Photoelectron Spectroscopy on Atoms, Molecules and Clusters

Total Page:16

File Type:pdf, Size:1020Kb

Photoelectron Spectroscopy on Atoms, Molecules and Clusters Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 375 Photoelectron Spectroscopy on Atoms, Molecules and Clusters The Geometric and Electronic Structure Studied by Synchrotron Radiation and Lasers TORBJÖRN RANDER ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 978-91-554-7047-0 2007 urn:nbn:se:uu:diva-8343 ! " #! !$ %! & ' "!$ ( %$ $ #! ) * + ,$ %! - ' ) ) ) ! ( .$ * $ $ / $ $ 0)12 /334343$ * " 5 $ %! " ! " ! ! 5 " ! 6$ 0 ! ! 7 8 ,91 *:8 *:; *:<= 2= 2 < > ! " " ! ! & "!$ ! 3 ! 7;#)> ! $ ! ! 7 #)> *" 7(*)> 3 " 3 72';*?)> ! $ , " ! ! 7?%> +@3# ! 7+#> & $ %! " & " 7+> ! $ ( ! ! ,9 1 8 $ %! ! 2 ! !A ! " !2 ! ! $ %! " ! ,9 1 ! ! ,9 1 ! ! ! 5 $ %! ! 8 < ; " * " ! " $ %! !53 & ! 2 <$ . 2 ! ! & " " $ %! !53 & & !A ! " ! ! " 3 <$ ? ' . *5 ' - ;3 ! 7;#)> ( *" 7(*)> 23!! 3 72';*?)> ! 7 #)> " 3 7 ?> ) # 8" 1 ! *" ; < + " , ! , ! " #" $ % &'(" " )*+&,-, " B % 6C ( 0))2 D3D4 0)12 /334343 3/4 7! :: $5$: E F 3/4> “Och kallas därför höga bergen hos oss fjäll, av orsak att där oppå inga trän eller örter växa, utan de är glatta och bara såsom fjäll uppå en fisk” – Olof Rudbäck d. ä. ListofPapers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Experimental evidence for molecular ultrafast dissociation in O2 clusters T. Rander, M. Lundwall, A. Lindblad, G. Öhrwall, M. Tchaplyguine, S. Svensson, O. Björneholm Eur. Phys. J. D 42, 253-257 (2007) II Suppression of the ultrafast dissociation of bromomethane molecules in clusters T. Rander, A. Lindblad, A. Rosso, H. Bergersen, G. Öhrwall, S. Svensson, O. Björneholm In manuscript III Core-level electron spectroscopy on the sodium dimer Na 2p level T. Rander, J. Schulz, M. Huttula, A. Mäkinen, M. Tchaplyguine, S. Svensson, G. Öhrwall, O. Björneholm, S. Aksela, H. Aksela Phys. Rev. A 75, 032510 (2007) IV The diffusion behavior of O2 doped on large Ar clusters T. Rander, A. Lindblad, M. Lundwall, M. Tchaplyguine, G. Öhrwall, S. Svensson, O. Björneholm Submitted to J. Chem. Phys. V The far from equilibrium structure of argon clusters doped with krypton or xenon A. Lindblad, H. Bergersen, T. Rander, M. Lundwall, G. Öhrwall, M. Tchaplyguine, S. Svensson, O. Björneholm Phys. Chem. Chem. Phys. 8, 1899-1905 (2006) 5 VI The role of molecular polarity in cluster local structure studied by photoelectron spectroscopy A. Rosso, T. Rander, H. Bergersen, A. Lindblad, M. Lundwall, S. Svensson, M. Tchaplyguine, G. Öhrwall, L. J. Sæthre, O. Björneholm Chem. Phys. Lett 435, 79-83 (2007) VII Shakedown in core photoelectron spectra from aligned laser-excited Na atoms J. Schulz, M. Tchaplyguine, T. Rander, O. Björneholm, S. Svensson, R. Sankari, S. Heinäsmäki, H. Aksela, S. Aksela, E. Kukk Phys. Rev. A 72, 10702-1-4 (2005) VIII Characterization of weakly excited final states by shakedown spectroscopy of laser-excited potassium J. Schulz, S. Heinäsmäki, R. Sankari, T. Rander, A. Lindblad, H. Bergersen, G. Öhrwall, S. Svensson, E. Kukk, S. Aksela, H. Aksela Phys. Rev. A 74, 12705-1-6 (2006) Reprints were made with permission from the publishers. 6 The following is a list of papers to which I have contributed, but which are not included in this thesis. Observation of elastic scattering effects on photoelectron angular distributions in free Xe clusters G. Öhrwall, M. Tchaplyguine, M. Gisselbrecht, M. Lundwall, R. Feifel, T. Rander, J. Schulz, R. R. T. Marinho, A. Lindgren, S. L. Sörensen, S. Svensson, O. Björneholm J. Phys. B 36, 3937-49 (2003) Femtosecond Interatomic Coulombic Decay in Free Neon Clusters: Large Lifetime Differences between Surface and Bulk