Clostridium Difficile Colonizes Alternative Nutrient Niches

Total Page:16

File Type:pdf, Size:1020Kb

Clostridium Difficile Colonizes Alternative Nutrient Niches bioRxiv preprint doi: https://doi.org/10.1101/092304; this version posted December 20, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Clostridium difficile colonizes alternative nutrient 2 niches during infection across distinct murine gut 3 environments 4 Authors: Matthew L. Jenior, Jhansi L. Leslie, Vincent B. Young, and Patrick D. Schloss* 5 Abstract 6 Clostridium difficile infection (CDI) has grown to be the most prevalent cause of hospital 7 acquired infection in the United States. Susceptibility to CDI is induced by recent 8 antibiotic exposure, which is known to alter the structure of the gut microbiome and to 9 affect the availability of growth nutrients in the gut. We hypothesized that C. difficile is a 10 generalist that adapts its physiology to the nutrients available within the gut. We orally 11 challenged C57BL/6 mice that previously received one of three antibiotics with C. 12 difficile and demonstrated that it was able to colonize the cecum within 18 hours of 13 infection. However, levels of both spore and toxin production, which are known to be 14 affected by nutrient availability, varied between each antibiotic treatment group. To 15 more closely investigate the specific responses of C. difficile as it colonized the cecum, 16 we performed in vivo transcriptional analysis of C. difficile from cecal content of infected 17 mice. This approach revealed variation in expression of genes that drive life-cycle 18 switches as well as metabolic pathways associated with catabolizing a variety of carbon 19 sources such as carbohydrates, amino acids, and amino sugars. To assess which 20 substrates C. difficile was most likely exploiting in each antibiotic-perturbed microbiome, 1 bioRxiv preprint doi: https://doi.org/10.1101/092304; this version posted December 20, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 21 we developed a novel metabolite scoring algorithm within the genome-scale bipartite 22 metabolic network of C. difficile that incorporated both network topology and transcript 23 abundance to infer the likelihood that a given metabolite was acquired from the 24 environment. Applying this approach, we found that C. difficile indeed occupies 25 alternative nutrient niches across each antibiotic-perturbed microbiome and that the 26 highlighted metabolites support significant growth, in vitro. In silico findings were further 27 validated using in vivo metabolomic analysis to compare resitant and susceptible cecal 28 conditions. These results support the hypothesis that consumption of N-acetyl-D- 29 glucosamine and Stickland fermentation substrates are central components of C. 30 difficile's metabolic strategy and pathogenesis. This work has implications for 31 elucidating specifics of the nutrient niche of C. difficile during infection and may lead to 32 the discovery of targeted measures to prevent C. difficile colonization including potential 33 pre- or probiotic therapies. 34 Significance 35 Clostridium difficile infection has grown to be the largest single cause of hospital- 36 acquired infection in the United States. A compromised gut microbiota, typically through 37 previous antibiotic treatment, is a prerequisite feature of C. difficile colonization 38 susceptibility. This loss of resistance has also been described across classes of 39 antibiotics, in which many result in distinct gut communities and each presumably 40 presents individual metabolic challenges to C. difficile as it colonizes. In this study we 41 demonstrate that not only does C. difficile alter its pathogenesis between differentially 42 sensitized hosts, but also exploits separate available nutrient niches across these 43 environments. We accomplish this through an in vivo murine model of infection, 2 bioRxiv preprint doi: https://doi.org/10.1101/092304; this version posted December 20, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 44 characterized using transcriptomic-enabled genome-scale metabolic modeling in 45 combination with untargeted metabolomic analysis. Our results support that C. difficile 46 possesses a highly plastic nutrient niche space, allowing it to successfully infect 47 numerous different hosts and ultimately cause disease. This work also provides 48 evidence that C. difficile virulence may be driven by the concentrations of specific 49 carbohydrate sources that are accessible for growth during each unique infection. 