Levin, 2012B; Levin, 2009, 2012)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanisms of Urodele Limb Regeneration
Received: 1 September 2017 Accepted: 4 October 2017 DOI: 10.1002/reg2.92 REVIEW Mechanisms of urodele limb regeneration David L. Stocum Department of Biology, Indiana University−Purdue University Indianapolis, Abstract 723 W. Michigan St, Indianapolis, IN 46202, USA This review explores the historical and current state of our knowledge about urodele limb regen- Correspondence eration. Topics discussed are (1) blastema formation by the proteolytic histolysis of limb tissues David L. Stocum, Department of Biology, Indiana to release resident stem cells and mononucleate cells that undergo dedifferentiation, cell cycle University−Purdue University Indianapolis, 723 W. Michigan St, Indianapolis, IN 46202, USA. entry and accumulation under the apical epidermal cap. (2) The origin, phenotypic memory, and Email: [email protected] positional memory of blastema cells. (3) The role played by macrophages in the early events of regeneration. (4) The role of neural and AEC factors and interaction between blastema cells in mitosis and distalization. (5) Models of pattern formation based on the results of axial reversal experiments, experiments on the regeneration of half and double half limbs, and experiments using retinoic acid to alter positional identity of blastema cells. (6) Possible mechanisms of distalization during normal and intercalary regeneration. (7) Is pattern formation is a self-organizing property of the blastema or dictated by chemical signals from adjacent tissues? (8) What is the future for regenerating a human limb? KEYWORDS limb, mechanisms, regeneration, review, urodele 1 INTRODUCTION encouraged the idea that mammals have retained a latent ances- tral genetic circuitry for appendage regeneration that might be Evidence from the fossil record indicates that urodeles (salaman- activated by appropriate interventions and applied to the goal of ders and newts) of the Permian period (the last period of the Pale- regenerating a human limb. -
A Statistical Study of Regeneration in Two Species of Crustacea by W
349 A STATISTICAL STUDY OF REGENERATION IN TWO SPECIES OF CRUSTACEA BY W. E. AGAR, Professor of Zoology, University of Melbourne. (Received 22nd April, 1930.) (With Three Text-figures.) CONTENTS. PAGE I. Introduction 349 II. Methods of culture 350 III. Growth and sex 351 IV. The material available . .351 V. Structure of the antenna 352 VI. The operation . • . 353 VII. General nature of the regeneration 353 VIII. Measuring and recording the amount of regeneration .... 355 IX. The influence of certain factors on regeneration ..... 357 (a) The segment through which amputation is performed . -357 (6) The level of amputation within the segment .... 357 W Age 358 (d) The simultaneous regeneration of the other antenna . 358 (e) The previous regeneration of the other antenna . -359 (/) Food 360 (g) General internal conditions of the animal 360 (h) General external conditions 361 X. The nature of the intrinsic factors controlling regeneration as disclosed by statistical analysis 362 XI. Discussion of results .......... 365 XII. Summary 367 I. INTRODUCTION. THIS study of regeneration in the two Cladoceran species, Simocephalus gibbosus and Daphnia carinata, grew out of a Lamarckian experiment on the possibility of improving (or otherwise altering) the power of regeneration in these animals by making them regenerate the antenna in many successive generations. Up to the present, these experiments have been completely negative in this respect, though they have furnished much data concerning the process of regeneration. The power of regeneration in a line of Simocephalus in which the antenna has been amputated a^»egenerated for seventy-four successive generations, and in a line of Daphnia for eighty generations, shows no difference from the power of regeneration of the JEB'VIliv 23 35° W. -
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B. -
The Molecular Basis of Amphibian Limb Regeneration: Integrating the Old with the New David M
seminars in CELL & DEVELOPMENTAL BIOLOGY, Vol. 13, 2002: pp. 345–352 doi:10.1016/S1084–9521(02)00090-3, available online at http://www.idealibrary.com on The molecular basis of amphibian limb regeneration: integrating the old with the new David M. Gardiner∗, Tetsuya Endo and Susan V. Bryant Is regeneration close to revealing its secrets? Rapid advances classical studies to guide the identification of the in technology and genomic information, coupled with several functions of this large set of genes. useful models to dissect regeneration, suggest that we soon The challenge of understanding the mechanisms may be in a position to encourage regeneration and enhanced controlling the biology of complex systems is hardly repair processes in humans. unique to