G. Öhrwall, M. Tchaplyguine, M. Lundwall, R. Feifel, H. Bergersen, T. Rander, A. Lindblad, J. Schulz, S. Peredkov, S. Barth, S. Marburger, U. Hergenhahn, S. Svensson, and O. Björneholm Phys. Rev. Lett. 93, 173401 (2004) Final state selection in the 4p photoemission of Rb by combining laser spectroscopy with soft-x-ray photoionization J. Schulz, M. Tchaplyguine, T. Rander, H. Bergersen, A. Lindblad, G. Öhrwall, S. Svensson. S. Heinäsmäki, R. Sankari, S. Osmekhin, S. Aksela, H. Aksela Phys. Rev. A 72, 32718-1-4 (2005) The electronic structure of free water clusters probed by Auger electron spectroscopy G. Öhrwall, R. F. Fink, M. Tchaplyguine, L. Ojamae, M. Lundwall, R. R. T. Marinho, A. N. de Brito, S. L. Sörensen, M. Gisselbrecht, R. Feifel, T. Rander, A. Lindblad, J. Schulz, L. J. Sæthre, N. Mårtensson, S. Svensson, O. Björneholm J. Chem. Phys 123, 54310-1-10 (2005) Ioniclike energy structure of neutral core-excited states in free Kr clusters S. Peredkov, A. Kivimäki, S. L. Sörensen, J. Schulz, N. Mårtensson, G. Öhrwall, M. Lundwall, T. Rander, A. Lindblad, H. Bergersen, S. Svensson, O. Björneholm, M. Tchaplyguine Phys. Rev. A 72, 21201-1-4 (2005) 7 Postcollision interaction in noble gas clusters: observation of differences in surface and bulk line shapes A. Lindblad, R. F. Fink, H. Bergersen, M. Lundwall, T. Rander, R. Feifel, G. Öhrwall, M. Tchaplyguine, U. Hergenhahn, S. Svensson, O. Björneholm J. Chem. Phys. 123, 211101-1-4 (2005) Enhanced surface sensitivity in AES relative to XPS observed in free Ar clusters M. Lundwall, M. Tchaplyguine, G. Öhrwall, A. Lindblad, S. Peredkov, T. Rander, S. Svensson, O. Björneholm Surf. Sci. 594, 12-19 (2005) Photon energy dependent intensity variations observed in Auger spectra of free argon clusters M. Lundwall, A. Lindblad, H. Bergersen, T. Rander, G. Öhrwall, M. Tchaplyguine, S. Peredkov, S. Svensson, O. Björneholm J. Phys. B 39, 3321-33 (2006) Shell-dependent core-level chemical shifts observed in free xenon clusters M. Lundwall, R. F. Fink, M. Tchaplyguine, A. Lindblad, G. Öhrwall, H. Bergersen, S. Peredkov, T. Rander, S. Svensson, O. Björneholm J. Phys. B 39, 5225-35 (2006) Lineshapes in carbon 1s photoelectron spectra of methanol clusters M. Abu-samha, K. K. Børve, L. J. Sæthre, G. Öhrwall, H. Bergersen, T. Rander, O. Björneholm, M. Tchaplyguine Phys. Chem. Chem. Phys 8, 2473-82 (2006) Preferential site occupancy of krypton atoms on free argon-cluster surfaces M. Lundwall, A. Lindblad, H. Bergersen, T. Rander, G. Öhrwall, M. Tchaplyguine, S. Svensson, O. Björneholm J. Chem. Phys 125, 14305-1-7 (2006) Laser excitation combined with 2p photoionization and Auger decay of potassium K. Jänkälä, R. Sankari, J. Schulz, M. Huttula, A. Calo, S. Heinäsmäki, S. Fritsche, T. Rander, S. Svensson, S. Aksela, H. Aksela Phys. Rev. A 73, 22720-1-8 (2006) 8 Magnetron-based source of neutral metal vapors for photoelectron spectroscopy M. Tchaplyguine, S. Peredkov, H. Svensson, J. Schulz, G. Öhrwall, M. Lundwall, T. Rander, A. Lindblad, H. Bergersen, S. Svensson, M. Gisselbrecht, S. L. Sorensen, L. Gridneva, N. Mårtensson, O. Björneholm Rev. Sci. Instrum. 77, 033106 (2006) 5p photoemission from laser-excited cesium atoms J. Schulz, M. Määtä, S. Heinäsmäki, M. Huttula, R. Sankari, E. Kukk, T. Rander, S. Svensson, S. Aksela, H. Aksela Phys. Rev. A 73, 062721 (2006) Self-assembled heterogeneous argon/neon core-shell clusters studied by photoelectron spectroscopy M. Lundwall, W. Pokapanich, H. Bergersen, A. Lindblad, T. Rander, G. Öhrwall, M. Tchaplyguine, S. Barth, U. Hergenhahn, S. Svensson, O. Björneholm J. Chem. Phys. 126, 214706 (2007) Synchrotron radiation study of chloromethane clusters: Effects of polarizability and dipole moment on core level chemical shifts A. Rosso, A. Lindblad, M. Lundwall, T. Rander, S. Svensson, M. Tchaplyguine, G. Öhrwall, O. Björneholm