50 Introduction 51 Infection by the Gram-positive, spore-forming bacterium Clostridium difficile has 52 increased in both prevalence and severity across numerous countries during the last 53 decade (1). In the United States, C. difficile was estimated to have caused >500,000 54 infections and resulted in ~$4.8 billion worth of acute care costs in 2014 (2). C. difficile 55 infection (CDI) causes an array of toxin-mediated symptoms ranging from abdominal 56 pain and diarrhea to the more life-threatening conditions pseudomembraneous colitis 57 and toxin megacolon. Prior treatment with antibiotics is the most common risk factor 58 associated with susceptibility to CDI (3). It has been shown that antibiotic therapy alters 59 the structure and function of the gut microbiota making it susceptible to colonization by 60 C. difficile (4). This is referred to as colonization resistance, in which the gut microbiota 61 inhibits the persistence or growth of a number of pathogenic bacteria. Colonization 62 resistance can be achieved by multiple mechanisms including competition for physical 63 space or growth nutrients (5). 64 Mouse models have been an effective tool for studying the mechanisms of colonization 65 resistance. Use of distinct antibiotic classes to vary the structure of the microbiota which 66 have been shown to result in susceptibility C. difficile colonization (6–8). In this case, 3 bioRxiv preprint doi: https://doi.org/10.1101/092304; this version posted December 20, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 67 the antibiotics chosen significantly impact the structure and diversity of the cecal 68 microbiome (Fig. S1a & S1b). It has been further demonstrated that at 18 hours after 69 being introduced to a cefoperazone treated mouse, C. difficile reached its maximum 70 vegetative cell density in the cecum (9). This provided a single timepoint to measure the 71 largest population of metabolically active C. difficile. Building upon these results, others 72 have shown that many of these antibiotic classes also alter the gut metabolome, 73 increasing the concentrations of known C. difficile growth substrates (7, 10–12). Taken 74 together these results are a strong indication that the healthy gut microbiota inhibits the 75 growth of C. difficile through limitation of substrates it needs to grow. The ability of an 76 intact gut community to exclude C. difficile colonization is suggestive of the nutrient- 77 niche hypothesis in which an organism must be able to utilize a subset of available 78 resources better than all competitors to colonize the intestine (13, 14). 79 Based on its genome sequence and in vitro growth characteristics, C. difficile appears 80 able to fill multiple nutrient niches. C. difficile has a relatively large and mosaic genome, 81 it is amenable to a variety of growth substrates, and is able to colonize a diverse array 82 of hosts suggesting that that it is a bacterial generalist (15–17). The ability to metabolize 83 a variety of substrates is important since these substrates affect the regulation of genes 84 involved in C. difficile’s pathogenesis. For example, in vitro transcriptomic analysis 85 suggests that high concentrations of easily metabolized carbon sources, such as 86 glucose or amino acids, inhibit toxin gene expression and sporulation (18, 19). These 87 genes are regulated by DNA-binding sigma factors, such as the pleiotropic regulator 88 ccpA, which are under the control of environmental nutrient concentrations, especially 89 carbohydrates (20, 21). Downstream effects of this regulation likely have enormous 4 bioRxiv preprint doi: https://doi.org/10.1101/092304; this version posted December 20, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 90 impact on the lifestyle and metabolic strategy of C. difficile when colonizing across 91 sensitive hosts. 92 Previous transcriptomic studies of C. difficile have mainly focused on transcription of 93 virulence factors, in vitro (22, 23), with some work characterizing transcription during 94 colonization of germfree mice (24, 25). More relevant to nutrient acquisition, C. difficile 95 up-regulated several phosphotransferase systems (PTS) and ABC transporters in 96 germfree mice, alluding to metabolic adaptation to nutrient availability in vivo (25). 97 Although these analyses are informative, they are either primarily directed toward the 98 expression of virulence factors or lack the context of the gut microbiota which C. difficile 99 must compete against for substrates. Metabolomic analyses have also been used to 100 more directly assay changes in bacterial metabolism as they relate to CDI (7, 12); 101 however, these methods cannot focus on C. difficile-specific metabolites and more 102 closely resemble echoes of metabolism, not currently active processes. In contrast to 103 these approaches, in vivo C.
