Durham E-Theses

Total Page:16

File Type:pdf, Size:1020Kb

Durham E-Theses Durham E-Theses Selective Fluorination Strategies BREEN, JESSICA,RUTH How to cite: BREEN, JESSICA,RUTH (2012) Selective Fluorination Strategies, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3479/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Abstract There is a great interest in the synthesis of fluorinated aromatic and heterocyclic compounds, which have a range of applications in the pharmaceutical industry. Many common routes to these compounds, however, are low yielding and or/expensive. This thesis is concerned with novel methods for the synthesis of fluoro-aromatics and fluoro- pyrazoles using conventional fluorinating agents, such as Selectfluor™, as well as using elemental fluorine and the flow reactor technology developed in Durham. Firstly, elemental fluorine was used to fluorinate a range of aromatics containing electron-donating substituents, using both batch and flow methods. These methods often afforded the desired compound but with little selectivity and low conversion from the starting materials. Following on from this, ipso fluoro-deboronation techniques using Selectfluor™, were employed to improve the selectivity and yields of the reaction and, in many cases, the desired mono-fluorinated arylfluoride could be accessed in good yield. A range of aryl boronic acid derivatives were explored as the substrate and the results showed that trifluoroborate salts were the most useful substrate. The ipso fluoro- deboronation of heterocyclic boronic acid derivatives was also investigated and showed some promising results. The synthesis of 4-fluoropyrazoles was investigated using three methods. Initially, a two-step process, where the 2-fluoro-1,3-diketone was synthesised and isolated and subsequently reacted with hydrazine, was employed. This allowed a range of 4- fluoropyrazoles to be obtained in high yield and purity. Secondly, a telescoped two-step continuous flow process was employed which did not require isolation of the intermediate 2-fluoro-1,3-diketone. This reaction gave good yields and required less solvent with significantly lower reaction times than the two-step process. Thirdly, C4 mono- and di-fluorination of 3,5-disubstituted pyrazoles was investigated using Selectfluor™ and elemental fluorine. This method gave low conversion from the starting material (50–60 %) but the desired 4-fluoropyrazoles and novel 4,4- difluoropyrazoles could be isolated. Acknowledgements Firstly I would like to thank everyone who has made the last three years so memorable. I would particularly like to thank my academic supervisor, Professor Graham Sandford for his invaluable help and support throughout the course of my Ph.D. I would also like to thank my industrial supervisors, Dr Jonathan Fray and Miss Bhairavi Patel, for their input and enthusiasm and Pfizer for funding. This research would not have been possible without the help of the highly professional technical staff at Durham University, namely: Dr Alan Kenwright, Mr Ian McKeag, Mrs Catherine Heffernan (NMR); Dr Jackie Mosely, Mr Peter Stokes, Mr David Parker (Mass spectrometry); Miss. Judith Magee (Elemental analysis); Dr Dmitrii Yufit (X–ray crystallography); Mr Lenny Lauchlan and Dr Aileen Congreve (Chromatography); Mr Malcom Richardson (Glassblowing) and Mr Dave Hunter (High Pressure Facilities). I would like to give a special mention to the late Mr Peter Coyne (Glassblowing) for showing me a smile every time I saw him. I would like to thank all members of the fluorine group, past and present, particularly Prof. Richard Chambers, Graham Pattison, Ian Wilson, Christopher McPake, Matthew Cargill, Lawrence Hill, Ffion Abraham, Katharine Linton and Peter Harrisson (honorary member). I would also like to thank my family and Peter Harvey for their love and support. ii Memorandum The work described in this thesis was carried out at Durham University between October 2008 and December 2011. This thesis is the work of the author, except where acknowledged by reference, and has not been submitted for any other degree. The copyright of this thesis rests with the author. No quotation from it should be published without the prior written consent and information derived from it should be acknowledged. Part of this work has been the subject of the following: J. R. Breen, G. Sandford, D. S. Yufit, J. A. K. Howard, J. Fray, and B. Patel, Beilstein J. Org. Chem, 2011, 7, 1048-1054 This work has been presented, in part, at: 16th European Symposium on Fluorine Chemistry, Ljubljana, Slovenia, July 2010 10th RSC Fluorine Subject Meeting, Durham, UK, September 2010 Departmental