J. Chem. Phys. 127, 024302 (2007) Free nanoscale sodium clusters studied by core-level photoelectron spectroscopy S. Peredkov, G. Öhrwall, J. Schulz, M. Lundwall, T. Rander, A. Lindblad, H. Bergersen, A. Rosso, W. Pokapanich, N. Mårtensson, S. Svensson, S. L. Sorensen, O. Björneholm Phys. Rev. B 75, 235407 (2007) Direct observation of the non-supported metal nanoparticle electron density of states by X-ray photoelectron spectroscopy M. Tchaplyguine, S. Peredkov, A. Rosso, J. Schulz, G. Öhrwall, M. Lundwall, T. Rander, A. Lindblad, H. Bergersen, W. Pokapanich, S. Svensson, S. L. Sorensen, N. Mårtensson, O. Björneholm Eur. Phys. J. D 45, 295 (2007) 9 Localized versus delocalized excitations just above the 3d threshold in krypton clusters studied by Auger electron spectroscopy M. Tchaplyguine, A. Kivimäki, S. Peredkov, S. L. Sorensen, G. Öhrwall, J. Schulz, M. Lundwall, T. Rander, A. Lindblad, A. Rosso, S. Svensson, N. Mårtensson, O. Björneholm J. Chem. Phys. 127, 124314 (2007) 10 Contents List of Papers . 3 Comments on my own participation . 12 1 Populärvetenskaplig sammanfattning . 15 1.1 De olika experimenten . 15 1.2 Experimentella metoder . 17 1.2.1 Elektromagnetisk strålning . 17 1.2.2 Elektronspektroskopi . 17 1.3 Beräkningar . 19 1.4 Resultat . 19 2 Introduction . 21 3 Fundamental concepts . 23 3.1 The electronic structure of matter . 23 3.1.1 Atoms . 23 3.1.2 Molecules . 25 3.1.3 Clusters and solids . 27 3.2 The geometric structure of matter . 28 3.3 The photoelectric effect . 30 4 Experimental equipment . 33 4.1 Vacuum . 33 4.2 Synchrotron radiation . 34 4.3 Laser Light . 36 4.4 The MAX laboratory and beam-line I411 . 37 4.5 Sample production . 39 4.5.1
Recommended publications
  • X-Ray Photoelectron Spectroscopy (XPS)
    XX--RayRay PhotoelectronPhotoelectron SpectroscopySpectroscopy (XPS)(XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Electron Spectroscopy for Chemical Analysis (ESCA) • The basic principle of the photoelectric effect was enunciated by Einstein [1] in 1905 E = hν There is a threshold in frequency below which light, regardless of intensity, fails to eject electrons from a metallic surface. hνc > eΦm where h is the Planck constant ( 6.62 x 10-34 J s ) and ν– the frequency of the radiation • In photoelectron spectroscopy such XPS, Auger and UPS, the photon energies range from 20 -1500 eV (even higher in the case of Auger, up to 10,000eV) much greater than any typical work function values (2-5 eV). • In these techniques, the kinetic energy distribution of the emitted photoelectrons (i.e. the number of emitted electrons as a function of their kinetic energy) can be measured using any appropriate electron energy analyzer and a photoelectron spectrum can thus be recorded. [1] Eintein A. Ann. Physik 1905, 17, 132. • By using photo-ionization and energy-dispersive analysis of the emitted photoelectrons the composition and electronic state of the surface region of a sample can be studied. • Traditionally, these techniques have been subdivided according to the source of exciting radiation into : • X-ray Photoelectron Spectroscopy (XPS or ESCA) - using soft x-ray (200 - 1500 eV) radiation to examine core-levels. • Ultraviolet Photoelectron Spectroscopy (UPS) - using vacuum UV (10 - 45 eV) radiation to examine valence levels. • Auger Electron Spectroscopy (AES or SAM) – using energetic electron (1000 – 10,000 eV) to examine core-levels. • Synchrotron radiation sources have enabled high resolution studies to be carried out with radiation spanning a much wider and more complete energy range ( 5 - 5000+ eV ) but such work will remain, a very small minority of all photoelectron studies due to the expense, complexity and limited availability of such sources.