Recommended publications
  • New Insights Into Clostridia Through Comparative Analyses of Their 40 Genomes
    Bioenerg. Res. DOI 10.1007/s12155-014-9486-9 New Insights into Clostridia Through Comparative Analyses of Their 40 Genomes Chuan Zhou & Qin Ma & Xizeng Mao & Bingqiang Liu & Yanbin Yin & Ying Xu # Springer Science+Business Media New York 2014 Abstract The Clostridium genus of bacteria contains the gene groups are shared by all the strains, and the strain- most widely studied biofuel-producing organisms such as specific gene pool consists of 22,668 genes, which is consis- Clostridium thermocellum and also some human pathogens, tent with the fact that these bacteria live in very diverse plus a few less characterized strains. Here, we present a environments and have evolved a very large number of comparative genomic analysis of 40 fully sequenced clostrid- strain-specific genes to adapt to different environments. ial genomes, paying a particular attention to the biomass Across the 40 genomes, 1.4–5.8 % of genes fall into the degradation ones. Our analysis indicates that some of the carbohydrate active enzyme (CAZyme) families, and 20 out Clostridium botulinum strains may have been incorrectly clas- of the 40 genomes may encode cellulosomes with each ge- sified in the current taxonomy and hence should be renamed nome having 1 to 76 genes bearing the cellulosome-related according to the 16S ribosomal RNA (rRNA) phylogeny. A modules such as dockerins and cohesins. A phylogenetic core-genome analysis suggests that only 169 orthologous footprinting analysis identified cis-regulatory motifs that are enriched in the promoters of the CAZyme genes, giving rise to 32 statistically significant motif candidates. Keywords Clostridium . Comparative genomics .
    [Show full text]
  • Gastroenterology
    Gastroenterology Inhibiting Growth of Clostridioides difficile by Restoring Valerate, Produced by the Intestinal Microbiota --Manuscript Draft-- Manuscript Number: GASTRO-D-18-00449R1 Full Title: Inhibiting Growth of Clostridioides difficile by Restoring Valerate, Produced by the Intestinal Microbiota Article Type: Basic - Alimentary Tract Corresponding Author: Julian Marchesi Cardiff University Cardiff, UNITED KINGDOM Corresponding Author Secondary Information: Corresponding Author's Institution: Cardiff University Corresponding Author's Secondary Institution: First Author: Julie A. K. McDonald, PhD First Author Secondary Information: Order of Authors: Julie A. K. McDonald, PhD Benjamin H. Mullish, MB BChir Alexandros Pechlivanis, PhD Zhigang Liu, PhD Jerusa Brignardello, MSc Dina Kao, MD Elaine Holmes, PhD Jia V. Li, PhD Thomas B Clarke, PhD Mark R. Thursz, MD Julian R. Marchesi, PhD Order of Authors Secondary Information: Abstract: Background & Aims: Faecal microbiota transplantation (FMT) is effective for treating recurrent Clostridioides difficile infection (CDI), but there are concerns regarding its long-term safety. Understanding the mechanisms of the effects of FMT could help us design safer, targeted therapies. We aimed to identify microbial metabolites that are important for C difficile growth. Methods: We used a CDI chemostat model as a tool to study the effects of FMT in vitro. The following analyses were performed: C difficile plate counts, 16S rRNA gene sequencing, 1H-NMR spectroscopy, and UPLC mass spectrometry bile acid profiling. FMT mixtures were prepared using fresh faecal samples provided by donors enrolled in the FMT Programme. Results from chemostat experiments were validated using human stool samples, C difficile batch cultures, and C57BL/6 mice with CDI. Human stool samples were collected from 16 patients with recurrent CDI and 5 healthy donors participating in an FMT trial.
    [Show full text]
  • A Survey of Carbon Fixation Pathways Through a Quantitative Lens
    Journal of Experimental Botany, Vol. 63, No. 6, pp. 2325–2342, 2012 doi:10.1093/jxb/err417 Advance Access publication 26 December, 2011 REVIEW PAPER A survey of carbon fixation pathways through a quantitative lens Arren Bar-Even, Elad Noor and Ron Milo* Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel * To whom correspondence should be addressed. E-mail: [email protected] Received 15 August 2011; Revised 4 November 2011; Accepted 8 November 2011 Downloaded from Abstract While the reductive pentose phosphate cycle is responsible for the fixation of most of the carbon in the biosphere, it http://jxb.oxfordjournals.org/ has several natural substitutes. In fact, due to the characterization of three new carbon fixation pathways in the last decade, the diversity of known metabolic solutions for autotrophic growth has doubled. In this review, the different pathways are analysed and compared according to various criteria, trying to connect each of the different metabolic alternatives to suitable environments or metabolic goals. The different roles of carbon fixation are discussed; in addition to sustaining autotrophic growth it can also be used for energy conservation and as an electron sink for the recycling of reduced electron carriers. Our main focus in this review is on thermodynamic and kinetic aspects, including thermodynamically challenging reactions, the ATP requirement of each pathway, energetic constraints on carbon fixation, and factors that are expected to limit the rate of the pathways. Finally, possible metabolic structures at Weizmann Institute of Science on July 3, 2016 of yet unknown carbon fixation pathways are suggested and discussed.