Postgraduate Symposium, Durham University, UK, June 2011 ACS National Meetings & Exposition, Denver, Colorado, USA, August 2011 11th RSC Fluorine Subject Meeting, Aberdeen, UK, September 2011 NORSC Green Chemistry Postgraduate Meeting, York, UK, October 2011 iii Nomenclature and Abbreviations Chemical Ac Acetyl Ar Aryl BOC t-butyloxycarbonyl Bu Butyl Cat Catalyst Conc Concentration DABCO 1,4-Diazabicyclo[2.2.2]octane DAST (Diethylamino)sulfur trichloride DCM Dichloromethane DIPEA Diisopropylethylamine DMF Dimethylformamide DMSO Dimethylsulfoxide E Electrophile EDG Electron-donating group EI Electron ionisation EWG Electron-withdrawing group ES Electrospray Et Ethyl GC-MS Gas chromatography-mass spectrometry h Hours IR Infra-red J Coupling constant, Hz LC-MS Liquid chromatography-mass spectrometry Me Methyl MeCN Acetonitrile (methyl cyanide) Min Minutes Mol Moles m.p. Melting point MW Microwave iv NBS N-Bromosuccinimide NCS N-Chlorosuccinimide NFSI N-Fluorobenzenesulfonimide NMR Nuclear magnetic resonance PET Positron emission tomography Ph Phenyl Pin Pinacol ester pKa Acid dissociation constant ppm Parts per million Pr Propyl PTFE Polytetrafluoroethylene R Alkyl RT Room temperature SET Single electron transfer THF Tetrahydrofuran TLC Thin layer chromatography TMS Trimethylsilyl Ts Tosyl UV Ultraviolet X Halogen Δ Heat δ Chemical shift/ppm v Table of Contents Abstract .......................................................................................................................................... i Acknowledgements ....................................................................................................................... ii Memorandum ............................................................................................................................... iii Nomenclature and Abbreviations................................................................................................. iv Chapter 1 ..................................................................................................................................... 1 Introduction ................................................................................................................................... 1 1.1 Overview ............................................................................................................................. 1 1.1.1 Fluorine – Isolation and History ....................................................... 1 1.1.2 Properties of the Fluorine Atom ....................................................... 2 1.1.3 Carbon-fluorine Bonds in Organic Synthesis ..................................... 2 1.2 Fluorine in the Pharmaceutical Industry ............................................................................. 3 1.2.1 pKa ................................................................................................ 5 1.2.2 Lipophilicity ................................................................................... 6 1.2.3 Protein Binding Affinity .................................................................. 7 1.2.3.1 Steric Effects ........................................................................ 7 1.2.3.2 Electrostatic Interactions ........................................................ 8 1.3 Fluorination Methods .......................................................................................................... 8 1.3.1 Electrophilic Fluorination Methods .................................................. 9 1.3.1.1 Selectfluor™ ...................................................................... 10 1.3.1.2 Elemental Fluorine .............................................................. 11 1.4 Electrophilic Fluorination Reactions ................................................................................ 12 1.4.1 Fluorination of Aromatic Substrates ............................................... 12 1.4.1.1 Fluorination of Aromatic Substrates Bearing Electron- Withdrawing Substituents Using Fluorine Gas ................................. 13 1.4.1.2 Fluorination of Aromatic Substrates Bearing Electron-donating Substituents ................................................................................... 17 1.5 Synthesis of
Recommended publications
  • Palladium-Catalyzed Arene Functionalization Via Single- Electron Reduction of Selectfluor