    [Show full text]
  • Roadmap for Photoelectron Spectroscopy
    Roadmap for Photoelectron Spectroscopy Prepared on behalf of EPSRC by David Payne, Imperial College London Preface This roadmap has been prepared in consultation with the community over the last few years, during which time there have been a number of significant developments that have either directly or indirectly affected the PES community. These include the recently announced EPSRC Mid-Range Facility for XPS at the Research Complex at Harwell (HarwellXPS), as well new equipment being acquired as part of the Sir Henry Royce Institute. Whilst the conclusions from this exercise, and the recommendations remain unchanged, an exercise is now underway to capture some of the impacts of these changes. It is planned for an updated roadmap to become available in the next 6 months. 2 Contents page 1. Executive Summary...............................................................................................................................................................................................................................................................3 2. Key Findings and Recommendations...................................................................................................................................................................................................4 3. Introduction........................................................................................................................................................................................................................................................................................6
    [Show full text]
  • Unit 3 :Electronic Spectroscopy Contents
    UNIT 3 :ELECTRONIC SPECTROSCOPY CONTENTS • PHOTOELECTRON SPECTROSCOPY-INTRODUCTION • PRINCIPLE • INSTRUMENTATION INTRODUCTION • Photoelectron spectroscopy (PES) is the energy measurements of photoelectrons emitted from solids, gases, or liquids by the photoelectric effect. • Depending on the source of ionization energy, PES can be divided accordingly into Ultraviolet Photoelectron Spectroscopy (UPS) and X- ray Photoelectron Spectroscopy The photoelectric effect is a phenomenon in which electrons are ejected from the surface of a metal when light is incident on it. These ejected electrons are called photoelectrons. It is important to note that the emission of photoelectrons and the kinetic energy of the ejected photoelectrons is dependent on the frequency of the light that is incident on the metal’s surface. The process through which photoelectrons are ejected from the surface of the metal due to the action of light is commonly referred to as photoemission. Explaining the Photoelectric Effect: The Concept of Photons The photoelectric effect cannot be explained by considering light as a wave. However, this phenomenon can be explained by the particle nature of light, in which light can be visualized as a stream of particles of electromagnetic energy. These ‘particles’ of light are called photons. The energy held by a photon is related to the frequency of the light via Planck’s equation: E = h휈 = hc/λ Where, •E denotes the energy of the photon •h is Planck’s constant •휈 denotes the frequency of the light •c is the speed of light (in a vacuum) •λ is the wavelength of the light Threshold Energy for the Photoelectric Effect For the photoelectric effect to occur, the photons that are incident on the surface of the metal must carry sufficient energy to overcome the attractive forces that bind the electrons to the nuclei of the metals.
