ Helen May-Simera 17:00 - 18:00 Scientific Session I: ‘Retinal development and homeo- stasis’ Chair: Jérôme Roger • Elena Braginskaja: “Glycogen Synthase Kinases 3 are Critical for Retinal Develop- ment and Homeostasis” -
Defective Color Vision and Its Inheritance by George Wald*
DEFECTIVE COLOR VISION AND ITS INHERITANCE BY GEORGE WALD* BIOLOGICAL LABORATORIES, HARVAkRD IJNIVERSITY We owe the first accurate description of color blindness to the chemist John Dalton, who in 1798 characterized his own condition in the words 'persons in general dis- tinguish six kinds of colour in the solar image; namely, red, orange, yellow, green, blue, and purple.... To me it is quite otherwise:-I see only two, or at most three, distinctions. These I should call yellow and blue; or yellow, blue, and purple. MiIy yellow comprehends the red, orange, yellow, and green of others; and my blue and purple coincide with theirs. That part of the image which others call red, ap- pears to me little more than a shade, or defect of light....". In this superb paper, Dalton set all the main themes for the study of color blindness. He pointed out that his vision had always been this way; that his brother had the same defect; that he knew of nearly 20 such cases, all male; and that in all but perhaps one in- stance the parents and children of such persons had normal vision.' Dalton thought the trouble to be that his vitreous humor was tinted blue, and so did not pass red light; but Thomas Young said of this: ". it is much more simple to suppose the absence or paralysis of those fibers of the retina which are calculated to perceive red."2 Dalton held to his own view, and the argument was settled only by autopsy at his death in 1842, when his eyes were found to be normally trans- parent to red light.3 Color blindness is still called daltonism throughout Europe; but Young's explanation, that it involves the loss of one of three normal color mechanisms, remained for many years the dominant theory of this condition. -
Cortical Color Loss and the Chromatic Visual Evoked Potential Department of Psychology, Program in Cognitive and # Michael A
Journal of Vision (2013) 13(10):15, 1–11 http://www.journalofvision.org/content/13/10/15 1 The locus of color sensation: Cortical color loss and the chromatic visual evoked potential Department of Psychology, Program in Cognitive and # Michael A. Crognale Brain Sciences, University of Nevada, Reno, NV, USA $ Department of Psychology, Program in Cognitive and Chad S. Duncan Brain Sciences, University of Nevada, Reno, NV, USA $ Department of Psychology, Program in Cognitive and Hannah Shoenhard Brain Sciences, University of Nevada, Reno, NV, USA $ Department of Psychology, Program in Cognitive and Dwight J. Peterson Brain Sciences, University of Nevada, Reno, NV, USA $ Department of Psychology, Program in Cognitive and # Marian E. Berryhill Brain Sciences, University of Nevada, Reno, NV, USA $ Color losses of central origin (cerebral achromatopsia and dyschromatopsia) can result from cortical damage Introduction and are most commonly associated with stroke. Such cases have the potential to provide useful information Color vision can be disrupted or lost by a number of regarding the loci of the generation of the percept of causes, the most common being genetic mutations. color. One available tool to examine this issue is the Achromatopsia is a condition wherein the percept of chromatic visual evoked potential (cVEP). The cVEP has colors is absent. Much more common is dyschroma- been used successfully to objectively quantify losses in topsia wherein there is a partial loss of color capacity. color vision capacity in both congenital and acquired Many cases of achromatopsia and most cases of deficiencies of retinal origin but has not yet been applied to cases of color losses of cortical origin. -
Comparison of Farnsworth and Lanthony D-15 Color Vision Tests to an Computerized Color Vision Cap Rearrangement Test James Kundart Pacific Nu Iversity
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CommonKnowledge Pacific nivU ersity CommonKnowledge Faculty Scholarship (COO) College of Optometry 2006 Comparison of Farnsworth and Lanthony D-15 Color Vision Tests to an Computerized Color Vision Cap Rearrangement Test James Kundart Pacific nU iversity Karl Citek Pacific nU iversity Follow this and additional works at: http://commons.pacificu.edu/coofac Part of the Optometry Commons Recommended Citation Kundart, James and Citek, Karl, "Comparison of Farnsworth and Lanthony D-15 Color Vision Tests to an Computerized Color Vision Cap Rearrangement Test" (2006). Faculty Scholarship (COO). Paper 27. http://commons.pacificu.edu/coofac/27 This Poster is brought to you for free and open access by the College of Optometry at CommonKnowledge. It has been accepted for inclusion in Faculty Scholarship (COO) by an authorized administrator of CommonKnowledge. For more information, please contact [email protected]. Comparison of Farnsworth and Lanthony D-15 Color Vision Tests to an Computerized Color Vision Cap Rearrangement Test Description Inherited color vision deficiency affects approximately 8% of the male Caucasian population, 5% of non- Caucasian males, and 0.4% of all women. In addition, significant numbers of patients of both genders acquire color vision loss due to ocular disease or pharmaceutical medications. Yet in many clinical settings color vision testing presents a challenge because plate tests, like those designed by Ishihara, do not easily differentiate green (deutan) from red (protan) defects. Tests that do differentiate, like the Farnsworth D-15, show false positive results with mild to moderate anomalous trichromacy, and are time- consuming.