    [Show full text]
  • EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
    EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated
    [Show full text]
  • Bacterial Selenoproteins: a Role in Pathogenesis and Targets for Antimicrobial Development
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 Bacterial Selenoproteins: A Role In Pathogenesis And Targets For Antimicrobial Development Sarah Rosario University of Central Florida Part of the Medical Sciences Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Rosario, Sarah, "Bacterial Selenoproteins: A Role In Pathogenesis And Targets For Antimicrobial Development" (2009). Electronic Theses and Dissertations, 2004-2019. 3822. https://stars.library.ucf.edu/etd/3822 BACTERIAL SELENOPROTEINS: A ROLE IN PATHOGENESIS AND TARGETS FOR ANTIMICROBIAL DEVELOPMENT. by SARAH E. ROSARIO B.S. Florida State University, 2000 M.P.H. University of South Florida, 2002 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: William T. Self © 2009 Sarah E. Rosario ii ABSTRACT Selenoproteins are unique proteins in which selenocysteine is inserted into the polypeptide chain by highly specialized translational machinery. They exist within all three kingdoms of life. The functions of these proteins in biology are still being defined. In particular, the importance of selenoproteins in pathogenic microorganisms has received little attention. We first established that a nosocomial pathogen, Clostridium difficile, utilizes a selenoenzyme dependent pathway for energy metabolism.
    [Show full text]
  • Metabolomic Networks Connect Host-Microbiome Processes to Human Clostridioides Difficile Infections
    Metabolomic networks connect host-microbiome processes to human Clostridioides difficile infections John I. Robinson, … , Peter J. Mucha, Jeffrey P. Henderson J Clin Invest. 2019;129(9):3792-3806. https://doi.org/10.1172/JCI126905. Research Article Gastroenterology Infectious disease Clostridioides difficile infection (CDI) accounts for a substantial proportion of deaths attributable to antibiotic-resistant bacteria in the United States. Although C. difficile can be an asymptomatic colonizer, its pathogenic potential is most commonly manifested in patients with antibiotic-modified intestinal microbiomes. In a cohort of 186 hospitalized patients, we showed that host and microbe-associated shifts in fecal metabolomes had the potential to distinguish patients with CDI from those with non–C. difficile diarrhea and C. difficile colonization. Patients with CDI exhibited a chemical signature of Stickland amino acid fermentation that was distinct from those of uncolonized controls. This signature suggested that C. difficile preferentially catabolizes branched chain amino acids during CDI. Unexpectedly, we also identified a series of noncanonical, unsaturated bile acids that were depleted in patients with CDI. These bile acids may derive from an extended host-microbiome dehydroxylation network in uninfected patients. Bile acid composition and leucine fermentation defined a prototype metabolomic model with potential to distinguish clinical CDI from asymptomatic C. difficile colonization. Find the latest version: https://jci.me/126905/pdf RESEARCH ARTICLE The Journal of Clinical Investigation Metabolomic networks connect host-microbiome processes to human Clostridioides difficile infections John I. Robinson,1 William H. Weir,2 Jan R. Crowley,1 Tiffany Hink,1 Kimberly A. Reske,1 Jennie H. Kwon,1 Carey-Ann D.
    [Show full text]
  • Updates on the Sporulation Process in Clostridium Species
    Updates on the sporulation process in Clostridium species Talukdar, P. K., Olguín-Araneda, V., Alnoman, M., Paredes-Sabja, D., & Sarker, M. R. (2015). Updates on the sporulation process in Clostridium species. Research in Microbiology, 166(4), 225-235. doi:10.1016/j.resmic.2014.12.001 10.1016/j.resmic.2014.12.001 Elsevier Accepted Manuscript http://cdss.library.oregonstate.edu/sa-termsofuse *Manuscript 1 Review article for publication in special issue: Genetics of toxigenic Clostridia 2 3 Updates on the sporulation process in Clostridium species 4 5 Prabhat K. Talukdar1, 2, Valeria Olguín-Araneda3, Maryam Alnoman1, 2, Daniel Paredes-Sabja1, 3, 6 Mahfuzur R. Sarker1, 2. 7 8 1Department of Biomedical Sciences, College of Veterinary Medicine and 2Department of 9 Microbiology, College of Science, Oregon State University, Corvallis, OR. U.S.A; 3Laboratorio 10 de Mecanismos de Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de 11 Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile. 12 13 14 Running Title: Clostridium spore formation. 15 16 17 Key Words: Clostridium, spores, sporulation, Spo0A, sigma factors 18 19 20 Corresponding author: Dr. Mahfuzur Sarker, Department of Biomedical Sciences, College of 21 Veterinary Medicine, Oregon State University, 216 Dryden Hall, Corvallis, OR 97331. Tel: 541- 22 737-6918; Fax: 541-737-2730; e-mail: [email protected] 23 1 24 25 Abstract 26 Sporulation is an important strategy for certain bacterial species within the phylum Firmicutes to 27 survive longer periods of time in adverse conditions. All spore-forming bacteria have two phases 28 in their life; the vegetative form, where they can maintain all metabolic activities and replicate to 29 increase numbers, and the spore form, where no metabolic activities exist.