    [Show full text]
  • Introduction to X-Ray Photoelectron Spectroscopy
    Introduction to x-ray photoelectron spectroscopy Cite as: J. Vac. Sci. Technol. A 38, 063204 (2020); https://doi.org/10.1116/6.0000412 Submitted: 22 June 2020 . Accepted: 31 August 2020 . Published Online: 24 September 2020 Fred A. Stevie, and Carrie L. Donley COLLECTIONS Paper published as part of the special topic on Special Topic Collection: Reproducibility Challenges and Solutions ARTICLES YOU MAY BE INTERESTED IN Assessment of the frequency and nature of erroneous x-ray photoelectron spectroscopy analyses in the scientific literature Journal of Vacuum Science & Technology A 38, 061204 (2020); https:// doi.org/10.1116/6.0000685 XPS guide: Charge neutralization and binding energy referencing for insulating samples Journal of Vacuum Science & Technology A 38, 031204 (2020); https:// doi.org/10.1116/6.0000057 Procedure which allows the performance and calibration of an XPS instrument to be checked rapidly and frequently Journal of Vacuum Science & Technology A 38, 043206 (2020); https:// doi.org/10.1116/6.0000224 J. Vac. Sci. Technol. A 38, 063204 (2020); https://doi.org/10.1116/6.0000412 38, 063204 © 2020 Author(s). ARTICLE avs.scitation.org/journal/jva Introduction to x-ray photoelectron spectroscopy Cite as: J. Vac. Sci. Technol. A 38, 063204 (2020); doi: 10.1116/6.0000412 Submitted: 22 June 2020 · Accepted: 31 August 2020 · View Online Export Citation CrossMark Published Online: 24 September 2020 Fred A. Stevie1,a) and Carrie L. Donley2,b) AFFILIATIONS 1Analytical Instrumentation Facility, North Carolina State University, Raleigh, North Carolina 27695 2Chapel Hill Analytical and Nanofabrication Laboratory, University of North Carolina, Chapel Hill, North Carolina 27599 Note: This paper is part of the Special Topic Collection on Reproducibility Challenges and Solutions.
    [Show full text]
  • Electron Spectroscopy of Rutile-Type Metal Oxides Sigrun Eriksen B.Sc
    1 Electron Spectroscopy of Rutile-type Metal Oxides r Sigrun Eriksen B.Sc. A.R.C.S. A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Membership of Imperial College. Department of Chemistry Imperial College London SW7 2AZ August 1987 2 Abstract This thesis presents a study of defective and defect-free rutile TiO (110) surfaces, using ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and high resolution electron energy loss spectroscopy (HREELS). The use of argon ion and electron bombardment for creation of surface defects is investigated. An oxygen -20 -2 desorption cross section of 1.5 x 10 cm is found for electron irradiation, and a desorption mechanism suggested. An electronic excitation due to the oxygen vacancies is identified; this modifies the effective surface dielectric constant. The oscillator strength for this excitation is found to be 0.1, indicating an allowed transition. The adsorption of water on the TiO2(110) surface is also studied. From HREELS and He(II) UPS, it is found that water will not adsorb on a defect-free TiO^MIO) surface at 300K, but will adsorb on a surface in which oxygen vacancy defects have been created. It is shown that this adsorption involves dissociation of the water molecule, leaving 0-H species bonded to the surface. Finally, the effects of oxygen vacancies on the rutile SnO^MIO) surface are investigated. It is confirmed that argon ion bombardment gives rise to selective oxygen loss, and the Sn species on the 2 + 4 + resulting defective surface are Sn and Sn ; total oxygen loss is never greater than 502.
    [Show full text]
  • X-Ray Photoelectron Spectroscopy
    XX--rayray PhotoelectronPhotoelectron SpectroscopySpectroscopy RogerRoger Smart,Smart, StewartStewart McIntyre,McIntyre, MikeMike Bancroft,Bancroft, IgorIgor BelloBello && FriendsFriends DepartmentDepartment ofof PhysicsPhysics andand MaterialsMaterials ScienceScience CityCity UniversityUniversity ofof HongHong KongKong SurfaceSurface ScienceScience Western,Western, UWOUWO Introduction Photoelectric effect Photoelectric effect Einstein, Nobel Prize 1921 Photoemission as an analytical tool Kai Siegbahn, Nobel Prize 1981 XPS, also known as ESCA, is the most widely used surface analysis technique because of its relative simplicity in use and data interpretation. XPS X-ray Photoelectron Spectroscopy ESCA Electron Spectroscopy for Chemical Analysis UPS Ultraviolet Photoelectron Spectroscopy PES Photoemission Spectroscopy AnalyticalAnalytical MethodsMethods --- X-ray Photoelectron Spectroscopy (XPS) Photon ν ϕ hν KE = h - (EB+ ) Kinetic Photoelectron Energy E 0 v XPS spectrum: φ Intensities of photoelectrons 0 Ef versus EB or KE VB Binding — Elemental identification and Energy 3s chemical state of element 2p 2s — Relative composition of the constituents in the surface region 1s — Valence band structure Binding Energy Reference K.E. = hνφ -B.E..F - sample - (φφ- ) K.E. = hνφ -B.E. - spec sample .F sample- = hνφ -B.E. - e .F spec Vacuum level Vacuum level φspec φsample Fermi level Fermi level B.E.F core level B.E..F = hνφ - K.E. - spec Instrumentation • Electron energy analyzer • X-ray source • Ar ion gun • Neutralizer • Vacuum system • Electronic controls • Computer system Ultrahigh vacuum system < 10-9 Torr (< 10-7 Pa) • Detection of electrons • Avoid surface reactions/ contaminations Background: Photoelectrons with energy loss Peak: Photoelectrons without energy loss Relative binding energies and ionization cross-section for U For p, d and f peaks, two peaks are observed.