    Palladium-Catalyzed Arene Functionalization via Single- Electron Reduction of Selectfluor The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Mazzotti, Anthony Renato. 2016. Palladium-Catalyzed Arene Functionalization via Single-Electron Reduction of Selectfluor. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33840680 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Palladium-Catalyzed Arene Functionalization via Single-Electron Reduction of Selectfluor A dissertation presented by Anthony Renato Mazzotti to The Department of Chemistry and Chemical Biology In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemistry Harvard University Cambridge, Massachusetts July 2016 © Anthony Renato Mazzotti All Rights Reserved. Dissertation Advisor: Professor Tobias Ritter Anthony Renato Mazzotti Palladium-Catalyzed Arene Functionalization via Single-Electron Reduction of Selectfluor Abstract Palladium-catalysis is commonly used in the functionalization of aromatic rings, ranging from prefunctionalized substrates such as aryl metals or aryl (pseudo)halides to the direct functionalization of aromatic C–H bonds. Palladium-catalyzed
    [Show full text]
  • Anomalous Products in the Halogenation Reactions of Vinca Alkaloids 1.949
    Send Orders for Reprints to [email protected] 2639 Current Organic Chemistry, 2016, 20, 2639-2646 RESEARCH ARTICLE ISSN: 1385-2728 eISSN: 1875-5348 Impact Factor: Anomalous Products in the Halogenation Reactions of Vinca Alkaloids 1.949 BENTHAM SCIENCE András Keglevich,1 László Hegeds,2 Lilla Péter,1 Judit Gyenese,1 Csaba Szántay, Jr.,3 Zsófia Dubrovay,3+ Miklós Dékány,3 Áron Szigetvári,3 Ana Martins,4++ József Molnár,4 Attila Hunyadi,5 Péter Keglevich1* and László Hazai1* 1Department of Organic Chemistry and Technology, University of Technology and Economics, Budapest, Hungary, H-1111 Budapest, Gellért tér 4. Hungary; 2MTA–BME Organic Chemical Technology Research Group, Hungarian Academy of Sciences, Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budafoki út 8, H-1111 Budapest, Hungary; 3Spectroscopic Research Division, Gedeon Richter Plc., H-1475 Budapest 10, P. O. Box 27, Hungary; 4Department of Medical Microbiology and Immunobiology, University of Szeged, 6720 Szeged, Dóm tér 10., Hungary; 5Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Eötvös u. 6., Hungary Abstract: Halogenation reactions of vindoline and 14,15-dihydrovindoline and its hydro- chloric salt were investigated and the anomalous reductions were discussed. Performing the hydrogenation in the presence of chlorine-containing solvent, e.g. dichloromethane, hydrogenolysation reaction of chlorine also took place. In this case unexpected chlorin- ated product could be observed. Performing the hydrogenation reaction only in the pres- ence of methanol, the expected reduced derivative was obtained. Upon bromination of vindoline with excess NBS, oxidation products with ring contraction and developing an oxygen bridge were isolated. The fluorination reactions of vinblastine using Selectfluor® and xenon difluoride as the fluorination reagents were unsuccessful because of the de- composition of the starting material.
    [Show full text]
  • The Automated Flow Synthesis of Fluorine Containing Organic Compounds
    The automated flow synthesis of fluorine containing organic compounds by CHANTAL SCHOLTZ Submitted in partial fulfilment of the requirements for the degree PHILOSOPHAE DOCTOR In the Faculty of Natural & Agricultural Sciences UNIVERSITY OF PRETORIA PRETORIA Supervisor: Dr D.L. Riley February 2019 DECLARATION I, Chantal Scholtz declare that the thesis/dissertation, which I hereby submit for the degree PhD Chemistry at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution. Signature :.......................................... Date :..................................... ii ACKNOWLEDGEMENTS I would herewith sincerely like to show my gratitude to the following individuals for their help, guidance and assistance throughout the duration of this project: My supervisor, Doctor Darren Riley, for his knowledge and commitment. Thank you for being a fantastic supervisor and allowing me the opportunity to learn so many valuable skills. My husband, Clinton, for all your love, support and patience and for always being there for me. You are the best. My family, for all the encouragement and support you gave me as well as always believing in me. I will always appreciate what you have done for me. Mr Drikus van der Westhuizen and Mr Johan Postma for their assistance at the Pelchem laboratories with product isolation and characterisation. Dr Mamoalosi Selepe for NMR spectroscopy services, Jeanette Strydom for XRF services and Gerda Ehlers at the UP library for her invaluable assistance. All my friends and colleagues for the continuous moral support, numerous helpful discussions and necessary coffee breaks. My colleagues at Chemical Process Technologies for their ongoing support and motivation, especially Dr Hannes Malan and Prof.