    [Show full text]
  • The Purine-Utilizing Bacterium Clostridium Acidurici 9A: a Genome-Guided Metabolic Reconsideration
    The Purine-Utilizing Bacterium Clostridium acidurici 9a: A Genome-Guided Metabolic Reconsideration Katrin Hartwich, Anja Poehlein, Rolf Daniel* Department of Genomic and Applied Microbiology, and Go¨ttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Go¨ttingen, Go¨ttingen, Germany Abstract Clostridium acidurici is an anaerobic, homoacetogenic bacterium, which is able to use purines such as uric acid as sole carbon, nitrogen, and energy source. Together with the two other known purinolytic clostridia C. cylindrosporum and C. purinilyticum, C. acidurici serves as a model organism for investigation of purine fermentation. Here, we present the first complete sequence and analysis of a genome derived from a purinolytic Clostridium. The genome of C. acidurici 9a consists of one chromosome (3,105,335 bp) and one small circular plasmid (2,913 bp). The lack of candidate genes encoding glycine reductase indicates that C. acidurici 9a uses the energetically less favorable glycine-serine-pyruvate pathway for glycine degradation. In accordance with the specialized lifestyle and the corresponding narrow substrate spectrum of C. acidurici 9a, the number of genes involved in carbohydrate transport and metabolism is significantly lower than in other clostridia such as C. acetobutylicum, C. saccharolyticum, and C. beijerinckii. The only amino acid that can be degraded by C. acidurici is glycine but growth on glycine only occurs in the presence of a fermentable purine. Nevertheless, the addition of glycine resulted in increased transcription levels of genes encoding enzymes involved in the glycine-serine-pyruvate pathway such as serine hydroxymethyltransferase and acetate kinase, whereas the transcription levels of formate dehydrogenase- encoding genes decreased.
    [Show full text]
  • Amino Acid-Fermenting Bacteria from the Rumen of Dairy Cattle Enrichment, Isolation, Characterization, and Interaction with Entodinium Caudatum
    Amino Acid-Fermenting Bacteria from the Rumen of Dairy Cattle Enrichment, Isolation, Characterization, and Interaction with Entodinium caudatum THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Jacqueline M. Gano Graduate Program in Animal Sciences The Ohio State University 2013 Master's Examination Committee: Dr. Zhongtang Yu, Advisor Dr. Jeffrey Firkins Dr. Macdonald Wick Copyrighted by Jacqueline M. Gano 2013 i ABSTRACT Excess ammonia emissions are a major concern for the dairy industry due to the detrimental impact ammonia emissions have on the environment and wastage of dietary nitrogen. Hyper-ammonia-producing bacteria (HAB) and protozoa in the rumen are the major contributors of excessive ammonia excretions from cattle. Besides Clostridium aminophilum, C. sticklandii, and Peptostreptococcus anaerobius, little is known about the HAB present in the rumen. In addition, rumen protozoa prey on bacteria and other microbes, excreting considerable amounts of amino acids and/or peptides that could promote the growth of HAB. In addition, inhibition of HAB by plant secondary metabolites may ultimately reduce ammonia production by HAB, thereby lowering excess nitrogen emissions. The studies presented in this thesis investigate HAB characterizations and interactions. In the first study, mixed microbes were obtained from the rumen of three fistulated dairy cows and further enriched and isolated for amino acid-fermenting bacteria. As a result, new isolates displayed high rates of ammonia production, ranging from 0.87 to 2.45 mg N/dL, and identified through 16S rRNA gene sequencing as a Bacillus sp. and Proteus mirabilis.