regeneration biology. In recent years, techniques have become available to identify all the Key words: limb / regeneration / pattern formation / molecular components of a system, and to study the urodele / fibroblast / dedifferentiation / stem cells interactions between those components. Key to the success of such an approach is the ability to identify © 2002 Elsevier Science Ltd. All rights reserved. the molecules, while at the same time having an un- derstanding of the cell and tissue level properties of the system. The goal of this reviewis to discuss key insights from the classical literature as well as more recent molecular findings. We focus on three criti- Introduction cally important cell types: fibroblasts, epidermis and nerves. Each of these is necessary, and together they The study of amphibian limb regeneration has a rich are sufficient for the regeneration of a limb. Although experimental history. -
The Restriction of the Heart Morphogenetic Field in Xenopus Levis
DEVELOPMENTAL BIOLOGY 140,328-336 (1990) The Restriction of the Heart Morphogenetic Field in Xenopus Levis AMY K. SATER’ AND ANTONE G. JACOBSON Department of Zoology, Center for Devebpmental Biology, University of Texas, Austin, Texa.s 78712 Accepted April 12, 1990 We have examined the spatial restriction of heart-forming potency in Xenopus 1ueG.sembryos, using an assay system in which explants or explant recombinates are cultured in hanging drops and scored for the formation of a beating heart. At the end of neurulation at stage 20, the heart morphogenetic field, i.e., the area that is capable of heart formation when cultured in isolation, includes anterior ventral and ventrolateral mesoderm. This area of developmental potency does not extend into more posterior regions. Between postneurula stage 23 and the onset of heart morphogenesis at stage 28, the heart morphogenetic field becomes spatially restricted to the anterior ventral region. The restriction of the heart morphogenetic field during postneurula stages results from a loss of developmental potency in the lateral mesoderm, rather than from ventrally directed morphogenetic movements of the lateral mesoderm. This loss of potency is not due to the inhibition of heart formation by migrating neural crest cells. During postneurula stages, tissue interactions between the lateral mesoderm and the underlying anterior endoderm support the heart-forming potency in the lateral mesoderm. The lateral mesoderm loses the ability to respond to this tissue interaction by stages 27-28. We speculate that either formation of the third pharyngeal pouch during stages 23-27 or lateral inhibition by ventral mesoderm may contribute to the spatial restriction of the heart morphogenetic field. -
The Evolution of Life According to the Law of Syntropy
Syntropy 2011 (1): 39-49 ISSN 1825-7968 The Evolution of Life According to the law of syntropy Ulisse Di Corpo1 and Antonella Vannini2 Abstract The theory of syntropy suggests that the underlying mechanism of macroevolution is characterized by attractors and retrocausality, but it does not contradict the theory of evolution which would remain valid within microevolution. 1. The naturalist view of evolution Naturalism was born in the nineteenth century in opposition to the spiritualistic ideology of the Romantic period and is based on the premise that all natural phenomena can be explained using causality. However, the energy/momentum/mass equation shows that classical causality is governed by the law of entropy, i.e. the tendency to dissipate energy and matter to be distributed randomly. Albert Szent-Gyorgyi (1893-1986), Nobel Prize for Physiology and discoverer of vitamin C, stated: It is impossible to explain the qualities of organization and order of living systems starting from the entropic laws of the macrocosm. This is one of the paradoxes of modern biology: the properties of living systems are opposed to the law of entropy that governs the macrocosm (Szent-Gyorgyi, 1977). While entropy is a universal law that leads to the disintegration of any form of organization, Szent- Gyorgyi concluded that syntropy is the universal law of life, which is demonstrated constantly by the existence of living systems. For Gyorgyi syntropy is symmetrical to the law of entropy and leads living systems towards more complex and harmonious forms of organization. The main problem, according to Gyorgyi, is that: We see a profound difference between organic and inorganic systems .. -
(DRIP) Glossary of Terms
