Hindawi Complexity Volume 2020, Article ID 8868884, 16 pages https://doi.org/10.1155/2020/8868884 Research Article Improved 2D Discrete Hyperchaos Mapping with Complex Behaviour and Algebraic Structure for Strong S-Boxes Generation Musheer Ahmad 1 and Eesa Al-Solami 2 1Department of Computer Engineering, Jamia Millia Islamia, New Delhi 110025, India 2Department of Information Security, University of Jeddah, Jeddah 21493, Saudi Arabia Correspondence should be addressed to Musheer Ahmad;
[email protected] Received 30 September 2020; Revised 7 December 2020; Accepted 11 December 2020; Published 23 December 2020 Academic Editor: Jesus M. Muñoz-Pacheco Copyright © 2020 Musheer Ahmad and Eesa Al-Solami. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. *is paper proposes to present a novel method of generating cryptographic dynamic substitution-boxes, which makes use of the combined effect of discrete hyperchaos mapping and algebraic group theory. Firstly, an improved 2D hyperchaotic map is proposed, which consists of better dynamical behaviour in terms of large Lyapunov exponents, excellent bifurcation, phase attractor, high entropy, and unpredictability. Secondly, a hyperchaotic key-dependent substitution-box generation process is designed, which is based on the bijectivity-preserving effect of multiplication with permutation matrix to obtain satisfactory configuration of substitution-box matrix over the enormously large problem space of 256!. Lastly, the security strength of obtained S-box is further elevated through the action of proposed algebraic group structure. *e standard set of performance parameters such as nonlinearity, strict avalanche criterion, bits independent criterion, differential uniformity, and linear approximation probability is quantified to assess the security and robustness of proposed S-box.