    [Show full text]
  • Reduction of Aldehydes and Ketones to Their Corresponding Alcohols in 1- Butyl-3-Methylimidazolium Tetrafluoroborate
    REDUCTION OF ALDEHYDES AND KETONES TO THEIR CORRESPONDING ALCOHOLS IN 1- BUTYL-3-METHYLIMIDAZOLIUM TETRAFLUOROBORATE Josiane Ayingeneye Dissertation submitted in fulfilment of the academic requirements for the degree of Master of Science in the School of Chemistry and Physics, University of KwaZulu-Natal, Durban. Supervisor: Prof Vincent O. Nyamori February 2018 Abstract The use and release of volatile organic solvents (VOS) to the atmosphere have become detrimental to both human health and his environment. In addition, the non-recyclability and the excessive consumption of these solvents in chemical industry influence their high costs. This has incited the growing need towards the design of new processes and benign solvents, helping in minimizing these raised issues. Ionic liquids (ILs) which are acknowledged as green and environmentally friendly solvents, are assigned as promising alternatives for replacing these VOS. The review of some ILs aspects such as structure, synthesis methods, physicochemical properties, solvent applications in reduction reactions, and their recyclability gave an impressive trend and a motivation towards our work. Synthesis of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIM][BF4]), as typical IL and investigation of its solvent efficiency, in the reduction of aldehydes and ketones to their corresponding alcohols, were the core objectives of this research. [BMIM][BF4] was synthesized via microwave (MW) and conventional methods. The characterization of the synthesized [BMIM][BF4] was done by means of Fourrier transform infrared (FTIR), nuclear magnetic resonance (1H- and 13C-NMR,) and liquid chromatograph- mass spectroscopy (LC-MS) techniques. Physicochemical properties of [BMIM][BF4] related to its solvent application, such as water content, density, viscosity and thermal stability, were explored.
    [Show full text]
  • Download Date 07/10/2021 01:33:42
    Functional ionic liquids in crystal engineering and drug delivery Item Type Thesis Authors Bansode, Ratnadeep V. Rights <a rel="license" href="http://creativecommons.org/licenses/ by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by- nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http:// creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>. Download date 07/10/2021 01:33:42 Link to Item http://hdl.handle.net/10454/14563 University of Bradford eThesis This thesis is hosted in Bradford Scholars – The University of Bradford Open Access repository. Visit the repository for full metadata or to contact the repository team © University of Bradford. This work is licenced for reuse under a Creative Commons Licence. FUNCTIONAL IONIC LIQUIDS FOR USE IN CRYSTAL ENGINEERING AND DRUG DELIVERY Ratnadeep Vitthal BANSODE Submitted for the Degree of Doctor of Philosophy School of Life Sciences University of Bradford 2016 Abstract Ratnadeep Vitthal Bansode Functional ionic liquids in crystal engineering and drug delivery Key words: Phosphonium ionic liquids, imidazolium ionic liquids, synthesis, pharmaceutical drugs, crystallisation, solubility, pharmaceuticals, API-ILs synthesis and drug release. The objective of this research is to explore the use of ionic liquds in crystal engineering and drug delivery. Ionic liquids have a wide range of applications in pharmaceutical field due to their unique physicochemical propertie ssuch as chemical, thermal stability, low melting point, nonvolatility, nonflamability, low toxicity and recyclability which offer unique and interesting potential for pharmaceuitcal applications.