DRIP GLOSSARY Advance Regeneration - Seedling or saplings that are present in the understory prior to removal of any overstory trees. Age Class - A group of trees in a stand that are at or nearly the same age. Artificial Regeneration – Creation of a new age class by direct seeding, or by planting seedlings or cuttings, or by equipment scarification. Basal Area - Total area of cross section of tree stems measured at breast height (4 feet above the ground), usually expressed in square feet per acre. Biological Diversity - The distribution and abundance of different plant and animal communities. The number and equitability of communities, with landscapes possessing more and equitably distributed communities having the highest diversity. Clearcut - An even-age method of regenerating a stand through the removal, in a single cut, of all trees larger than seedling. The new age class develops in a fully-exposed microclimate. In some situations small numbers of trees may be left within the clear-cut opening for some special purpose. Composition, Stand - The proportion of each tree species in a stand expressed as a percentage of either the total number, basal area, or volume of all tree species in the stand. Community – An assemblage of two or more populations living together in the same geographical area at the same time. Conditional migrator – Deer that move shorter distances and/or migrate infrequently compared to obligate migrators. This occurs primarily in the southern Upper Peninsula and northern Lower Peninsula where winter is typically mild and severe winters occur periodically or 2 out of 10 years. Conditional Summer Range – Range occupied by conditional migratory deer during the snow free seasons of spring, summer and fall. -
The Decline of Soft Inheritance
Swarthmore College Works Biology Faculty Works Biology 2011 The Decline Of Soft Inheritance Scott F. Gilbert Swarthmore College, [email protected] Follow this and additional works at: https://works.swarthmore.edu/fac-biology Part of the Biology Commons Let us know how access to these works benefits ouy Recommended Citation Scott F. Gilbert. (2011). "The Decline Of Soft Inheritance". Transformations Of Lamarckism: From Subtle Fluids To Molecular Biology. 121-125. https://works.swarthmore.edu/fac-biology/360 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. 12 The Decline of Soft Inheritance Scott Gilbert Soft inheritance sounds opposed to hard fact, a weak analogue kind of inheritance as opposed to the digital inheritance of the chromosomes. But there was, in fact, a “ soft, ” developmental version of inheritance during the early twentieth century, and evolution was understood by many leading biologists in terms of the rules of devel- opment. In 1893, the evolutionary champion Thomas Huxley wrote, “ Evolution is not a speculation but a fact; and it takes place by epigenesis. ” He didn’t say that it takes place by natural selection: he said that it takes place by epigenesis, by develop- ment. He was looking at a level different from the struggle of variations within a population. Rather, he was looking at the origin of variation. Before World War I, the fi elds of genetics and development were united in the science of heredity ( Coleman 1971 ; Gilbert, Opitz, and Raff 1996 ). -
A Glossary of Common Forestry Terms
W 428 A Glossary of Common Forestry Terms A Glossary of Common Forestry Terms David Mercker, Extension Forester University of Tennessee acre artificial regeneration A land area of 43,560 square feet. An acre can take any shape. If square in shape, it would measure Revegetating an area by planting seedlings or approximately 209 feet per side. broadcasting seeds rather than allowing for natural regeneration. advance reproduction aspect Young trees that are already established in the understory before a timber harvest. The compass direction that a forest slope faces. afforestation bareroot seedlings Establishing a new forest onto land that was formerly Small seedlings that are nursery grown and then lifted not forested; for instance, converting row crop land without having the soil attached. into a forest plantation. AGE CLASS (Cohort) The intervals into which the range of tree ages are grouped, originating from a natural event or human- induced activity. even-aged A stand in which little difference in age class exists among the majority of the trees, normally no more than 20 percent of the final rotation age. uneven-aged A stand with significant differences in tree age classes, usually three or more, and can be basal area (BA) either uniformly mixed or mixed in small groups. A measurement used to help estimate forest stocking. Basal area is the cross-sectional surface area (in two-aged square feet) of a standing tree’s bole measured at breast height (4.5 feet above ground). The basal area A stand having two distinct age classes, each of a tree 14 inches in diameter at breast height (DBH) having originated from separate events is approximately 1 square foot, while an 8-inch DBH or disturbances. -
Echinodermata, Ophiuroidea)