    [Show full text]
  • And Auger Electron Spectroscopy (AES)
    6/9/2008 Advanced Materials Characterization Workshop X‐ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) Rick Haasch, Ph.D. Supported by the U.S. Department of Energy under grants DEFG02-07-ER46453 and DEFG02-07-ER46471 © 2008 University of Illinois Board of Trustees. All rights reserved. What is Surface Analysis? >1000 nm 100 nm <10 nm Bulk Analysis Thin- Thin-filmfilm Analysis Surface Analysis The Study of the Outer-Most Layers of Materials (~10 nm). 2 © 2008 University of Illinois Board of Trustees. All rights reserved. 1 6/9/2008 Particle Surface Interactions Primary beam Secondary beam (source) (spectrometers, detectors) Ions Ions Elec trons Elec trons Photons Photons Vacuum 3 © 2008 University of Illinois Board of Trustees. All rights reserved. Spatial resolution versus Detection Limit 4 © 2008 University of Illinois Board of Trustees. All rights reserved. 2 6/9/2008 Particle Surface Interactions Photoelectron Spectroscopy Ions Ions Electrons Electrons Photons Photons Joe E. Greene2) Vacuum 5 © 2008 University of Illinois Board of Trustees. All rights reserved. X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate the chemical composition of surfaces. X-ray1 Photoelectron spectroscopy, based on the photoelectric effect,2,3 was developed in the mid-1960’s as a practical technique by Kai Siegbahn and his research group at the University of Uppsala, Sweden.4 Wilhelm Conrad Röntgen Heinrich Rudolf Hertz Albert Einstein Kai M. Siegbahn 1. W. Röntgen, 1901 Nobel Prize in Physics “in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him.” 2.
    [Show full text]
  • X-Ray Photoelectron Spectroscopy (XPS)
    XX--RayRay PhotoelectronPhotoelectron SpectroscopySpectroscopy (XPS)(XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Electron Spectroscopy for Chemical Analysis (ESCA) • The basic principle of the photoelectric effect was enunciated by Einstein [1] in 1905 E = hν There is a threshold in frequency below which light, regardless of intensity, fails to eject electrons from a metallic surface. hνc > eFm Where h - Planck constant ( 6.62 x 10-34 J s ), ν– frequency (Hz) of the radiation • In photoelectron spectroscopy such XPS, Auger and UPS, the photon energies range from 20 -1500 eV (even higher in the case of Auger, up to 10,000eV) much greater than any typical work function values (2-5 eV). • In these techniques, the kinetic energy distribution of the emitted photoelectrons (i.e. the number of emitted electrons as a function of their kinetic energy) can be measured using any appropriate electron energy analyzer and a photoelectron spectrum can thus be recorded. [1] Eintein A. Ann. Physik 1905, 17, 132. • By using photo-ionization and energy-dispersive analysis of the emitted photoelectrons the composition and electronic state of the surface region of a sample can be studied. • Traditionally, these techniques have been subdivided according to the source of exciting radiation into : • X-ray Photoelectron Spectroscopy (XPS or ESCA) - using soft x-ray (200 - 1500 eV) radiation to examine core-levels. • Ultraviolet Photoelectron Spectroscopy (UPS) - using vacuum UV (10 - 45 eV) radiation to examine valence levels. • Auger Electron Spectroscopy (AES or SAM) – using energetic electron (1000 – 10,000 eV) to examine core-levels. • Synchrotron radiation sources have enabled high resolution studies to be carried out with radiation spanning a much wider and more complete energy range ( 5 - 5000+ eV ) but such work will remain, a very small minority of all photoelectron studies due to the expense, complexity and limited availability of such sources.
    [Show full text]