    [Show full text]
  • Repurposing Auranofin to Treat Clostridium Difficile Infection by Targeting Selenium
    Repurposing auranofin to treat Clostridium difficile infection by targeting selenium. by Christine Roder B. Sci (Hons), M. Biotech Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Deakin University June, 2017 [Type here] Acknowledgements difficile [dif-i-seel] adjective 1. hard to deal with, satisfy or please. 2. hard to do; difficult “referring to the unusual difficulty that was encountered in its isolation and study” –Hall & O’Toole, 1935. Well they certainly weren’t wrong. A PhD is already a difficult mountain to climb and choosing to study an organism that was named for how difficult it is to grow only serves to make that mountain more challenging. As I stand here at the summit and reflect on the arduous uphill battle that was, I feel a sense of accomplishment and relief. I also feel overwhelming gratitude toward everyone who has helped me along the way. Unfortunately there are too many people to thank everyone by name, so I will take this opportunity to thank everyone who has contributed to my completing this thesis. Whether your contribution be small or large, it has meant a lot to me and I thank you for it. There were a number of people whose contribution was so significant they deserve special mention. Firstly I would like to thank my PhD supervisor Eugene Athan. You have provided ongoing support and encouragement throughout this endeavour and seem to have an unwavering confidence in my abilities which was especially important when I did not. It has been an absolute pleasure working with you and I look forward to our future projects together.
    [Show full text]
  • Metabolic Reprogramming of Clostridioides Difficile During The
    fmicb-09-01970 August 17, 2018 Time: 18:41 # 1 ORIGINAL RESEARCH published: 21 August 2018 doi: 10.3389/fmicb.2018.01970 Metabolic Reprogramming of Clostridioides difficile During the Stationary Phase With the Induction of Toxin Production Julia D. Hofmann1,2, Andreas Otto3, Mareike Berges2,4, Rebekka Biedendieck2,4, Annika-Marisa Michel2,4, Dörte Becher3, Dieter Jahn2,4 and Meina Neumann-Schaal1,2,5* 1 Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany, 2 Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany, 3 Department for Microbial Proteomics, University of Greifswald, Greifswald, Germany, 4 Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany, 5 Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany The obligate anaerobe, spore forming bacterium Clostridioides difficile (formerly Clostridium difficile) causes nosocomial and community acquired diarrhea often Edited by: associated with antibiotic therapy. Major virulence factors of the bacterium are the two Yuji Morita, large clostridial toxins TcdA and TcdB. The production of both toxins was found strongly Meiji Pharmaceutical University, Japan connected to the metabolism and the nutritional status of the growth environment. Reviewed by: Casey Michelle Theriot, Here, we systematically investigated the changes of the gene regulatory, proteomic North Carolina State University, and metabolic networks of C. difficile 6301erm underlying
    [Show full text]
  • Clostridium Symbiosum
    Substrates and mechanism of 2-hydroxyglutaryl-CoA-dehydratase from Clostridium symbiosum zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Biologie der Philipps-Universität Marburg vorgelegt von Anutthaman Parthasarathy aus Indien Marburg/Lahn 2009 Die Untersuchungen zur vorliegenden Arbeit wurden von Oktober 2005 bis April 2009 am Fachbereich Biologie der Philipps-Universität Marburg unter der Leitung von Herrn Prof. Dr. W. Buckel durchgeführt. Vom Fachbereich Biologie der Philipps-Universität Marburg als Dissertation am _______________ angenommen. Erstgutachter: Prof. Dr. W. Buckel Zweitgutachter: Prof. Dr. R. K.Thauer Tag der mündlichen Prüfung: _______________ Dedicated to all students, teachers and practitioners of Science. We are what we think. All that we are, arises with our thoughts. With our thoughts, we make the world. The Buddha. Ein Teil der im Rahmen dieser Dissertation erzielten Ergebnisse werden in folgender Publikation veröffentlicht: Parthasarathy, A., Smith, D. M. & Buckel, W., On the thermodynamic equilibrium between (R)-2-hydroxyacyl-CoA and 2-enoyl-CoA, 2009, (submitted to Chemistry - A European Journal) Contents Abbreviations ....................................................................................................... 1 Zusammenfassung ............................................................................................... 2 Summary .............................................................................................................. 3 Introduction ........................................................................................................
    [Show full text]