    [Show full text]
  • A General Strategy for C(Sp3)–H Functionalization with Nucleophiles
    1 A general strategy for C(sp3)–H functionalization with nucleophiles using 2 methyl radical as a hydrogen atom abstractor 3 4 Isabelle Nathalie-Marie Leibler,‡ Makeda A. Tekle-Smith,‡ and Abigail G. Doyle 5 6 Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States 7 8 The development of general strategies for C(sp3)–H functionalization is critical to the 9 advancement of modern methods for molecular diversification. In recent years, photoredox 10 catalysis has provided many approaches to C(sp3)–H functionalization that enable selective 11 oxidation and C(sp3)–C bond formation via the intermediacy of a carbon-centered radical. 12 While highly enabling, functionalization of the carbon-centered radical is largely mediated 13 by electrophilic reagents, many of which require multi-step preparation and feature low 14 functional group tolerance. By contrast, nucleophilic reagents represent an abundant and 15 practical reagent class. However, few strategies for nucleophilic C(sp3)–H functionalization 16 from carbon-centered radicals have been identified and existing methodologies either 17 require strong stoichiometric oxidants or are not general for diverse nucleophile 18 incorporation. Here we describe a strategy that transforms C(sp3)–H bonds into 19 carbocations via sequential hydrogen atom transfer (HAT) and oxidative radical-polar 20 crossover, effecting formal hydride abstraction in the absence of a strong Lewis acid or 21 strong oxidant. The resulting carbocation can be functionalized by a variety of 22 nucleophiles—including halides, water, alcohols, thiols, an electron-rich arene, and an 23 azide—to affect diverse bond formations. Reaction development is demonstrated in the 24 context of nucleophilic fluorination of secondary and tertiary benzylic and allylic C(sp3)–H 25 bonds and is applicable to late-stage diversification of bioactive molecules.
    [Show full text]
  • Sodium Tetrafluoroborate
    Sodium tetrafluoroborate sc-253597 Material Safety Data Sheet Hazard Alert Code EXTREME HIGH MODERATE LOW Key: Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Sodium tetrafluoroborate STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY0 HEALTH3 HAZARD INSTABILITY0 SUPPLIER Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 SYNONYMS NaBF4, "sodium fluoroborate", "sodium borofluoride", "sodium tetrafluoroborate", "borate (1-), tetrafluoro-, sodium", "sodium tetrafluoro borate" Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability: 0 Toxicity: 3 Body Contact: 4 Min/Nil=0 Low=1 Reactivity: 0 Moderate=2 High=3 Chronic: 2 Extreme=4 CANADIAN WHMIS SYMBOLS 1 of 9 EMERGENCY OVERVIEW RISK Risk of serious damage to eyes. Irritating to respiratory system and skin. Skin contact may produce health damage*. Cumulative effects may result following exposure*. Inhalation and/or ingestion may produce serious health damage*. * (limited evidence). POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ■ The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion. ■ Accidental ingestion of the material may be seriously damaging to the health of the individual; animal experiments indicate that ingestion of less than 40 gram may be fatal. ■ Fluoride causes severe loss of calcium in the blood, with symptoms appearing several hours later including painful and rigid muscle contractions of the limbs. Cardiovascular collapse can occur and may cause death with increased heart rate and other heart rhythm irregularities.
    [Show full text]
  • SELECTFLUOR BIS(TRIFLATE) and [18F]Clf
    18 RADIOSYNTHESIS AND USE OF [ F]F2 DERIVATIVES [18F]SELECTFLUOR BIS(TRIFLATE) AND [18F]ClF Anna Kirjavainen TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS Sarja - ser. D osa - tom. 1149 | Medica - Odontologica | Turku 2014 University of Turku Faculty of Medicine Department of Clinical Medicine Clinical Physiology and Nuclear Medicine, Turku PET Centre Turku Doctoral Program of Molecular Medicine Supervised by Professor Olof Solin, PhD Dr. Sarita Forsback, PhD Turku PET Centre Turku PET Centre University of Turku University of Turku Turku, Finland Turku, Finland Reviewed by Docent Kim Bergström, PhD Dr. Magnus Schou, PhD Helsinki University Central Hospital and Univer- AstraZeneca Research & Development/ sity of Helsinki Innovative Medicines Helsinki, Finland PET Centre of Excellence, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden Opponent Dr. Jacek Koziorowski, PhD Linköping University Hospital Linköping Sweden The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-5950-1 (PRINT) ISBN 978-951-29-5951-8 (PDF) ISSN 0355-9483 Painosalama Oy - Turku, Finland 2014 “The Art of Adventure Be unfraid of new ideas, new theories and new philosophies have the curiosity to experiment … to test and try new ways of living and thinking. (Wilfred AS. Peterson) To my boys 4 Abstract ABSTRACT Anna Kirjavainen 18 18 RADIOSYNTHESIS AND USE OF [ F]F2 DERIVATIVES [ F]SELECTFLUOR BIS(TRIFLATE) AND [18F]ClF Department of Medicine and Turku PET Centre, University of Turku, Turku Finland Annales Universitatis Turkuensis Painosalama Oy, Turku, Finland 2014 Positron emission tomography (PET) is a non-invasive functional and metabolic imaging technique that allows the quantification of specific biological and pharmacological processes in humans and animals in vivo.