Vol. 16: 105–113, 2012 AQUATIC BIOLOGY Published online July 19 doi: 10.3354/ab00435 Aquat Biol Slow arm regeneration in the Antarctic brittle star Ophiura crassa (Echinodermata, Ophiuroidea) Melody S. Clark*, Terri Souster British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK ABSTRACT: Regeneration of arms in brittle stars is thought to proceed slowly in low temperature environments. Here a survey of natural arm damage and arm regeneration rates is documented in the Antarctic brittle star Ophiura crassa. This relatively small ophiuroid, a detritivore found amongst red macroalgae, displays high levels of natural arm damage and repair. This is largely thought to be due to ice damage in the shallow waters it inhabits. The time scale of arm regener- ation was measured in an aquarium-based 10 mo experiment. There was a delayed regeneration phase of 7 mo before arm growth was detectable in this species. This is 2 mo longer than the longest time previously described, which was in another Antarctic ophiuroid, Ophionotus victo- riae. The subsequent regeneration of arms in O. crassa occurred at a rate of approximately 0.16 mm mo−1. To date, this is the slowest regeneration rate known of any ophiuroid. The confir- mation that such a long delay before arm regeneration occurs in a second Antarctic species pro- vides strong evidence that this phenomenon is yet another characteristic feature of Southern Ocean species, along with deferred maturity, slowed growth and development rates. It is unclear whether delayed initial regeneration phases are adaptations to, or limitations of, low temperature environments. -
Regeneration According to Spallanzani
DEVELOPMENTAL DYNAMICS 238:2357–2363, 2009 REVIEWS–A PEER REVIEWED FORUM Regeneration According to Spallanzani Panagiotis A. Tsonis* and Timothy P. Fox In this report, we elaborate on a letter that Spallanzani wrote to Bonnet reporting his findings on regeneration in worms, snails, tadpoles, and salamanders. The letter (original in French and translated in English; see Supplementary Material, which is available online) was written to discuss whether or not regeneration in these animals supports Bonnet’s theory on germs. The letter includes several drawings by Spallanzani, which were not published in the Prodromo, his book on Animal Reproduction. Spallanzani made important observations, which he described with considerable detail, but overall he was unable to confidently support Bonnet’s theory. This letter reflects the way of thinking in the 18th century that shaped the important scientific fields of regeneration and reproduction. Developmental Dynamics 238:2357–2363, 2009. © 2009 Wiley-Liss, Inc. Key words: Spallanzani; regeneration; animal reproduction Accepted 4 June 2009 INTRODUCTION of Creation. On the contrary, epigene- 1740 and on worm regeneration in sis allowed space for questioning the 1744 (Savioz, 1948; Dinsmore, 1991) Rooted in Aristotelian philosophy, the role of God. As expected when the first shocked the scientific world. Re´aumur belief that lower animals were gener- experiments in the 18th century re- and Bonnet were preformationists ated spontaneously from decay pre- vealed the regenerative power of ani- and, in fact, Re´aumur believed that vailed until the 17th century when mals, these two competing theories germs were contained within parts re- Redi in 1668 carried out well-con- trolled experiments that provided the were called upon to explain this new sponsible for regeneration. -
A Glossary for Avian Conservation Biology
This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Wilson Bull., 106(1), 1994, pp. 121-137 A GLOSSARY FOR AVIAN CONSERVATION BIOLOGY ROLF R. KOFORD,' JOHN B. DUNNING, JR.,2 CHRISTINE A. RIBIC,3 AND DEBORAH M. FINCH4 ABSTRACT.-This glossary provides standard definitions for many of the terms used in avian conservation biology. We compiled these definitions to assist communication among researchers, managers, and others involved in the Neotropical Migratory Bird Conservation Program, also known as Partners in Flight. We used existing glossaries and recent literature to prepare this glossary. The cited sources were not necessarily the first ones to use the terms. Many definitions were taken verbatim from the cited source material. Others were modified slightly to clarify the meaning. Definitions that were modified to a greater extent are indicated as being adapted from the originals. Terms that have been used in more than one way by different authors are listed with numbered alternative definitions if the definitions differ substantially. Received 30 March 1993, accepted 23 July 1993. GLOSSARY Accuracy: the closeness of computations or estimates to the exact or true value (Marriott 1990:2). After-hatching-year (AHY) bird: a bird in at least its second calendar year of life (Pyle et al. 1987:27; Canadian Wildlife Service and U.S. Fish and Wildlife Service 1991:5-47). After-second-year (ASY) bird: a bird in at least its third calendar year of life (Pyle et al. 1987:27; Canadian Wildlife Service and U.S.