    [Show full text]
  • Synthesis of New Chiral Diaryliodonium Salts
    SYNLETT0936-52141437-2096 © Georg Thieme Verlag Stuttgart · New York 2015, 26, 1573–1577 1573 letter Syn lett M. Brown et al. Letter Synthesis of New Chiral Diaryliodonium Salts Michael Browna Marion Delormea Florence Malmedya Joel Malmgrenb Berit Olofssonb Thomas Wirth*a a School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, UK [email protected] b Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden Dedicated to Prof. Dr. Peter Vollhardt Received: 06.03.2015 reactions with carbon nucleophiles including β-keto esters.9 Accepted after revision: 09.04.2015 Conditions have been established to predict which arene is Published online: 20.05.2015 DOI: 10.1055/s-0034-1380687; Art ID: st-20156-b0156-l transferred when unsymmetrical salts are employed and this has allowed the design of unsymmetrical salts as selec- tive arene-transfer reagents. Transfer of the most electron- Abstract A structurally diverse range of chiral diaryliodonium salts poor arene or those with ortho substituents can usually be have been synthesised which have potential application in metal-free predicted under metal-free conditions, thus allowing elabo- stereoselective arylation reactions. ration in the design of a non-transferable aryl ligand which often can be recycled as the iodoarene.10 Key words arylation, diaryliodonium salts, hypervalent iodine, stereo- selective synthesis Chiral diaryliodonium salts, where one substituent con- tains a stereogenic unit, have received very limited atten- tion since the first derivative of that type, diphenyliodoni- Hypervalent iodine compounds have gained popularity um tartrate, was reported in 1907.11 Ochiai described the in recent years as extremely versatile and environmentally synthesis of 1,1′-binaphth-2-yl(phenyl)iodonium salts 1 benign reagents.
    [Show full text]
  • Jenna Raunio Base-Catalysed Condensation of Aryl Aldehydes and Valine-Derived Boroxazolidones
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Trepo - Institutional Repository of Tampere University JENNA RAUNIO BASE-CATALYSED CONDENSATION OF ARYL ALDEHYDES AND VALINE-DERIVED BOROXAZOLIDONES Master of Science Thesis Examiners: Professor Robert Franzén Academy Research Fellow Nuno R. Candeias Examiners and topic approved by the Faculty Council of the Faculty of Engineering Sciences on 8th of June 2016 II ABSTRACT RAUNIO, JENNA: Base-catalysed condensation of aryl aldehydes and valine- derived boroxazolidones Tampere University of Technology Master of Science Thesis, 50 pages, 66 Appendix pages October 2016 Master’s Degree Programme in Science and Engineering Major: Materials Chemistry Examiners: Professor Robert Franzén, Academy Research Fellow Nuno R. Candeias Keywords: imine condensation, organoboron compounds, N-B bond, boroxazol- idones, aryl aldehydes, base catalysis Imines are an important group of compounds for many chemical reactions in organic chemistry, mostly as electrophiles. In nature, imines are important for the transamina- tion reaction. N-B bonds are interesting because they can be thought of as an analogy to a C-C bond. However, unlike a C-C bond, the N-B bond is polarized. Imines and N-B bond-containing compounds both have similar potentials as pharmaceuticals. Both of these groups can have antibacterial, antifungal and anticancer effects. The N-B bond focused on in this thesis is formed when an amino acid reacts with a boron compound to form a hetero ring structure known as a boroxazolidone. In this master’s thesis, the imine condensation between aldehydes and boroxazolidones, and the N-B bond were studied.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,511,042 B2 Falla Et Al
    USOO951 1 042B2 (12) United States Patent (10) Patent No.: US 9,511,042 B2 Falla et al. (45) Date of Patent: Dec. 6, 2016 (54) N-ACYL AMINO ACID DERIVATIVES FOR JP 08-3375.15 12/1996 TREATING SKIN CONDITIONS SUCH AS E. SI36 758 CELLULTE JP 2007-15384.5 6, 2007 JP 2007-314464 A 12/2007 (75) Inventors: Timothy J. Falla, Woodinville, WA RU 224.5358 C2 1/2005 (US); Lijuan Zhang, Kenmore, WA WO 90.14429 A1 11, 1990 (US) WO 2004/069240 A2 8, 2004 WO 2006/0298.18 A2 3, 2006 WO WO20060298.18 * 3, 2006 (73) Assignee: setts biomedix INC. Bothell, WO 2006/082978 A1 8/2006 (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 Kono, Mitsuyoshi et al.JP2006183039. Jul. 2006. Machine Trans U.S.C. 154(b) by 64 days. lation. Caruso et al. (Journal of Plastic, Reconstructive & Aesthetic Surgery (21) Appl. No.: 13/703,292 (2008) 61, 1321-1324).* Thomas et al. EP1938789. Jul 2008. (22) PCT Fed: Jun. 28, 2011 Patani et al. (Chemical Reviews, 1996, vol. 96, No. 8).* Enzo Emanuele, M.D. (Cellulite: Advances in treatment: Facts and (86). PCT No.: PCT/US2O11AO42123 controversies. Clinics in Dermatology (2013) 31, 725-730).* See Luebberding et al. Cellulite: An Evidence-Based Review. Am J S 371 (c)(1), Clin Dermatol (2015) 16:243-256.* (2), (4) Date: Dec. 10, 2012 Notification of Transmittal of the International Search Report and The Written Opinion of the International Searching Authority, or the (87) PCT Pub.
    [Show full text]
  • 1 Optimization of Salt Concentration and Explanation of Two Peak
    Optimization of salt concentration and Explanation of Two Peak Percolation in Blend Solid Polymer Nanocomposite Films Anil Arya, A. L. Sharma* Centre for Physical Sciences, Central University of Punjab, Bathinda, Punjab-151001, INDIA E-mail: [email protected] Abstract The present paper report is focused toward the preparation of the flexible and freestanding blend solid polymer electrolyte films based on PEO-PVP complexed with NaPF6 by solution cast technique. The structural/morphological features of the synthesized polymer nanocomposite films have been investigated in detail using X-ray diffraction, Fourier transform infra-red spectroscopy, field emission scanning electron microscope, and atomic force microscopy + -6 -1 techniques. The film PEO-PVP+NaPF6 (Ö /Na = 8) exhibits highest ionic conductivity ~5.92×10 S cm at 40 °C and ~2.46×10-4 S cm-1 at 100 °C. The temperature dependent conductivity shows Arrhenius type behavior and activation energy decreases with the addition of salt. The high temperature (100 °C) conductivity monitoring is done + for the optimized PEO-PVP+NaPF6 (Ö /Na =8) highly conductive system and the conductivity is still maintained stable up to 160 h (approx. 7 days). The thermal transitions parameters were measured by the differential scanning calorimetry (DSC) measurements. The prepared polymer electrolyte film displays the smoother surface in addition of o salt and a thermal stability up to 300 C. The ion transference number (tion) for the highest conducting sample is found to be 0.997 and evidence that the present system is ion dominating with negligible electron contribution. Both linear sweep voltammetry and cyclic voltammetry supports the use of prepared polymer electrolyte with long-term cycle stability and thermal stability for the solid state sodium ion batteries.
    [Show full text]